
HAL Id: hal-01203525
https://hal.science/hal-01203525

Submitted on 12 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Circular dependencies and change-proneness: An
empirical study

Tosin Daniel Oyetoyan, Jens Dietrich, Jean-Rémy Falleri, Kamil Jezek

To cite this version:
Tosin Daniel Oyetoyan, Jens Dietrich, Jean-Rémy Falleri, Kamil Jezek. Circular dependencies and
change-proneness: An empirical study. 22nd IEEE International Conference on Software Analysis,
Evolution, and Reengineering, Mar 2015, Montreal, Canada. �10.1109/SANER.2015.7081834�. �hal-
01203525�

https://hal.science/hal-01203525
https://hal.archives-ouvertes.fr

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/273757421

Circular Dependencies and Change-Proneness: An Empirical Study

Conference Paper · March 2015

DOI: 10.1109/SANER.2015.7081834

CITATIONS

7
READS

277

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Science of Security for Agile Software Development View project

CRCE - the Component Repository supporting Compatibility Evaluation View project

Tosin Daniel Oyetoyan

Høgskulen på Vestlandet

27 PUBLICATIONS 111 CITATIONS

SEE PROFILE

Jens Dietrich

Victoria University of Wellington

72 PUBLICATIONS 952 CITATIONS

SEE PROFILE

Kamil Jezek

University of West Bohemia

31 PUBLICATIONS 137 CITATIONS

SEE PROFILE

All content following this page was uploaded by Tosin Daniel Oyetoyan on 19 March 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/273757421_Circular_Dependencies_and_Change-Proneness_An_Empirical_Study?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/273757421_Circular_Dependencies_and_Change-Proneness_An_Empirical_Study?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Science-of-Security-for-Agile-Software-Development?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/CRCE-the-Component-Repository-supporting-Compatibility-Evaluation?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tosin_Daniel_Oyetoyan?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tosin_Daniel_Oyetoyan?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Hogskulen_pa_Vestlandet?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tosin_Daniel_Oyetoyan?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jens_Dietrich?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jens_Dietrich?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Victoria_University_of_Wellington?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jens_Dietrich?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamil_Jezek?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamil_Jezek?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_West_Bohemia?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamil_Jezek?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tosin_Daniel_Oyetoyan?enrichId=rgreq-e5ae4434b6fe7a22f0a8fe1456b52fc3-XXX&enrichSource=Y292ZXJQYWdlOzI3Mzc1NzQyMTtBUzoyMDg2Mzc0ODMwNjUzNTFAMTQyNjc1NDQ2MDc1Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Circular Dependencies and Change-Proneness:
An Empirical Study

Tosin Daniel Oyetoyan
Department of Computer and Information Systems
Norwegian University of Science and Technology

Trondheim, Norway
tosindo@idi.ntnu.no

Jean-Rémy Falleri
LaBRI, University of Bordeaux

Bordeaux, France
jr.falleri@gmail.com

Jens Dietrich
School of Engineering and Advanced Technology

Massey University
Palmerston North, New Zealand

J.B.Dietrich@massey.ac.nz

Kamil Jezek
Department of Computer Science and Engineering

University of West Bohemia
Pilsen, Czech Republic

kjezek@kiv.zcu.cz

Abstract—Advice that circular dependencies between pro-
gramming artefacts should be avoided goes back to the earliest
work on software design, and is well-established and rarely ques-
tioned. However, empirical studies have shown that real-world
(Java) programs are riddled with circular dependencies between
artefacts on different levels of abstraction and aggregation. It
has been suggested that additional heuristics could be used to
distinguish between bad and harmless cycles, for instances by
relating them to the hierarchical structure of the packages within
a program, or to violations of additional design principles.

In this study, we try to explore this question further by
analysing the relationship between different kinds of circular
dependencies between Java classes, and their change frequency.

We find that (1) the presence of cycles can have a significant
impact on the change proneness of the classes near these cycles
and (2) neither subtype knowledge nor the location of the cycle
within the package containment tree are suitable criteria to
distinguish between critical and harmless cycles.

Keywords—Circular dependency, maintainability, patterns

I. INTRODUCTION

Avoiding circular dependencies between software artefacts
is a classic software design principle that can be traced back to
Parnas’ advise that modules should be organised in a hierarchy
with respect to dependency relationships, thereby keeping
dependencies “loop free” [31]. In the context of modern object-
oriented languages, this is known as the Acyclic Dependencies
Principle (ADP): The dependencies between packages must
not form cycles [24].

The justification for this principle has often been related to
maintenance. For instance, Parnas pointed out that it is unde-
sirable to have systems where “nothing runs unless everything
runs” [31]. Later work has related this to testing, where the
presence of cycles prevents unit testing and requires the use
of expensive methods such as the use of stubs [29].

Empirical studies on a large set of real-world Java programs
have shown that these programs are riddled with circular
dependencies [25], [8]. This applies to both simple circular

dependencies [25] as well as to more sophisticated antipatterns
like subtype knowledge [36], [8].

This seems to indicate that not all cycles are as critical
for the quality of software as previously thought, and that
the notion of cyclic dependencies in software must be re-
evaluated. One possible approach taken by Falleri et al [11] is
to distinguish between “bad” and “harmless” cycles based on
the topology of dependency graph. In a nutshell, the authors
argue that cycles forming in branches of the package con-
tainment tree evolve when packages grow, and are harmless,
while cycles that span across the entire package containment
tree are undesirable. Mutawa et al [1] studied the topology
of cycles on a large set of real-world Java programs and
found that (1) most cycles do form in branches of the package
containment tree (and are therefore not critical according to
[11]), and (2) that the parent packages are the “hubs” within
these circular structures – indicating that cycles grow around
these parent packages. This offers an explanation of why
circular dependencies are common, and do not necessarily
compromise the quality of programs.

