
HAL Id: hal-01203649
https://hal.science/hal-01203649

Submitted on 13 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

KriQL: a query language for the diagnosis of transition
systems

Khaoula Es-Salhi, Siham Rim Boudaoud, Ciprian Teodorov, Zoé Drey,
Vincent Ribaud

To cite this version:
Khaoula Es-Salhi, Siham Rim Boudaoud, Ciprian Teodorov, Zoé Drey, Vincent Ribaud. KriQL: a
query language for the diagnosis of transition systems. 15th International Workshop on Automated
Verification of Critical Systems - AVOCS’15, Sep 2015, Edimburgh, United Kingdom. pp.151-165.
�hal-01203649�

https://hal.science/hal-01203649
https://hal.archives-ouvertes.fr

Pre-proceedings of the

15th International Workshop on

Automated Verification of Critical Systems

https://sites.google.com/site/avocs15/

Gudmund Grov, Andrew Ireland (Editors)

School of Mathematical and Computer Sciences

Heriot-Watt University, Edinburgh, UK

ECEASST

KriQL: a query language for the diagnosis of transition systems

Khaoula Es-Salhi1, Siham Rim Boudaoud2, Ciprian Teodorov2, Zoé Drey2 and

Vincent Ribaud1

1Lab-STICC CNRS UMR 3128, Université de Bretagne Occidentale

20, avenue Le Gorgeu, 29200, Brest, France

Email: essalhi.khaoula.mii@gmail.com, ribaud@univ-brest.fr
2Lab-STICC CNRS UMR 3128, ENSTA-Bretagne

2 rue François Verny, 29200, Brest, France

Email: boudaoud.siham.rim@gmail.com, ciprian.teodorov,zoe.drey@ensta-bretagne.fr

Abstract: The formal verification of a concurrent system with a model-checker

provides the user with a counterexample trace when a property is violated; however

the problem diagnosis still remain a complex issue. Diagnosis is made difficult for

several reasons: the trace conforms to a structure that is internal to the verification

tool and hence hard to exploit, the trace yields low-level information, the trace size

can be large. Traces cannot be understood without the Labelled Transition System

(LTS) underlying the model-checker exhaustive exploration; we designed KriQL: a

query language over the LTS graph featuring a blend of set filters and graph-based

operations and we implemented some feasibility prototypes. Benchmark results in-

dicate that a hybrid management system using a graph-based database and dedicated

data structures should achieve sufficient performances.

Keywords: trace, transition system, query language

1 Introduction

System verification aims to establish that the system under study (SUS) possesses certain prop-

erties, such as fairness or reachability. Properties are generally issued from the system’s spec-

ification. A defect is found once the system violates one or several of the specified properties.

Model-checking is a verification technique that relies on the systematic analysis of all the states

of the system to check if the system model (formalized using process algebra or concurrent

automata) satisfies the specification (typically expressed using temporal logics). If a state is

encountered that violates the specification, the model checker produces a counterexample - an

execution path that leads to the undesired state - also called a witness trace.

In this context, the typical diagnosis process is simple: a human or machine troubleshooter

provides a description of the problem that occurred, a kind of analysis is performed and the root

cause identified in order to provide the user with a remedy to the problem. Yuan et al. resume

the paradigm of problem diagnosis : problem description → root cause → solution [YLW+06].

When the problem is represented with a witness trace, problem description needs to interpret the

trace and this interpretation is challenging for several reasons: the trace conforms to a structure

that might be or might not be available with the trace, the interpretation has to deal with the

1 / 15 Volume 70 (2014)
AVoCS 2015 151

KriQL: a query language for the diagnosis of transition systems

different levels of details from which the traces are built, in practical settings, the size of the

trace can be very large.

Because the states space explored by a model-checker is a graph, graph querying that yields

restricted sub-graphs or aggregated results is an helpful companion for problem understanding.

The work presented in this paper relies on the research hypothesis that the capability to efficiently

query the potential behaviors of the system will ease problem interpretation and will enable the

development of diagnosis environments, providing specialized visualizations and analysis tools.

