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ABSTRACT  

 
The present investigation was intended to assess the consequences of an inspiratory load 

on the diaphragm central component of fatigue during exercise. We recorded the motor 

potential (MEP) evoked by transcranial magnetic stimulation of the motor cortex in ten 

subjects. The diaphragm and rectus femoris were studied before and 10, 20 and 40 min after 

two 16-min cycling exercise trials requiring 55% of O2MAX: i) one with an inspiratory 

threshold load (E + ITL) corresponding to 10% of maximal inspiratory pressure and ii) the 

other without the load (E). Dyspnea, heart rate, electromyographic activity of the 

sternocleidomastoid, and diaphragm work were significantly higher in E + ITL than in E. 

Neither trial affected the response to phrenic magnetic stimulation, which was performed 15 

and 25 minutes post-exercise, or the maximal inspiratory pressure (116 cmH20 and 120 

cmH20 before E and E + ITL, respectively, and 110 cmH20 and 114 cmH20 at 30 minutes 

post-exercise). Whereas the amplitude of the diaphragm MEP was unaffected by E + ITL (+ 

2.1 ± 29.4 %), a significant decrease was observed 10 minutes after E as compared to baseline 

(-37.1 ± 22.3 %) and as compared to E + ITL. The MEP amplitude of rectus femoris remained 

unchanged with E and E + ITL. The recruitment of synergistic agonists during E + ITL may 

have normalized the major ventilatory stress and reset up the excitability of the diaphragm 

pathway.  
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INTRODUCTION 

Fatigue develops when striated skeletal muscles are confronted with loads that challenge 

their strength and endurance, involving both peripheral (downstream the neuromuscular 

junction) and central mechanisms (see 13 for a review). Central fatigue is common in humans 

(7, 8, 33) and is viewed by some as a mechanism to protect against exercise-induced muscle 

damage or exercise-induced homeostatic failure (13).  

As with other skeletal muscles, inspiratory muscles are susceptible to fatigue both in 

response to specific loading (16) and after exhaustive endurance exercise. For example, 

highly fit normal volunteers exhibit decreased static inspiratory pressures after prolonged or 

extreme whole body exercise [e.g. a triathlon (17) or marathon (20)]. Because of the 

volitional nature of static inspiratory pressure manoeuvres, the question of the central or 

peripheral nature of the mechanisms involved has been left open. Johnson et al. (19) found 

convincing evidence of contractile alterations (peripheral fatigue) when they compared the 

results of bilateral supramaximal phrenic nerve stimulation before and after exercise-induced 

diaphragm fatigue in healthy humans. This does not, however, exclude a central component. 

Indeed, Verin et al. (35) demonstrated supraspinal diaphragm fatigue following incremental 

treadmill exercise. In this study, the depression of the diaphragmatic motor potentials evoked 

by transcranial magnetic stimulation was more pronounced and slower to recover than that of 

the quadriceps. 

During CO2-stimulated ventilation (38) or exercise, plastic changes in respiratory muscle 

recruitment occur. The contribution of the diaphragm tends to decrease, with the muscle 

acting increasingly as a flow generator rather than a pressure generator (2). The contribution 

of extradiaphragm inspiratory and expiratory muscles to ventilation augments so as to 

maintain the global efficacy of the ventilatory pump. This is true when ventilatory loading 

starts with fresh muscles (19) and is even more evident when the diaphragm has been 

previously fatigued (30). These adaptive strategies are central in nature and may have a 
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protective function for the diaphragm. The present study was designed to address a part of this 

issue in healthy volunteers. The specific aims were to determine i) whether moderate cycling 

exercise leads to a depression in motor evoked potentials and ii) how an imposed inspiratory 

threshold load [known to provoke a strong recruitment of extradiaphragm inspiratory muscles 

(39)] would influence this phenomenon. We hypothesized that the diaphragm responses to 

transcranial magnetic stimulation after exercise ewould be dependent on whether the exercise 

was performed with or without inspiratory threshold loading. 

