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Abstract

In the present study, a new transformation criterion that includes the effect of tension-
compression asymmetry and texture-induced anisotropy is proposed and combined with
a thermodynamical model to describe the thermomechanical behavior of polycrystalline
shape memory alloys. An altered Prager criterion has been developed, introducing a gen-
eral transformation of the axes in the stress space. A convexity analysis of such criterion
is included along with an identification strategy aimed at extracting the model param-
eters related to tension-compression asymmetry and anisotropy. These are identified
from a numerical simulation of a SMA polycrystal, using a self-consistent micromechan-
ical model previously developed by Patoor et al. (Patoor, E., Eberhardt, A., Berveiller,
M., 1996. Micromechanical Modelling of Superelasticity in Shape Memory Alloys. Jour-
nal de Physique IV 6, C1 277) for several loading cases on isotropic, rolled and drawn
textures. Transformation surfaces in the stress and transformation strain spaces are ob-
tained and compared with those predicted by the micromechanical model. The good
agreement obtained between the macroscopic and the microscopic polycrystalline simu-
lations states that the proposed criterion and transformation strain evolution equation
can capture phenomenologically the effects of texture on anisotropy and asymmetry in
SMAs.

Introduction

Recent experimental characterization of the superelastic behavior of SMAs has shown
that such materials exhibit a tension-compression asymmetry during forward transfor-
mation [1, 2]. Indeed, the critical stress for the onset of transformation is different
between tension and compression. A Mises-type criterion is thus not able to accurately
predict the transformation surface in the stress space at a given temperature. It has
been shown, using a micromechanical model, that the tension-compression asymmetry
is linked to the loss of symmetry induced by the appearance of martensitic variants [3].
The tension-compression asymmetry is observable not only on the critical stress to trigger
the martensitic transformation, but also on the stress-temperature slopes of the phase
diagram and on the magnitude of transformation strains [4]. The behavior of processed
SMAs also shows a strong anisotropic behavior [5, 6]. Like other metals, the texture of
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the material and the presence of internal stresses are found to be responsible for such
anisotropy. A micromechanical analysis has shown that the transformation of a textured
polycrystal is strongly anisotropic [7]. Recent efforts have focused on the development
of suitable criteria to take into account the anisotropic behavior of precessed SMAs. It
is shown that the transformation surfaces could be well predicted but the evolution of
transformation strains should be investigated even further [8].

In this work, an effort to produce a new suitable transformation criterion for loading
of SMAs under a constant temperature is presented. The purpose is to introduce a
criterion suitable to express both asymmetry and anisotropy and also captures multiple
results that might come either from experiments or from micromechanical simulations.
The second main purpose of the work is to develop a formulation that can predict the
evolution of transformation strains for textured materials. The introduction of the effect
of processing conditions , i.e. anisotropic transformation behavior, is of great importance,
since most of the SMA structures are made out of wires or plates. The effect of drawn
and rolled processing conditions have to be taken properly into account to obtain an
efficient, accurate design tool.

A micromechanical model has previously been developed based on the reference work
of Patoor et al [9]. The input to the micromechanical model is crystallographic orien-
tation of the grains that forms the SMA polycrystal. The expected outcome from a
polycrystal with random orientation is isotropic yield surface and inelastic strain evolu-
tion, whereas textured polycrystal would exhibit anisotropy in transformation [10, 11].
By conducting the micromechanics calculations of textured material and then calibrating
the proposed equations, the aim is to come up with a consistent scheme which enables
the direct connection between the processing conditions and the macroscopic effect on
anisotropy that can be implemented in FEA packages for structural design.

The present paper is organized as follows: In the first part of this study, the mathe-
matical configuration of the new criterion is presented. In the second part, three ways of
achieving the transition to the space of strains are presented and discussed. The third
part is dedicated to the evaluation of the new criterion using results acquired from the
micromechanical model and to a discrussion about the capability of the present devel-
opment to capture texture effects.