This paper presents KriQL a language for query-based diagnosis. This language focuses pri-

marily on the manipulation of the labelled transition system (LTS) constructed during a model-

checking process. KriQL enables the identification, extraction, composition, and inquiry of sys-

tem states, execution traces and sub-clusters of the LTS (representing symbolically encoded sets

of execution traces). At a high-level, our approach merges the graph-theoretic view over the

system execution, obtained through model-checking, with trace and state-oriented analysis tools

(used traditionally during test-debug approaches [PTP07]). The uniqueness of our approach

stems from the reification of the systems behaviors enabling the homogeneous manipulations

of execution traces through a dedicated query-language. From a practical point of view, KriQL

should be seen as a kernel language offering the high-level facilities needed for understanding

and diagnosing complex concurrent systems. The kernel can serve as basis for implementing

automated fault-localization strategies, such as the work presented in [GSB07].

To validate our approach, we have integrated the KriQL language into the OBP (Observer-

Based Prover) verification environment [DBRL12]. To expose the labeled transition system

generated during model-checking in KriQL, there is a need for a storage back-end enabling

fast query execution, requirement which is not needed during the model-checking process. As

such, the LTS storage infrastructure used by OBP was not adapted to our needs. Hence, for our

prototype implementation we have evaluated two alternative solutions using relational and graph

databases, respectively. The benchmark results indicate however, the need of a more specialized

LTS management system that achieves a better performance trade-off between the runtime of the

“state-oriented” and the “transition-oriented” queries in KriQL. Nevertheless, the capabilities

offered by KriQL facilitate the understanding of systems exhibiting large number of potential

behaviors enabling bridging the gap between automated system verification and diagnosis.

The rest of this paper is organized as follows. Section 2 overviews the motivation behind

our approach through a simple example. Section 4 presents the KriQL language semantics and

pragmatics. Different implementation architectures are evaluated in Section 5. Section 3 situates

our approach with respect to the state-of-the art. This study concludes (Section 6) indicating

some future research directions.

2 A motivating example

We borrow our example from an invited talk given by Leslie Lamport’s [Lam84] about two

neighbours Alice and Bob sharing a yard in an exclusive manner because Alice and Bob pets

cannot be together in the yard. Lamport’s solution uses two threads sharing only two boolean

variables (two flags in the story), each of which can be written by one thread and read by the

other. The mutual exclusion algorithm proposed by Lamport is given in figure 1. Incidentally,

Proc. AVoCS 2014 2 / 15
152 KriQL : A Language for Query-based Diagnosis of Transition Systems

ECEASST

it’s a chivalrous algorithm; Alice has priority over Bob.

A l i c e :

whi le (t rue) {
f l a g A l i c e = up ;

whi le (f l agBob == up) s k i p ;

c a t I n Y a r d ;

f l a g A l i c e = down ; }

Bob :

whi le (t rue) {
f l agBob = up ;

whi le (f l a g A l i c e == up) {
f l agBob = down ;

whi le (f l a g A l i c e == up) s k i p ;

f l agBob = up ; }
dogInYard ;

f l agBob = down ; }

Figure 1: Lamport’s mutual exclusion algorithm

2.1 A typical model-checking approach

For verification purposes, the system based on the mutual exclusion algorithm should be trans-

lated into a model specification in a concurrent automata-like language. Alice and Bob automata

are given in figure 2. Transitions between states bear Event-Condition-Action expression; for

instance the expression {rain} [catInYard == true / AliceCatGoesHome] means that when the

event rain occurs and if the condition catInYard == true is satisfied then the action AliceCat-

GoesHome is performed. Once a system model is specified, the property to be checked are

formalized using a property specification language; for instance the mutual exclusion property

may be represented with the predicate not (catInYard and dogInYard). Finally the model checker

is run to check the validity of the property in the model specification. In our example, the model

checker would check that the property holds in all configurations (there is no state violating the

assertion).

According to [BK08], whenever a property is falsified, the negative result may have different

causes. There may be a modelling error, this implies a correction of the model. It might be

a design error or a property error. In case of a design error, the verification is concluded with

a negative result, and the design (together with its model) has to be improved. It may be the

case that upon studying the exposed error it is discovered that the property does not reflect the

informal requirement that had to be validated. This implies a modification of the property, and a

new verification of the model has to be carried out.

3 / 15 Volume 70 (2014)
AVoCS 2015 153

KriQL: a query language for the diagnosis of transition systems

Figure 2: Automata of Alice and Bob behaviour

2.2 Diagnosis of a modelling error

Suppose that, in the state checkAlice, we mistyped the guard flagA == down in an as-

signment flagA = down and that we did not assert that Bob process cannot assign the shared

variable flagA. Running the model-checker will violate the mutual exclusion property because

there exists a path in the transition system where, once Bob has leaved the waiting state because

Alice lowered her flag, Bob does not check Alice’s flag (because of the mistyped instruction) be-

fore to unleash his dog, and if Alice has changed her mind at the same time, she might have raised

her flag again, and unleashes her cat before Bob has raised his flag. Hence the model-checker

will detect the violation and provides the user with a counterexample.