  

 

METHODS 

Participants 

Ten healthy volunteers (5 men, 5 women; age 21 to 33 yr; body mass index 18.7 to 25.8 

kg.m-2; all but one right-handed), free of any disease or significant medical history, were 

studied. Their maximal oxygen uptake ( O2MAX) ranged from 32.0 to 56.9 ml. min-1.kg-1 (see 

Table 1). They were instructed to maintain their usual level of physical activity during the 

study period and not to modify their caffeine or nicotine consumption. They refrained from 

alcohol consumption, sedative intake, and heavy exercise during the 24 hours preceding the 

tests. Of note, an 11th subject who had been recruited dropped out of the study because he 

could not tolerate transcranial magnetic stimulation. 

The protocol had been approved by the appropriate ethics committee and all subjects gave 

their informed written consent for the study. 

Preliminary evaluation 

At the first visit, each subject underwent a physical examination and a 12-lead 

electrocardiogram (ECG). Maximal oxygen uptake was measured using an electronically 

braked cycle ergometer (Ergometrics 800, Ergoline, Germany) as follows. After an 8-minute 

Table 1 
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warm-up at a heart rate of about 110 beats per minute, the load was increased every minute by 

25 watts until the subject was unable to continue despite vigorous coaching. During this 

procedure, the subjects breathed through a face mask (Hans Rudolph, Kansas City, MO, 

USA) connected to a pneumotachograph (Type 3, Hans Rudolph, Kansas City, MO, USA). 

Inspiratory and expiratory gas composition and flows were analyzed breath-by-breath using 

an automated system (Medisoft, Exp’air 1.26, Belgium). The metabolic and ventilatory 

parameters, including oxygen uptake ( O2), carbon dioxide production ( CO2), expiratory 

flow ( E), tidal volume (VT), respiratory rate (RR) and duty cycle (ratio between inspiratory 

time and total time of the cycle), were monitored continuously and averaged over every 15-s 

period. Heart rate was recorded (Archimed) continuously by four ECG leads.  

The following criteria had to be met to accept the highest O2 mean over 15 s at the time 

of task failure as maximal: i) stabilization of O2, ii) a respiratory exchange ratio >1.1, and iii) 

attainment of the age-predicted maximal heart rate (220-age).  

The capacity of the subjects to produce static inspiratory pressures was measured in terms 

of the volitional maximal inspiratory pressure developed from residual volume against an 

occluded airway (PIMAX). Maximal inspiratory pressure was determined as the highest 

pressure maintained over 1 s against an occlusion. Mouth pressure was measured by a 

differential pressure transducer (± 250 cmH2O, Validyne, Northridge, CA, USA), digitized at 

500 Hz (MP100 Manager V3.2.6, Biopac Systems, Inc., Santa Barbara, CA, USA) and stored 

on a computer.  

 

Exercise protocol 

Each subject performed two exercise (E) trials, one with an inspiratory threshold load 

(ITL) added (E + ITL) and one without (E). The runs were performed in random order, at a 

minimal interval of two days and at the same time of the day. Each trial consisted of a 5-
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minute warm-up at 50% of the exercising load, immediately followed by a 16-minute cycling 

bout. The exercising load required 55% of O2MAX and was below the ventilatory anaerobic 

threshold determined according to Wasserman (37). Subjects were instructed to cycle between 

60 and 70 rpm. Throughout the tests, gases were analyzed breath-by-breath using the 

automated system described above. 

Inspiratory loading was achieved during the E + ITL runs by connecting an inspiratory 

threshold valve (threshold IMT, Respironics, Germany) to the inspiratory side of a two-way 

breathing valve (type 2700, Hans Rudolph, Kansas City, MO, USA) connected to the face 

mask. The valve was adjusted to open at an inspiratory pressure of about 10% of PIMAX. The 

inspiratory load was added 1 minute after the beginning of exercise. Expiration remained free 

throughout testing. Mouth pressure and flow were continuously recorded during both trials 

from the set-up of the inspiratory load. 