New transformation criterion and evolution equation for transformation
strain

In the classic scope of thermodynamic potentials, we consider that there exists a ther-
moelastic region, given by the function Φ(A)

Φ(A) 6 0 for all possible sets of A. (1)

where A is the set of all GTFs of the respective internal variables V of the material
[12, 13, 14, 15, 16]. The transformation criterion

Φ(A) = 0. (2)

is the mathematical bound of this region.



The principle of maximum dissipation [17] has been implemented in some successful
models [18, 19]. According to it:

V̇ = λ̇
∂Φ

∂A
, λ̇ > 0. (3)

Viewing the transformation strain εt as an internal variable, having established that the
stress σ is its GTF [12], an evolution rule of the transformation strains is reached:

ε̇t = λ̇
∂Φ

∂σ
. (4)

Similarly, this time avoiding associativity, a transformation potential Z(A) could be
defined, from which ε̇t is considered to be derived:

ε̇t = λ̇
∂Z

∂σ
. (5)

The notion of the dissipation potential for the case of plasticity is well described in [16],
with λ̇ being the plastic multiplier.

Introduction of the altered Prager criterion

Patoor et al. [3] made use of the Prager equation to fit isotropic asymmetric results
obtained from their self-consistent micromechanical model. The original form is:

h(σ) =
√
J2

(
1 + b

J3

J
3/2
2

) 1
2

− k = 0 (6)

where J2 and J3 denote the second and third invariant of the deviatoric part of the stress
tensor respectively:

J2 =
1

2
σ

′

ijσ
′

ij and J3 =
1

3
σ

′

ijσ
′

jkσ
′

ki,

using the Einstein summation for double indices.
In this paper, the notion of the alteration of the axes of the stress space is used, as in

the work of Karafillis and Boyce [20] to retain the shape of the original transformation
surface, but at the same time include anisotropy. On the other hand, the expression is
extended to a more general form using a power function. Thus:

Φ̂σ(σ) =
√
J2(σ

∗)

[
1 + b

J3(σ
∗)

J
3/2
2 (σ∗)

] 1
n

− kσ = 0 (7)

where n is a positive real number,

σ∗ = Rσ : σ − xσ , (8)

Rσ is a fourth order dimensionless tensor which only contains constants
and
xσ is a second order tensor with dimensions of stress.
In that way, a new space of stresses σ∗ is created, one that represents a distortion of

the space of real stresses and is based on the nature of the tensor Rσ, the description of
which is given below:



1. If the effects that Rσ induces on the shear stresses are ignored and a three-
dimensional vector ~σ consisted of only the normal stresses is considered, then Rσ

reduces to a rotation matrix expressed as R. It is found as a product of three
rotation matrices:

R = RzRxRp. (9)

Each of these three matrices represent a simple rotation of the space of normal
stresses σ11 − σ22 − σ33 and can be formed out of a single value representing the
respective angle:

Rz represents a rotation around the σ33 axis by an angle θz.

Rx represents a rotation around the σ11 axis by an angle θx.

Rp represents a rotation around the σ11 = σ22 = σ33 axis by an angle θp.

The result of this expression makes R a rotation matrix itself: It is orthogonal and
Det(R) = 1.

2. Extending R in order to achieve a transformation of the six-dimensional space of
stresses including the shears, results in the fourth-order Rσ.

Instead of extending the notion of rotation to six dimensions, the transformation of shears
is expressed in a simpler way, which is simply the homogeneous anisotropic scaling of the
respective axes: in the basic configuration (7), Φ̂σ is expressed by simple scaled functions
of the shear stresses:

σ∗
ij=lijσij for i 6= j where lij = lji > 0. (10)

The Einstein summation is not used here.
Eventually, Rσ introduces the operation of distortion rather of rotation.
On the other hand, xσ simply represents a translation of the origin of axes by the

constant vector {σo1,σo2, 0}.
It is worth noting that the operation Rσ : σ is not equivalent to a rotation of the

system coordinates, as in
σ∗ = R.σRT ,

except if R is the fourth-order identity tensor. However in that case, the isotropic
formulation is reached again.