Suppose that we run a model-checker and got a labelled transition system (LTS), a graph re-

sulting of the exploration of Alice and Bob system with a modelling error and the predicate

mutualExclusion. Suppose that this cyclic graph is made of 14 configurations and 37 tran-

sitions. In order to distinguish LTS or process states, we call configuration an LTS state. A LTS

configuration holds all information about processes including their state. The model-checker

indicates that the mutual exclusion property has been violated for the first time in configuration

Proc. AVoCS 2014 4 / 15
154 KriQL : A Language for Query-based Diagnosis of Transition Systems

ECEASST

12. The counterexample trace is 0 → 1 → 3 → 6 → 9 → 12.

A textual and verbose detailed description of the counterexample is generally available where

we find the value of each component of the automata: state, variable values . . . However, the

diagnostician might want to see only the value of variables flagA and flagB in the violation

state 9 and its predecessor 6. In a pseudo-SQL language, we might write the query as

select LTS.confID, Alice.state, Alice.flagA, Bob.state, Bob.flagB

from myTrace where LTS.confID = 9 or LTS.confID.successor = 9,

and the results might be

ID = 6;Alice : state = catInYard, f lagA = true;Bob : state = checkFlagAlice, f lagB = true

ID = 9;Alice : state = catInYard, f lagA = f alse;Bob : state = dogInYard, f lagB = true

Such a result will help the diagnostician to notice that something happened to flagA (that

went to down when the process Bob was in state checkFlagAlice) and probably will lead

her to the modelling error.

2.3 Diagnosis of a design error

Mutual exclusion is only one of several properties of interest. Herlihy and Shavit introduce

their book with the same example and list three other properties: deadlock-freedom, starvation-

freedom and waiting [HS12]. A possible approach to implement properties in a model-checking

approach is the use of observers. An observer is an automaton that monitors the model behaviour

in order to verify faults. An observer is composed with the model through a synchronization

product, i.e. the observer automaton is added to other automata and all possible states explored in

a brute-force manner. The observer state is changing during the exploration and can reach special

states, called reject states that denote a violation of the property monitored by the observer.

Alice and Bob are dead-locked if each of them has raised their flag and is waiting until the

other lowers its flag. It does not happen in the Lamport’s algorithm from figure 1 because as afore

mentioned the algorithm is chivalrous. If Alice and Bob each raise their flags, Bob eventually

notices that Alice’s flag is raised, and defers to her by lowering his flag, allowing her cat into the

yard [HS12]. The deadlock-free property can be implemented by a small automaton, presented

in Figure 3, that changes state when Alice or Bob has raised their flag and enter in a reject state

if Bob or Alice raises also their flag 1.

Figure 3: An observer automaton for checking Alice and Bob deadlock

1 Actually, the observer rejects when Alice and Bob flags are both up and it might not be a problem if the algorithm

can deal with this situation; we assume that the observer detects deadlock for simplicity sake.

5 / 15 Volume 70 (2014)
AVoCS 2015 155

KriQL: a query language for the diagnosis of transition systems

Suppose that Bob adopts the same algorithm as Alice: a) he raises his flag; b) when Alice’s

flag is lowered, he unleashes his dog; c) when his dog returns, he lowers his flag.

With this design, there are several paths in the transition system where Alice and Bob both

raised their flag and are dead-locked. The model-checker will reach the reject state of the ob-

server and produces a counterexample to this reject state.

Suppose that we run again a model-checker and got a LTS graph resulting from the exploration

of Alice and Bob system with a design error and the observer deadLock. Suppose that this

cyclic graph is made of 13 configurations and 32 transitions. The model-checker indicates that

the deadlock observer reached reject for the first time in configuration 4. The counterexample

trace is straightforward 0 → 2 → 4, that is one of the shortest paths to achieve a deadlock: Alice

raises her flag, Bob raises his flag, and they are deadlocked.