While exercising, the subjects were asked to rate their dyspnea every 90 s on a visual scale. 

No instructions were given to the subjects regarding breathing pattern.  

Muscle activity during exercise 

The electromyographic (EMG) activity of the sternocleidomastoid muscles (SCM) and 

transdiaphragmatic pressures was monitored continuously during the two trials (E and E + 

ITL) on the six subjects numbered 5 to 10 in Table 1. 

Spontaneous electromyographic activity of the SCM was obtained by surface recording 

using pairs of disposable silver cup electrodes. These were placed over the mid-point of the 

muscle belly (4). The raw EMG signals were full-wave rectified and integrated with time of 

burst to provide an integrated EMG activity index (EMGi). During the 16-minute cycling 

bout, the subjects were asked to maintain their posture on the ergocycle and any part of the 

signal containing interference caused by head movement was removed. 
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The transdiaphragmatic pressure was determined as the difference between gastric and 

oesophageal pressures continuously recorded over the two exercise trials. The catheter tip 

pressure transducer (CTO-2, Gaeltec Ltd, Scotland, UK) was gently positioned in the 

oesophagus and stomach, after local anaesthesia of the nasal passage with xylocaine spray 

(xylocaine 5% Nebuliser, Astra Inc., France). Transdiaphragmatic pressure deflections were 

integrated over time (Pdii) and served to reflect the work of the diaphragm.  

Transcranial magnetic stimulation 

The responses to transcranial magnetic stimulation were studied in all subjects, who were 

seated comfortably in a quiet room, in a relaxed state.   

Surface recordings of the diaphragm and rectus femoris electromyograms were obtained 

using pairs of disposable silver cup electrodes. The right costal diaphragmatic activity was 

recorded with active electrodes taped to the skin along the mid-clavicular line in the eighth 

intercostal space (34). For the rectus femoris, the electrodes were placed in the physiological 

axis over the belly of the muscle (25). 

Transcranial magnetic stimulation was performed using a Magstim® 200 magnetic 

stimulator (The Magstim Company, Sheffield, UK) equipped with a conical butterfly coil 

(coil diameter 110 mm; maximal output 1.6 T). The optimal stimulation site and coil position 

were determined by testing several combinations at the lowest stimulation intensity evoking a 

response from both the rectus femoris and the diaphragm. To ensure constant body and coil 

positions, the shadow of the subject as projected from direct lateral lighting and the shadow of 

the coil in stimulation position were drawn on a board at the beginning of the first session and 

then carefully reproduced. Care was taken to perform transcranial magnetic stimulation with 

the diaphragm and the rectus femoris relaxed to avoid any modification in the response by 

facilitation, and at end-expiration (from visual inspection of rib cage movement).  
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A 10-minute rest period preceded the baseline measurements. At rest and 10, 20 and 40 

minutes after the end of exercise, sets of five transcranial magnetic stimulations were 

performed at 100% of stimulator output. The time interval between stimulations was 30 s.  

The electromyographic signals were digitized at 20,000 Hz for 260 ms after the stimulation 

(MP100 Manager V3.2.6, Biopac Systems, Inc., Santa Barbara, CA, USA), analyzed and then 

saved to a desktop computer. The MEP latency was measured as the time elapsed from the 

stimulus to the first departure of the electromyographic signal from baseline. Its amplitude 

was determined as the peak-to-peak difference of the first recognizable deflection. 

Cervical magnetic stimulation and maximal inspiratory pressure 

The six subjects in whom muscle activity was studied had a slightly modified exercise 

protocol: diaphragm responses to phrenic nerve stimulation were also recorded before 

exercise (after transcranial stimulations) and 15 and 25 minutes after exercise. The purpose of 

these measurements was to assess any peripheral fatigue that may have developed. These 

subjects also performed the PIMAX manoeuvres described above (see preliminary evaluation) 

at rest and 30 minutes after the end of each exercise trial. 