The proposed transformation function proves to be convex when:

|b| < n
√

27

2(9− n)
6

√
27

2
for n < 4.5. (11)

Evolution equations of transformation strain

The most general form of the relation between the rates of stress and transformation
strain is identical to (5), choosing a transformation potential Ẑ(σ). Following a direct
relation with the martensitic volume fraction (MVF) ξ [18, 21], a more specific equation
is found:



ε̇t = ξ̇
∂Ẑ

∂σ
. (12)

When Ẑ(σ) is chosen to be the transformation surface, the maximum dissipation
principle is satisfied [19], and:

ε̇t = ξ̇H
∂Φ

∂σ
. (13)

In this work, it is examined how three particular evolution rules for the transforma-
tion strain behave with comparison to simiulated experimental results. The first rule is
consistent with (13) and the second with (12). In addition to that, a third evolution rule
will be introduced, ε̇tr, and the total of three options given will be compared.

Firstly, we define

ε̇tas = ξ̇H
∂Φ̂σ

∂σ
. (14)

This formulation is consistent with the maximum dissipation principle and expresses the
rule of associativity. The variable H is a scale factor depending on stresses and expresses
the magnitude of the rate at which εt increases [22].

Secondly, we define

ε̇tiso = ξ̇H
∂Φ̂o

σ

∂σ
, (15)

where

Φ̂o
σ(σ) =

√
J2(σ)

[
1 + b

J3(σ)

J
3/2
2 (σ)

] 1

n
− kσ = 0. (16)

This formulation comes from the consideration of Φ̂o
σ found in (16) as the dissipation

potential Z found in (5). The derivatives
∂Φ̂o

σ

∂σ
and

∂Φ̂σ

∂σ
found in (15) and (14) respec-

tively express a tensor which is normal to the respective potentials. The first derivative

is called Λo: Λo(σ) =
∂Φ̂o

σ(σ)

∂σ
.

On the other hand, it is found that:

∂Φ̂σ

∂σ
= Rσ : Λo(σ

∗). (17)

Finally, we define
ε̇tr = ξ̇H

(
rε.Λo.r

T
ε

)
. (18)

Here, a rotation of the normal Λo of ε̇t2 is introduced, thus rotating the whole tensor
that comes from the expression (15). This rotation comes from an angle aε lying on the
plane given by εt11 + εt22 + εt33 = 0 .

However, unlike θp which is considered constant as found in Rp, the value of aε is a
function of Λo:

aε = aεo + 2

√
F ε

π
Exp

[
−F ε

(
(ω − ωεo)

2 + (cε)2
)]

sinh [2F εcε(ω − ωεo)] . (19)



Label of simulation Loading conditions Relative angle to 1-1 axis
1 Uniaxial tension in 1 0◦

2 Biaxial tension in 1 and 2 45◦

3 Uniaxial tension in 2 90◦

4 Compression in 1 - tension in 2 135◦

5 Uniaxial compression in 1 180◦

6 Biaxial ompression in 1 and 2 225◦

7 Uniaxial compression in 2 270◦

8 Tension in 1 - compression in 2 315◦

Table 1: Loading paths for the polycrystal specimens. The non-uniaxial cases represent equibiaxial
conditions

In the latter,

ω(Λo : Bε
o) =

{
arccos(Λo : Bε

o); Λ22 > 0,

2π − arccos(Λo : Bε
o); Λ22 < 0.

(20)

The rest of the variables that appear other than Λo are constants. The equation (19)
introduces the rotation necessary to capture the effect of anisotropy to ε̇t. It is considered
that aεo = −θp, whereas Bo

ε takes the following form:

Bo
ε =

 2−1/2 0 0
0 0 0
0 0 −2−1/2

 .