In a large trace, an useful query for the diagnostician will highlight the configurations where the

observer did change its state (a pseudo-predicate called changed), and a way to figure out some

information about the intermediate paths between these highlighted configurations, for instance

the size of intermediate paths. In a pseudo-SQL language, we might write the query as

select LTS.confID, count(*) from myTrace where deadlock.changed

and the results might be

LT S.con f ID = 0

LT S.con f ID = 2,count(∗) = 1

LT S.con f ID = 4,count(∗) = 1

Such a result helps the diagnostician to focus on configuration 2 and she might query again

to get Alice or Bob processes values in configuration 2, its predecessors or successors. The

diagnostician proceeds with a mixture of navigation queries changed, successors; selection

queries select LTS.configuration and aggregation queries count(*) until she is able

to localize and fix the error.

3 Related work

3.1 Context-aware verification

Several model checkers such as SPIN [Hol97], Uppaal [LPY97], TINA [BRV04], have been

developed to help the verification of concurrent asynchronous systems. In most if not all model-

checking approaches, environmental conditions applying to the system execution (that we call

contexts) are included in the system model. Our approach (that we called context-aware verifica-

tion) chooses to explicit contexts separately from the model. Context-aware verification focuses

on the explicit modelling of the environment as one or more contexts, which are then iteratively

composed with the System Under Study (SUS). Requirements are expressed either with predi-

cates or with observer automata, as introduced in section 2.3. Requirements are verified within

the contexts that correspond to the environmental conditions under which they should be satis-

fied, each context verification is orchestrated in a fully automatic divide-and-conquer algorithm.

The interleaving of these contexts generates a labelled-transition system representing all be-

haviours of the environment, which can be fed as input to traditional model-checkers. The ver-

ification is performed by the tool OBP (Observer-Based Prover) [DBRL12]. As other model-

checking research groups, a part of our research effort is dedicated to push further the state

Proc. AVoCS 2014 6 / 15
156 KriQL : A Language for Query-based Diagnosis of Transition Systems

ECEASST

explosion limit but we develop also others tools such as step-by-step simulation, trace search en-

gine or graph visualization of the underlying labelled transition system. All these developments

are implemented in a tool kit OBP Observation Engine and are freely available2.

Figure 4: Context-aware overview

Fig. 4 shows a global overview of the OBP approach. The SUS is described using the formal

language Fiacre [BBF+08], which enables the specification of interacting behaviours and timing

constraints through timed-automata. The surrounding environment and properties are specified

using the CDL formalism. Different model-checkers can process verification.

3.2 Trace query languages

Querying traces can be applied in any domain where execution traces can be recorded. There are

two types of query-based debugging, those that operate a posteriori on traces and those where

the query is weaved with the source program and parameterize the trace recording.

In [MLL05], authors propose PQL (Program Query Language), a language intended to query

sequences of events associated with a set of related objects. They developed both static and

dynamic techniques to find solutions to PQL queries. The static analyzer finds all potential

matches conservatively using a context-sensitive, flow-insensitive, inclusion-based pointer alias

analysis. Static results are also used to reduce the scope of dynamic analysis. The dynamic

analyzer instruments the source program to catch all violations precisely as the program runs

and to optionally perform user-specified actions. A PQL query is a pattern to be matched on the

execution trace and actions to be performed upon the match. Subqueries allow users to specify

recursive event sequences or recursive object relations. Such constructions are interesting and

might be integrated in the KriQL language. However PQL does not yield aggregate queries as

we need.

In [GOA05], authors propose Program Trace Query Language (PTQL), a language based on

relational queries over program traces. Produced traces result from an automatically instrumen-

tation by a tool PARTIQLE that monitors particular properties. Given a PTQL query and a Java

program, PARTIQLE instruments the program to execute the query on-line. PTQL is a subset of

SQL. It does not work on the LTS but on linear traces that play the role of relational tables (for

2 OBP Language and Tools set website: http://www.obpcdl.org

7 / 15 Volume 70 (2014)
AVoCS 2015 157

KriQL: a query language for the diagnosis of transition systems

instance, a trace can be joined with another trace). PTQL does not offer navigation queries as

typical graph-based queries that we need.

Classical property specification languages, such as PSL[11], can also be considered as inputs

to KriQL features. In this case the verification tools using these languages can be seen as the

query execution runtime, and the witnesses produced would be considered as the query result.

4 KriQL: a graph-based query language

Generally, diagnosis encompasses any activity that provides information about the SUS, includ-

ing analysis, observation, proofs, testing, etc. Merriam-Webster on-line dictionary defines diag-

nosis as an “investigation or analysis of the cause or nature of a condition, situation, or problem”.