The phrenic nerves were bilaterally stimulated with cervical magnetic stimulation using 

100% of the maximal output of a Magstim® 200 system, and a circular 90-mm coil (S/N, 

maximum output 2 T, pulse duration 0.05 ms; The Magstim Company, Sheffield, UK). 

Subjects were seated with the neck slightly flexed; they wore a noseclip and breathed through 

a mouthpiece with a small leak (to avoid glottis closure). Five stimulations were delivered at 

the functional residual capacity determined by visual control of chest movements, with at 

least 30 s intervals to avoid a twitch on twitch potentiation. 

Mouth pressure measurement in response to phrenic nerve stimulation was performed as 

described in the Preliminary evaluation section. The amplitude of the twitch mouth pressure 

(twPmo) signal was measured as the difference between baseline and the peak pressure during 
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phrenic stimulation. The electromyographic (M-Wave) and mechanical responses to cervical 

magnetic stimulation were acquired similarly to the responses to transcranial magnetic 

stimulation (see above). We took particular care in verifying the absence of difference in the 

M-wave amplitude of the diaphragm. 

Statistical procedures 

The distributions of the amplitudes and latencies of the motor evoked potentials were 

checked for normality using the D test of Kolmogorov-Smirnov. Because none of the MEP 

distributions were normal, a log-transformation was applied. The normality of the 

distributions after transformation was confirmed by D values of 0.077 for the diaphragm in 

the E and E + ITL trials, and D values of 0.087 and 0.077 for the quadriceps in the E and E + 

ITL trials, respectively (all p>0.2). The latencies of the diaphragm motor evoked potentials 

were normally distributed during free and loaded exercise (all D<0.1 and p>0.2). 

Two-way analysis of variance with repeated measures was used to determine differences in 

the mean values of MEP amplitudes and latencies over the duration of exercise and recovery 

(Statistica Kernel V 5.5 Statsoft, France). The analysis for MEP amplitudes was performed on 

log-transformed data. 

When a main statistical effect was found by ANOVA, means were compared using a 

Newman-Keuls post hoc test. 

Paired t tests were used to assess differences beween trials (with and without inspiratory 

load) when the effect of time was not analyzed. 

Data are expressed as means ± SD unless otherwise stated. Differences were considered 

statistically significant when the probability p of a type I error was 0.05 or less.  

 

RESULTS 



 

 

10 

 

Cardioventilatory data 

Two subjects had to interrupt the loaded exercise trial before its scheduled end because of 

excessive hyperventilation inducing acute dizziness in one case and intolerable dyspnea in the 

other. As they stopped only 1 and 2 minutes before the end of exercise, respectively, they 

were maintained in the analyses. 

The mean minute ventilation, breathing frequency, tidal volume and duty cycle recorded 

over 15 minutes of the exercise were not different between the free and loaded runs (Figure 

1), as reflected by p values of 0.94, 0.69, 0.13, and 0.27, respectively. However, the individual 

breathing patterns in response to the threshold load varied among the subjects. Overall, the 

mean inspiratory flow rate (VT / Ti), which is assumed to reflect the ventilatory command, did 

not differ between the two runs. 

All the subjects but one scored a significantly higher dyspnea during the trial with 

inspiratory loading than during the free trial of whole-body exercise (Figure 2A). 

The mean heart rate was significantly higher during the loaded run than the free run (147 ± 

15 vs. 144 ± 18 bpm, p = 0.03) (Figure 2B).  

 

 

Muscle activity 

The sternocleidomastoid activity was significantly higher (5.3 ± 2.5 vs. 15.4 ± 10.4) when 

the inspiratory load was added (Figure 3A, Figure 4). Indeed, the clinical observation of rib 

cage dynamics supported these results.  