The choice for the tensor of reference Bε
o as the origin for measuring the angles is

arbitrary. It represents the intersection of the εt11 + εt22 + εt33 = 0 with the plane εt22 = 0.
The criterion Λ22 > 0 found in (20) is a direct result of this choice.

The variables cε, F ε, ωεo should be viewed as material constants and calibrate them
according to experimental results. Another remark for the evolution rule introduced in
(18) is that it is not given as a direct derivative of a dissipation potential. A surface
Ẑ(σ), for which every ε̇tr is normal to, exists but its exact form is unknown.

Assessment of the transformation function and evolution rules

The numerical simulation of the constitutive response of polycrystalline SMAs are based
on a micro mechanical model developed by Patoor et al. [9], implementing the self-
consistent scale transition method [23]. The simulations are carried out using the mi-
crostructural parameters of a Cu-Zn-Al alloy, taken from [23].

All the results of that model are obtained after running the simulations of loading
of three polycrystal specimens containing 1000 grains each in total. These polycrystals
are considered to correspond to an isotropic, rolled or drawn specimen, according to
their texture. For the rolled specimen, the rolling direction was set to be along the axis
1-1. For the drawn specimen, the drawing direction was also set along the axis 1-1. The
results presented hereafter correspond to simulations following eight proportional loading



paths assuming plane stress conditions with σ33 = σ12 = 0 in stress-controlled loading.
The loading paths are presented in Table 1.

Evaluation of the proposed transformation function

The first set of simulations represent proportional loading of a non-treated polycrystal.
The resulting surfaces in the stress and the strain spaces were isotropic. Their shape is
found in Figures 1 and 3. The results were similar to those reported in [1] and [24].

The second set of simulations represents proportional loading of the rolled specimen.
The value of b was chosen at 0.65. Two more anisotropic surfaces were calibrated for a
different assumption of the value of the factor b, in order to demonstrate the adaptability
of the transformation criterion.

The third set of simulations represents proportional loading of the drawn specimen.
Because of the higher level of anisotropy, b was selected here to be a target value and
was calibrated at b=0.59.

Figures 1 and 3 show a comparison between all the results of the simulations and
the criterion in terms of stresses obtained by (5), considering n=2. Good agreement is
observed. Furthermore, it is shown in Figure 2 that using alternative values for b might
result to better surfaces, in the sense that they can capture better the basic material
properties, which here are the uniaxial strengths. Given an abundance of data, better
calibration is induced by treating b as another target value. To that respect, two more
loading paths are considered for the rolled specimen, labelled 9 and 10 in Figures 1 and
2. It appears that the extreme in terms of convexity value b = 0.74 is not as accurate as
the values b = 0.65 and b = 0.3.

The evolution of the transformation surface as a function of ξ also presents a very
interesting effect. The detail of the transformation surfaces corresponding to two different
MVFs in Figure 3-b reveals that the sense of anisotropy may switch between directions

Figure 1: Evolution of transformation surface of
rolled specimen for (i)ξ = 20% and (ii)ξ = 60%
and comparison with isotropic surface

Figure 2: Comparison between two anisotropic
surfaces for different values of b for the rolled
specimen



(a) (b)

Figure 3: Comparison between isotropic and anisotropic surfaces for the drawn specimen for
ξ = 1% (a) and evolution of transformation surface for ξ = 1% and ξ = 10% (b).

as forward transformation progresses. Indeed, it is clear in Figure 4 that the stress which
corresponds to 1% MVF for uniaxial tension in the 1-1 direction is higher than the stress
for uniaxial tension in the 2-2 direction; but this is not the case when ξ = 10%: here,
the stress is higher for tension along 2-2. The resulting surfaces accommodating this
data are different in shape and not just in size. The size effect would be captured by a
direct dependence of k with ξ, and this kind of evolution would be recognized as isotropic
hardening [16]. However, in this case, more material parameters have changed between
the two MVFs to capture the changing sense of anisotropy. Thus, an evolution of the
material parameters is deemed necessary to capture the resulting stress-MVF curves.