However, for this study we use a narrower vision of diagnosis, which is restricted to the anal-

ysis of concurrent systems captured through Labelled Transition Systems, and considers that

symptoms are materialized by traces. This setup corresponds to a model-checking verification

approach. In this context, we consider that the semantics of the system was captured explicitly in

a LTS, and that the symptoms are exhibited through counter-example traces. In his Turing Award

lecture [CES09], Edmund Clarke emphasized that “interpreting long counterexamples” is still an

open problem hindering the wide usage of model-checking (especially in industrial settings).

To address this problem, in this paper we propose the definition of a specialized query lan-

guage that enables the uniform manipulation of the state-space and the counter-example as a set

of traces. This approach complements the model-checking toolkit with the means for exploratory

analysis (manual or automated) of model-checking results to facilitate the understanding, the lo-

calization and the isolation of the defects witnessed through the counter-examples.

In this section, we present KriQL, a query language operating on traces and the underlying

transition system. KriQL is a front-end tool working on traces issued from our exploration engine

called OBP, presented in the section 3.1. An overview of KriQL main concepts is presented in

the section 4.1 as a meta-model, and its denotational semantics is sketched in the section 4.2.

There are several candidate architectures to implement KriQL features that are presented in the

section 5.1. KriQL implementation performances and architecture are discussed in sections 5.2

and 5.3.

4.1 KriQL overview

To ease the understanding of traces, we defined KriQL (for Kripke Query Language), a language

that is aimed at expressing queries to extract relevant information from the traces produced by

the exploration of a SUS. A trace (or path) is a part of the LTS – a Kripke structure [Var07]

– representing the exploration graph of the SUS. Queries include the search of a path between

two configurations, such as the shortest or longest path between two configurations according to

criteria such as the change of variable values or the calculation of the range values of a variable

in a given trace. The information resulting from the queries consists of either a subset of states

(i.e., configurations) or a subset of transitions representing an excerpt of the traces. This infor-

mation can be further filtered to show only the data of interest (such as process identifiers, or the

evolution of a specific variable in a given trace).

Proc. AVoCS 2014 8 / 15
158 KriQL : A Language for Query-based Diagnosis of Transition Systems

ECEASST

KriQL meta-model

To enable the extraction and the representation of such information, we have defined a meta-

model of KriQL, partly illustrated in Fig. 5. The meta-model provides the data structures

(classes) that are necessary for an Application Programming Interface that will implement KriQL

queries and answers. A ConfigurationSet is a set of configurations, each of which contains the

status of a set of behavioral elements representing a subpart of the SUS. Since we work on

data produced by the OBP explorer tool, the behavioral elements correspond to Fiacre elements,

whether components (as the parallel combination of a set of processes) or independent processes.

A TransitionSet is a set of transitions between configurations. A PathSet is a set of paths (i.e.,

traces), where a path corresponds to an ordered set of transitions. Finally, a Trail is a folded rep-

resentation of a path. Specifically, it explicits only parts of a path according to filtering criteria

given in a query.

Figure 5: KriQL meta-model

4.2 The KriQL language

The denotational definition of a language consists of three parts [Sch97]: the abstract syntax

definition of the language, the semantic domains, and a collection of valuation functions. The

valuation functions provide the meaning of the language, by mapping the abstract syntax to the

semantic domains.

4.2.1 KriQL abstract syntax

An excerpt of the abstract syntax of KriQL is given below. A query can be defined on any

element of an exploration graph, such as configurations, processes or variables. It is composed

9 / 15 Volume 70 (2014)
AVoCS 2015 159

KriQL: a query language for the diagnosis of transition systems

of the kind of element (Key) to be extracted from the graph, and on a set of conditions (Cond)

on this element. Conditions can either be test equalities, or test on whether some variable value

has changed (CondCh) or some process state has been visited (CondV) or not.

Query ::= Get Key where Cond

| Query union Query | Query inter Query

Key ::= Configuration | BE | Process | Component

Cond ::= ExprBE = ExprBE

| (Cond or Cond)

| (Cond and Cond)

| not Cond

| CondV

| CondCh

CondV ::= ExprP.State[Identifier] Visited

CondCh ::= ExprP.State[Identifier] Changed

| ExprBE.Variable[Identifier].Value Changed

ExprP ::= Process[Identifier]

ExprBE ::= ExprP | Component[Identifier]

4.2.2 KriQL semantic domains

The meta-model of KriQL as defined in Sec. 4.1 provides a specification for the semantic do-

mains of KriQL. We express an excerpt of them in a conventional notation as follows, where a

set (e.g., ConfigurationSet) is expressed as a function, mapping an id (e.g., Configuration identi-

fier) to a data structure (e.g., Configuration). Hence, the access to an element identified by i in a

set/function s, is done with the call s(i).