In the only three subjects whose diaphragm work could be measured during the two 

exercise runs, Pdii increased from 18.3 ± 6.1 cmH2O.ms-1 in the free trial to 56.7 ± 9.0 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 
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cmH2O.ms-1 in the loaded one, and mean Pdi followed the same increment pattern (Figure 

3B, Figure 4). 

 

Cervical magnetic stimulation and maximal inspiratory pressure 

The variance analysis showed that the maximal inspiratory pressure was not affected by 

the trial (exercise vs. loaded exercise), the effort (after vs. before, whether including an 

inspiratory load or not) or a combination of these factors (Figure 5A). Similarly, twitch 

mouth pressures did not change across conditions of time or exercise (Figure 5B). The M-

wave amplitude also remained unaffected by these factors (Figure 6). 

 

Responses to transcranial magnetic stimulation  

ANOVA revealed an overall interaction effect between time of measurement and trial 

condition on the amplitudes of the diaphragm MEP (p = 0.038) The amplitudes were not 

significantly different between the two trials at rest (p=0.209). Ten minutes after the end of E, 

however, they were significantly lower than at baseline and at the same point in time after E + 

ITL (Figure 7A); 20 and 40 minutes after E, the amplitudes remained lower than at baseline, 

although not significantly so (p = 0.061 and 0.075, respectively). Conversely, E + ITL had no 

effect on the amplitudes of the diaphragm MEP (after vs. before, all p values >0.88).  

The average diaphragm MEP latencies were 15.5 ± 1.1 ms at baseline in the free condition 

and 16.0 ± 1.1 ms in the loaded condition. The latencies were unchanged over time during a 

given session, and unaffected by ITL (p=0.77). 

Figure 7B describes the evolution in the amplitudes of the rectus femoris motor evoked 

potentials with time. The MEP amplitudes were unchanged over time after E, and unaffected 

Fig. 5 

Fig. 7 

Fig. 6 
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by ITL. The MEP latencies also remained unchanged between and during the trials (p=0.98). 

The average latency at rest was 22.1 ± 2.5 ms for E and 22.4 ± 2.1 ms for E + ITL. 

  

DISCUSSION 
This study shows that non-exhaustive whole body exercise in normal individuals can 

induce neurophysiological changes compatible with supraspinal diaphragm fatigue, and that 

this effect is not present when the exercise is combined with a moderate level of inspiratory 

threshold loading. 

Methodological issues  

A decrease in the amplitude of the motor potentials evoked by transcranial magnetic 

stimulation can be interpreted in terms of supraspinal fatigue when no significant metrological 

changes occur. In the present study, we took particular care to maintain a constant body 

posture and a constant relationship between the stimulating coil and the scalp throughout the 

experiments (see Methods). In addition, because changes in the inter-electrode impedance or 

the spatial relationship between the electrodes and the recorded motor units could 

theoretically have played a role in the variations that we observed, we compared the 

amplitude of the responses to peripheral stimulation before and after exercise. We observed 

no variation in the electromyographic response to CMS, which was expected, given that this 

signal is generally unaffected by fatigue protocols involving non-isotonic efforts. We are thus 

confident that changes in the stimulus or changes in the recording conditions did not play a 

significant role in the phenomena that we observed.  

The measurement of the pressure generated in response to CMS allowed for the control of 

peripheral muscle fatigue in this study. In terms of exercise intensity, ventilatory demand, and 

degree of loading, the experimental conditions were such that contractile fatigue was 

extremely unlikely to occur, and particularly so in the diaphragm (19). Indeed, the absence of 

variation in the twitch mouth pressure suggests that peripheral fatigue did not develop.  
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Finally, non-fatiguing efforts tend to potentiate the electromyographic response to 

transcranial magnetic stimulation (3). This “post-exercise facilitation” phenomenon is the 

result of a transient increase in the excitability of the alpha-motoneurons induced by muscular 

activity (28), a feature that we did not observe after either type of exercise run. The motor 

evoked potential latencies in our subjects, which were in the normal range for unfacilitated 

responses (29), did not differ from their baseline values after exercise. The maximal 

inspiratory manoeuvre has potential facilitatory effects but it was followed by 10 minutes of 

rest. The subjects remained quiet, i.e. motionless and silent, during the recovery. Post-exercise 

facilitation therefore does not seem likely to have been a confounding factor.  