Figure 4: Stress-MVF diagram for uniaxial tension in directions 1-1 and 2-2



Evaluation of evolution equations for the transformation strain

Using the evolution rules (14), (15) and (18), a large number of results regarding trans-
formation strains was gathered. These results correspond to proportional loading under
various directions. For every value of ξ, each evolution rule results in a respective locus
on which the components of εt lie. In the space of normal transformation strains, the
three loci are flat shapes, meaning they all lie on a plane.

Even though the two resulting loci corresponding to the to the normal to the isotropic
surface evolution and the proposed evolution rule are identical, the respective evolution
rules are not equivalent. While the shape on which they lie is common in the space
of normal strains, the same loading direction corresponds to different positions on the
shape.In Figures 5-a and 5-b, only the strains resulting from proposed criterion are
accurate enough to be compared with data points. For every point on the surfaces
corresponding to ε̇tiso and ε̇tr, it is εt33 = −εt11 − εt22.

A notable conclusion drawn from the results of the micromechanics simulations is
the strong effect of texture on the anisotropy of transformation strains. The point 7 on
Figure 5-a corresponds to the response of the rolled specimen under uniaxial compression
in the transverse direction of rolling (2-2 axis). Where an isotropic specimen would
show a positive strain in the lateral direction (1-1 axis) , this sample shows almost zero
strain, and actually negative. A similar anisotropic behavior of transformation strains is
apparent on Figure 5-b as well. The point 2 corresponds to the response of the drawn
specimen under equibiaxial tension. As opposed to the equal evolution of transformation
strains for an isotropic material, in this case the material response favors the evolution
of strains along the drawing direction. It appears that the effect of texture is much more
prominent in the resulting transformation strains of the material than in yield stresses.
The proposed evolution law seems able to approach the effect of processing to the end
material behavior under proportional loading.

(a) (b)

Figure 5: Projection of the resulting transformation strains according to the proposed evolution
law for the rolled (a) and the drawn specimen (b) for ξ = 70% on the plane εT11 − εT22.



Conclusion

A new transformation criterion in terms of stresses and strains suitable for accurately
describing the transformation of SMAs has been developed and implemented. The math-
ematical expressions governing the criterion in terms of stresses are studied with respect
to convexity and capturing random anisotropy in SMAs transformation. Furthermore,
an accurate evolution rule to govern the evolution of transformation strain has been
formulated. It is a non-associated evolution rule which captures incompressibility and
still the anisotropy in strains. The equations of the criterion and the evolution rule
have been calibrated for a copper based textured SMA (Cu-Zn-Al), using the results
from simulations of proportional uniaxial and biaxial plane-stress loading states. These
simulations were achieved by utilizing the numerical results a self-consistent microme-
chanical model on three polycrystal configurations: isotropic, rolled and drawn. Further
results of the model have been used to assess and establish the accuracy of the proposed
anisotropic criterion and the related non-associated evolution rule. A good agreement
has been obtained by comparing the micromechanical simulations to results provided by
the new formulated macroscopic model that can be easily implemented in FE codes. Ac-
cordingly, the effects of asymmetry and anisotropy of SMAs behavior can be accounted
for structural design of SMA actuators.

A key capability of the procedure used in this work to formulated and to calibrate
the new transformation criterion and evolution equation is to establish a link between
the processing conditions of a material and the final resulting macroscopic anisotropy of
the overall behavior. Knowing the texture and the transformation parameters of a SMA
polycrystal as a result of processing, and passing through the micromechanical model,
the macroscopic behavior is simulated and then the anisotropic effect is captured without
the requirement of a large experimental database of multiaxial loadings.

The use of this new criterion, combined with a thermodynamical model could extend
the design capabilities of structures with highly textured SMAs. For such cases, the
simulation of non-proportional loadings will be addressed in a future work.
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