Domain v ∈ EnvVariable = Id → Value

Domain p ∈ Process = (CurrentState × EnvVariable)

Domain cp ∈ Component = EnvVariable

Domain c ∈ Configuration = (Process + Component)

Domain envC ∈ EnvConf = Id → Configuration

Domain t ∈ Transition = (Idcon f Source × Idcon f Target)

Domain envT ∈ EnvTransition = Id → Transition

Additionally, we defined the Result domain to represent the result of queries, which depend on

the Key provided by the developer in its query.

Domain res ∈ Result = (EnvConf + EnvComponent + EnvProcess)

4.2.3 KriQL valuation functions

The definition of valuation functions is provided in [ES15]. For simplicity, we provide here only

a sketch of it. Given the abstract syntax of a query Q = Get Key where C, an example of

a valid query is:

Query Q = Get configuration where

proc[’Alice’].state=catInYard and proc[’Bob’].variable[’flagB’]=up

Proc. AVoCS 2014 10 / 15
160 KriQL : A Language for Query-based Diagnosis of Transition Systems

ECEASST

We define three valuation functions Q (query), C (predicate), and E (expressions inside a

predicate, applying on process states or variable values). When applied on a configuration, the

valuation function Q iterates over a set of configurations (ec), selecting those satisfying the pred-

icate C : each configuration with identifier i in the set ec is stored if C applied on it is true,

otherwise an undefined value (the ⊥ symbol) is returned.

Q[[Q]] : EnvConf → EnvTransition → Result

Q[[Get configuration where C]]ec et = inEnvConf (λ i.C[[C]](e(i))→ e(i) [] ⊥)

E[[E]] : Configuration → Value

E[[proc[Id].state]]c = getProcessById([[Id]],c)↓1 (↓1 selects the first element of the process)

E[[proc[Id].Idvar]]c = let pv = getProcessById([[Id]],c)↓2 in pv([[Idvar]])

where getProcessById : (Id× Configuration)→ Process

getProcessById =λ (i,c).cases c(i) of isProcess(p)→ p [] Error

C[[C]] : Configuration → Boolean

C[[E1 = E2]]c = ([[E1]] c)equals([[E2]] c)

C[[C1 and C2]]c = ([[C1]] c)and([[C2]] c) (equals and or are the standard boolean operators)

5 Implementation issues

5.1 Implementing a LTS in a database

Each system to be verified is represented by a design and the LTS structure is related with the

design structure. The design structure allows the user to understand traces because it provides

the user with structural information about the design: process names, variables names, constants

and so on. Because we want traces to be stored in a database, the design structure yields the

database structure. In the next subsections, we discuss the possible implementations of the design

structure.

5.1.1 Relational DBMS

A relational DBMS stores data as table rows conforming to a database schema. Binding the

design structure to a database schema can be accomplished in a generic or a specialized way.

A generic binding is applied to any design structure in the same manner; one set of tables is

suitable for hosting data independently of the design structure. Database structure is issued from

the structure of model-checker languages (Fiacre and CDL in our case, see 3.1). For instance,

a single table Process will host any instance of any process of the SUS. Reference to any

particular design construct such a process or a variable name, are provided via parameters as

input of any operation.

11 / 15 Volume 70 (2014)
AVoCS 2015 161

KriQL: a query language for the diagnosis of transition systems

A specialized binding produces a different set of tables upon a specific design structure. Hence

the set of operations is dedicated to the design structure instead of being passed via parame-

ters. A specialized binding needs to be generated each time the design of the SUS is updated.

For instance, a specialized binding for the motivating example of section 2 uses two tables

AliceProcess and BobProcess, each table hosting all instances of the specified process.

The generic binding will hold all the data in a few tables, while the specific binding will use

many smaller tables. Auto-joins and recursive queries will suffer of a bias related to the table

size. Hence, despite its conceptual advantage, the generic binding was discarded.

5.1.2 Graph-based database

A graph database stores data as vertices and edges. Because we used the Neo4j system, we will

use the Neo4j vocabulary, nodes for vertices and relationships for edges. A graph database does

not have a schema as a relational database has. Neo4j language for querying graph database

is called Cypher. Cypher queries find data that matches a specific pattern. A Cypher query

anchors one or more parts of a pattern to specific locations in a graph using predicates and then

flexes the unanchored parts around to find local matches [RWE13]. Cypher queries are small

graphs made from real nodes and relationships. Hence domain modelling in a graph database is

isomorphic to graph modelling. According to [RWE13], ”in a graph database what you sketch

on the whiteboard is typically what you store in the database.”