Central diaphragm fatigue in response to unloaded exercise 

The twitch interpolation technique has been used to assess the degree of voluntary 

activation of a given muscle during a voluntary contraction (24, 21). It consists of 

superimposing supramaximal stimulations on the nerve commanding an already contracting 

muscle. When task failure is associated with an additional mechanical output in response to 

this stimulation, fatigue is assigned to a central component. Central diaphragmatic fatigue has 

been evidenced using this technique in various contexts (6, 21) characterised by diaphragm-

oriented loading protocols. Verin et al. (35) seem to have been the first to provide arguments 

for central diaphragm fatigue after whole-body exercise. They found that both the diaphragm 

and the quadriceps exhibited post-exercise decrements in their responses to transcranial 

magnetic stimulation after an incremental walking exercise likely to require high ventilatory 

outputs. As compared to their study, we did not observe signs of supraspinal fatigue in the 

recti femori. The reason for this difference may lie in the nature of the exercise paradigm 

used: our protocol was specifically designed not to provoke exhaustion. The two studies are, 

however, consistent in that they suggest a greater susceptibility to supraspinal fatigue in the 

diaphragm than in the quadriceps. This result is compatible with the view that central fatigue 

has a protective function (13). It is also tempting to draw a parallel between the results of 
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these two studies and the fact that normal subjects achieve greater activation of the quadriceps 

than of the diaphragm during similar loading protocols (14). This feature has been called on 

by Guleria et al. (14) to explain the relative difficulty of experimentally producing diaphragm 

contractile fatigue in comparison with other muscles.  

Of note, most works on supraspinal fatigue have involved intense muscular efforts, 

generally mono-articular and leading to task failure. The muscles under study have generally 

been small and distal (9, 28), with some exceptions (27, 33). This was not the case for the 

diaphragm in our experiments, which makes comparison with other results difficult. However, 

supraspinal fatigue has been observed in several muscles as a result of whole body exercise 

(18) (as opposed to specific limb solicitation).  

Effects of inspiratory threshold loading on the post-exercise diaphragm response 

Increased ventilatory demand is often associated with changes in the activity and 

recruitment pattern of the respiratory muscle groups (19, 26). These changes generally tend to 

put the burden of the ventilatory load on extradiaphragm muscles. For example, exercise is 

normally associated with a precocious and strong recruitment of abdominal muscles that 

directly contribute to the ventilatory work by their expiratory action. They also indirectly help 

inspiration by bringing the rib cage at end-expiration below its equilibrium position, therefore 

making rib cage elastic recoil available for inspiration (10). Rib cage and neck muscles are 

also recruited during exercise. They contribute directly to the expansion of the rib cage, and 

decrease rib cage distortability (21). As a result, it has been shown that the nature of the 

diaphragm contraction changes during exercise (2) and therefore its energy expenditure is not 

increased disproportionately. Studies, particularly on limb muscles, have clearly demonstrated 

that a given task can be accomplished with different recruitment strategies. For example, 

fatigue of the vastus lateralis has been shown to modify the recruitment of synergistic 

muscles, thereby preserving the success of a knee extension task (1). Given the compensatory 
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mechanisms that are developed in patients with diaphragm paralysis (15) and in healthy 

subjects exercising with fatigued inspiratory muscles (30), it also appears reasonable to 

assume that changes in the pattern of extradiaphragm respiratory muscle activity would allow 

the ventilatory demand to be met in spite of reduced diaphragm activity. To support this, 

Johnson et al. (19) showed that twitch transdiaphragmatic pressure was reduced at all lung 

volumes after task failure in 12 healthy volunteers with a variety of fitness levels exercising to 

exhaustion at 85 and 95% of their maximum oxygen uptake. In this study, the contribution of 

the diaphragm to the respiratory motor output tended to decrease with the duration of the 

effort, with a shift of the load toward other muscles.  