5.1.3 Querying data

Classical graph queries such as shortest path or node reachability depend only on the graph

structure. However, recent applications using graph databases require novel queries such as

graph pattern matching, keyword search or graph aggregation. In [KWY12], authors state that

novel queries raise several challenges: queries integrate both the structure and the attributes of

the network; when graphs become complex and large, scalability becomes an issue; due to the

lack of fixed schema, it might be infeasible to use conventional SQL or SPARQL framework

to answer these queries. Three categories are proposed for novel graph queries: mining queries,

matching queries, selection queries [KWY12]. However implementing a LTS in a graph database

leads to a special case: the LTS respects an underlying schema that stems from the system and

properties models. Hence we divided queries in two categories, those using essentially graph

attributes and those using essentially the graph structure.

5.2 Node queries

We call node queries the KriQL operations that process essentially nodes information but might

in some cases use transitions information. We classified node queries in three categories:

side-effect free restriction such an operation applies a predicate to a ConfigurationSet

source and returns nodes where the predicate is true.

side-effect restriction such an operation monitors an element over a ConfigurationSet

source and needs neighbourhood information to process results.

Proc. AVoCS 2014 12 / 15
162 KriQL : A Language for Query-based Diagnosis of Transition Systems

ECEASST

set construction such an operation gathers all values reached by a single or a list of a configu-

ration element.

Relational queries use joins to combine data and dedicated structures such as indexes to im-

prove join performances. Restrictions are typically very efficient in a relational implementation.

Set construction operations require auto-join or recursive queries over the same table; it might

suffer of poorer performances due to the number of auto-join or related to the tables size.

The concept of query in a graph database is graph traversal. A traversal is the operation of

visiting a set of nodes by moving between nodes connected with relationships. The traversal

stops when rules stop apply such as a depth size. Traversals are well-adapted for navigation

along a path. When the whole graph needs to be traversed because the operator needs to process

all nodes from a certain type (such as needed by a restriction operator), we can expect poorer

performances of a graph database vs. a relational one.

5.3 Edge queries

We call edge queries the KriQL operations that process essentially edges information but might

in some cases use nodes information. We classified edge queries in three categories:

partition such an operation splits a Path in a a sequence of Paths.

path existence such a graph traversal operation searches a path between two nodes over a

TransitionSet.

path computation such a graph traversal operation searches exhaustively all paths between two

nodes over a TransitionSet.

Edge queries are path walks and will require a massive use of joins in a relational implemen-

tation because edges are essentially couples of node identifiers (the source and the destination of

the edge) stored in a single Transition table. We can expect that the longer the path walk is,

the poorer the performance will be because each step along the walk requires a join.

The strength of a graph database is its ability to move between nodes connected with re-

lationships without performance loss whatever the graph size. Thus we can expect excellent

performances of a graph database vs. a relational one.

5.4 Benchmark results

We performed benchmark measurements about node and edge queries with 3 typical queries in

each case. We tested 2 different implementations: a relational database (Postgres) and a graph

database (Neo4J). For the benchmarks we used several LTS ranging from 100 000 to 1 million

states. Table 1 synthesizes the results emphasizing the slowest (dark red cells) and the fastest

(light green cells) execution times. The time explosion cells represents queries that exceeded

the allocated execution time. In [BERT15] we detailed these results, focusing on a realistic

case-study from the automotive domain.

Unfortunately, no implementation were successful for all test cases and we concluded for the

necessity of a blended implementation: a specific implementation for node queries and a graph-

based implementation for edge queries.

13 / 15 Volume 70 (2014)
AVoCS 2015 163

KriQL: a query language for the diagnosis of transition systems

Table 1: Query performances

Relational DB Graph DB

Node queries

side-effect free restriction

side-effect restriction time explosion

set construction

Edge queries

partition

path existence

path computation time explosion

6 Conclusion

A major advantage of model-checking is the production of a counterexample, a trace that pro-

vides a detailed witness of how the model violates the property. However, without diagnosis

tools, the task is hard to relate the counterexample to its roots cause and progress toward a so-

lution to fix the problem. We presented KriQL a query language over a transition system, and

the purpose of this work relies on the research hypothesis that efficient traces query will support

better visualization and ease problem interpretation. We need now to perform several usability

studies to figure out if and how KriQL features are achieving our objectives.

Bibliography

[BBF+08] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufillet, F. Lang,

F. Vernadat. Fiacre: an intermediate language for model verification in the TOP-

CASED environment. In ERTS 2008. 2008.

[BERT15] R. Boudaoud, K. Es-Salhi, V. Ribaud, C. Teodorov. KriQL a query language for

labelled transition systems. In IEEE EuroCon 2015. University of Salamanca, 2015.

[BK08] C. Baier, J.-P. Katoen. Principles of Model Checking (Representation and Mind Se-

ries). The MIT Press, 2008.

[BRV04] B. Berthomieu, P.-O. Ribet, F. Vernadat. The tool TINA - Construction of abstract

state spaces for Petri nets and time Petri nets. International Journal of Production

Research 42(14):2741–2756, 2004.

[CES09] E. M. Clarke, E. A. Emerson, J. Sifakis. Model Checking: Algorithmic Verification

and Debugging. Commun. ACM 52(11):74–84, Nov. 2009.

[DBRL12] P. Dhaussy, F. Boniol, J.-C. Roger, L. Leroux. Improving model checking with con-

text modelling. Adv. in Software Engineering, 2012.

[ES15] K. Es-Salhi. Un langage de requete pour un systeme de transitions. Technical report,

Universit de Rennes I, France, 2015.

Proc. AVoCS 2014 14 / 15
164 KriQL : A Language for Query-based Diagnosis of Transition Systems

ECEASST

[GOA05] S. F. Goldsmith, R. O’Callahan, A. Aiken. Relational Queries over Program Traces.

In Proc. of the 20th ACM SIGPLAN Conf. on Object-oriented Programming, Sys-

tems, Languages, and Applications. OOPSLA ’05, pp. 385–402. ACM, NY, USA,

2005.

[GSB07] A. Griesmayer, S. Staber, R. Bloem. Automated Fault Localization for C Programs.

Electronic Notes in Theoretical Computer Science 174(4):95 – 111, 2007. Proceed-

ings of the Workshop on Verification and Debugging.

[Hol97] G. Holzmann. The Model Checker SPIN. Software Engineering 23(5):279–295,

1997.

[HS12] M. Herlihy, N. Shavit. The Art of Multiprocessor Programming, Revised Reprint.

Morgan Kaufmann Publishers Inc., 2012.

[KWY12] A. Khan, Y. Wu, X. Yan. Emerging Graph Queries in Linked Data. In Proc. of the

2012 IEEE 28th Int. Conf. on Data Engineering. ICDE ’12, pp. 1218–1221. IEEE

Computer Society, Washington, DC, USA, 2012.

[Lam84] L. Lamport. 1983 Invited Address: Solved Problems, Unsolved Problems and Non-

problems in Concurrency. In Proceedings of the Third Annual ACM Symposium on

Principles of Distributed Computing. Pp. 1–11. ACM, 1984.

[LPY97] K. G. Larsen, P. Pettersson, W. Yi. Uppaal in a nutshell. International Journal on

Software Tools for Technology Transfer 1:134–152, 1997.

[MLL05] M. Martin, B. Livshits, M. S. Lam. Finding Application Errors and Security Flaws

Using PQL: A Program Query Language. In Proc. of the 20th ACM SIGPLAN Conf.

on Object-oriented Programming, Systems, Languages, and Applications. OOPSLA

’05, pp. 365–383. ACM, NY, USA, 2005.

[PTP07] G. Pothier, E. Tanter, J. Piquer. Scalable Omniscient Debugging. SIGPLAN Not.

42(10):535–552, 2007.

[RWE13] I. Robinson, J. Webber, E. Eifrem. Graph Databases. O’Reilly Media, Inc., 2013.

[Sch97] D. A. Schmidt. Denotational Semantics - A Methodology for Language Develop-

ment). David A. Schmidt, 1997.

[Var07] M. Y. Vardi. Automata-theoretic Model Checking Revisited. In Proceedings of the

8th Int. Conf. on Verification, Model Checking, and Abstract Interpretation. Pp. 137–

150. Springer-Verlag, 2007.

[YLW+06] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, W.-Y. Ma. Automated

Known Problem Diagnosis with Event Traces. In Proc. of the 1st ACM SIGOPS

European Conf. on Computer Systems. Pp. 375–388. ACM, NY, USA, 2006.

15 / 15 Volume 70 (2014)
AVoCS 2015 165