Inspiratory loading favours the recruitment of inspiratory neck and rib cage muscles (30), 

and the amplitude partly determines endurance. For this study, the choice of 10% of the 

maximal inspiratory pressure was based on preliminary studies that showed the load to be 

demanding and capable of generating strong neck and rib cage muscle contractions. The 

literature (5, 35) reveals that this load is associated with a normal respiratory duty cycle and is 

unlikely to induce low frequency diaphragm fatigue, which had to be avoided in this study. 

The recruitment of additional muscles with loading is observed in patients with chronic 

obstructive pulmonary disease and in healthy subjects. Both resistive (16) and threshold (11) 

loading lead to strong solicitation and sometimes fatigue (16, 39) of extradiaphragmatic 

muscles. The ITL added to the burden of the exercise-related increase in ventilatory demand 

consistently resulted in recruitment of extradiaphragmatic muscles, as shown by the 

electromyographic recording of the sternocleidomastoid muscles. Moreover, our subjects 

reported dyspnea during the loaded protocol, whereas this was not the case during the "free" 

protocol. Yet Fitting et al. (12) and Ward et al. (36) both clearly showed that recruiting the 

sternocleidomastoid and parasternal intercostal muscles rather than the diaphragm to perform 

a given respiratory task is strongly associated with dyspneic sensations. Therefore, we suggest 
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that the redistribution in the respective roles of the inspiratory muscles is related to the 

disappearance of the post-exercise depression in diaphragm MEPs in the E + ITL condition. 

This is not a simple assertion that the decrease in motor evoked potentials is due to lower 

recruitment of the diaphragm. There is probably no correlation between the amount of work 

produced by a muscle group at a given time and the fatigue of its command. Instead, we 

propose that the decreased excitability after exercise is linked to the reorganization of the 

diaphragm’s motor command. When moderate exercise is not prolonged, this reorganization 

could optimize the use of resources. Changing the breathing has already been presented as an 

optimization strategy that is implemented during the development of fatigue (11). 

Consequently, it could occur without any change in the mechanical output or alteration in the 

maximal performance (PIMAX, in this case), but it may still be a limiting factor when exercise 

is prolonged, probably through the development of dyspnea (31, 22). Sufficient data are 

lacking to venture a hypothesis about whether the adaptation depresses the excitability of the 

motor command – as reflected by a decrease in MEP amplitude - or whether decreased 

excitability results in reorganized recruitment. We nevertheless suspect that the second 

position will be borne out and propose that early in the E + ITL trial, mechanical afferences 

led to a relative inhibition of the diaphragm motor command that later normalized. Even 

though it results in dyspnea, which is another constraint, the recruitment of neck and rib cage 

muscles controls the major stress to the respiratory system, i.e. the inspiratory load. It is 

possible that in this condition the excitability of the respiratory pathways is reset up during 

the exercise itself and is not influenced by slighter changes in the homeostasis. Longer 

inspiratory loaded exercise would be interesting to study to assess whether dyspnea continues 

to act as a safety feature by leading to the end of exercise before the respiratory system adapts 

to metabolic changes through variation in the excitability of its command. In contrast, a finer 

regulation of the diaphragm command, based on both mechanical and chemical afferences, 
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could be sought during exercise.This would result in a prolonged relative domination of 

inhibitory over excitatory mechanisms. 

 
In conclusion and in spite of its limitations, this study seems to contribute to the current 

body of knowledge suggesting that several mechanisms act in concert to protect the 

diaphragm against overload-induced damage. These mechanisms include a reduced central 

activation in loaded conditions (6), the early occurrence of supraspinal fatigue or inhibition 

(21), and agonist recruitment to overcome an increased demand.  
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LEGENDS 

 

Table 1. Individual characteristics of the subjects. MAP: maximal aerobic power, defined 

as the highest power the subject was able to maintain for one minute during the incremental 

test. In the gender section, m stands for male and f for female. 

 

Figure 1. Individual and mean variations between the two sessions: exercise (E) and 

inspiratory-loaded exercise (E + ITL), for the following ventilatory parameters: A) ventilatory 

output, B) breathing frequency, C) tidal volume, D) respiratory duty cycle, i.e. ratio between 

inspiratory time and total time of a cycle. NS: non-significant.  

 

Figure 2. Individual and mean (± SD) variations between the two sessions: exercise (E) 

and inspiratory-loaded exercise (E + ITL), for A) dyspnea rated on a Borg scale and B) mean 

heart rate. * : p<0.05; **: p<0.01. 

 

Figure 3. A) Mean and SD integrated electromyographic activity (EMGi) of the 

sternocleidomastoid muscles over the time of E (!) and E + ITL ("). n = 6. **: p<0.01. B) 

Mean and SD amplitude of the average deflection of Pdi during the sessions; no statistical 

analysis was performed on these data since the number of subjects is small (n = 3).  

 

Figure 4. Representative pressure traces recorded in one subject at the beginning of E (A) 

and during a corresponding period in E + ITL (B). The transdiaphragmatic pressure is in grey, 

gastric pressure is represented by the black trace in phase with Pdi, and oesophageal pressure 

is the remaining black trace. The electromyographic activity of the sternocleidomastoid is 

displayed below the pressure traces. 
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Figure 5. A) Mean and SEM for PIMAX before (rest) and 30 minutes (P30) after the end of 

exercise without (! = exercise trial) and with (" = inspiratory loaded exercise trial) an 

inspiratory load. B) Mean and SEM for mouth pressure in response to cervical magnetic 

stimulation before (rest), and 15 (P15) and 25 minutes (P25) after the end of the trials. n = 6. 

 The interaction effect was non-significant (NS, p = 0.96 and 0.71 in A and B, 

respectively). 

 

Figure 6. Representative M-wave trace recorded in one subject at the measurement time 

points of baseline and 15 and 25 minutes post-exercise (post 15 min and post 25 min, 

respectively) of the exercise trials (A) and the inspiratory loaded exercise trials (B). 

 

Figure 7. Mean and SEM for MEP amplitudes of the diaphragm (A) and rectus femoris (B) 

at rest, and 10 (P10), 20 (P20) and 40 (P40) minutes after the end of exercise. ! exercise (no 

inspiratory load), " exercise with inspiratory load. * : p<0.05 as compared to rest in the same 

condition; # : p<0.05 as compared to the other condition at the same time. NS: non-significant 

interaction effect between the time and condition effects. 
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TABLE 1 
 

 

 

 

 

 

 
 
 

Subject Gender 
m / f 

Age 
(years) 

Height 
(cm) 

Weight 
(kg) 

MAP 
(W) 

O2MAX 
(ml-1.min-

1. kg-1) 

PIMAX 
(cmH2O) 

        
1 f 30 168 65 225 38.0 135 
2 m 30 175 79 350 56.9 146 
3 f 33 169 59 175 36.0 105 
4 m 24 184 81 300 43.5 202 
5 m 25 182 62 290 56.3 175 
6 m 27 180 77 350 52.0 159 
7 f 22 170 55 200 36.9 100 
8 f 22 176 66 275 35.4 135 
9 f 26 163 60 200 32.0 112 
10 m 21 185 79 350 46.6 132 
         

Mean  26 175 68 276 43.4 140 

SD  4 7 9 66 9.1 32 
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FIGURE 1 
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FIGURE 7 
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