However, the question how cycles in general and certain
types of cycles in particular relate to the maintainability of
programs remains open. In this paper, we present a study that
investigates this issue for Java programs. We use the qualitas
corpus [40] data set in our study. Maintainability is difficult
to measure directly. According to IEEE 610.12, maintenance
is “the process of modifying a software system or component
after delivery to correct faults, improve performance or other
attributes, or adapt to a changed environment” [35]. Following
this definition, we use change (frequency of modifications) to
approximate maintainability, and therefore set out to answer
the following question: Is there a co-relation between the fact
that a Java class is in a (certain kind of) cycle, and the
change frequency of this class. In other terms, do cycles incur a
maintenance penalty that can be measured? We will investigate
both general circular dependencies between classes and special
kinds of circular dependencies that have been portrayed as
particularly undesirable in previous research.

This study extends our previous work on dependency

cycles where we have investigated the relationship between
cycles and defects [30]. The result of this study revealed that
classes within and near cycles account for the most defects
in programs. This study did not investigate particular types of
cycles and their relationship with change proneness. It used
a smaller data set, and did not study the classes directly,
but mined the comments in the issue tracking and subversion
systems instead.

The rest of this paper is organised as follows: we first
present the core concepts used in this paper in Section II.
We then discuss related work in Section III. We describe our
methodology in Section IV. We present our results in Section V
and discuss them in Section VI. Finally we conclude and
present the future work in Section VII.

II. BACKGROUND

A. Cycles and Dependency Graphs

The notion of cyclic dependency corresponds to strongly
connected components (SCCs) in dependency graphs. SCCs
can be effectively computed with Tarjan’s algorithm in linear
time [38].

A dependency graph is a simple model representing soft-
ware artefacts and their relationships. Such a graph can be built
on several levels of abstraction and aggregation. For instance,
in the case of Java programs, we can consider methods and
fields and their invoke and access relationships, classes and
interfaces and their uses, extends and implements relationships,
packages and their dependencies, and containers (jar files)
and their dependencies. Low-level cycles have been associ-
ated with potential problems for comprehension, testing, and
maintenance [3], [4]. However, to the best of our knowledge no
empirical studies on larger sets of real-world programs exist to
support this claim, and at least some of the cycles are created
by widely-used programming techniques like recursion.

Higher-level dependency graphs are typically obtained
from lower-level graphs by means of aggregation. For instance,
a package-level dependency graph is built from the dependency
graph of the classes contained in this packages. Cyclic depen-
dencies between classes in different packages induce cyclic
dependencies in the package graph. Therefore, we focus our
attention on SCCs in the class graph. The vertices in this
graph represent the classes of a Java program, while the edges
represent the relationships between these vertices. Classes here
refers to compiled classes, and also include other Java types
like annotations, interfaces and enums. Edges are labelled with
either uses, extends or implements. The extends and implements
labels are used according to the meaning of the respective
keywords defined in the Java Language Specification [15], uses
covers all other dependencies. We also use the label inherits
defined as the union of extends and implements.

Several empirical studies on real-world programs suggest
that the number of SCCs found in both the class-level and
package-level dependency graphs is large [25], [8]. The fact
that many of these systems are regarded as functional and
widely used suggests that not all cycles are as detrimental to
the quality of systems as previously thought. This seems to
indicate that it is not sufficient to only study general cycles.
Instead, certain types of cycles must be studied as well in order
to distinguish between critical and harmless cycles.

B. Subtype Knowledge

Subtype knowledge (STK) is an “antipattern” first studied
by Riel [36]. An instance of STK is basically a cycle that
has at least one extends or implements edge, and a back-
reference path connecting the target of this edge with its
source. Because the Java compiler (as well as most other
compilers) enforces that there are no cycles in the supertype
(inherits) graph, this path must contain at least one uses edge.
Situations producing inheritance cycles still exist when classes
are compiled separately, but they are rare and can be caught
by the Java Virtual Machine by means of static analysis during
linking.

The intention behind this pattern is that in a well designed
program, abstraction and implementation artefacts are sepa-
rated, and implementation artefacts depend on abstractions,
but not vice versa. This is also known as the dependency
inversion principle (DIP) [22]. STK cycles directly violate this
principle. Surprisingly, STK cycles are still common in real-
world programs [8].

Figure 1 depicts a STK cycle found in the Java Run-
time Environment, version 1.7.0. This is a class-level cy-
cle, but it also induces a package level cycle between
java.awt and javax.swing. The documentation of
LegacyGlueFocusTraversalPolicy indicates that this
is a FocusTraversalPolicy implementation that pro-
vides support for legacy applications. Yet, every other imple-
mentation of FocusTraversalPolicy depends on it as
there is a dependency from the abstract type to this particular
implementation. This is clearly an undesirable constraint for a
modular design.

javax.swing

java.awt

FocusTraversalPolicy

LegacyGlueFocus-
TraversalPolicy JComponent

Window

 uses

uses

uses

 extends

Fig. 1. A STK cycle in the Java Runtime Environment, version 1.7.0

Note that not all STK instances are equally critical. An
example is discussed below in section II-D where a STK is a
side-effect of using the visitor design pattern. This might still
have negative consequences, however, they are outweighed by
the benefits of using the design pattern.

C. Cycles and the Package Containment Tree

One possibility to distinguish between critical and harmless
cycles is to consider their location within the package contain-
ment tree (PCT) [11]. The PCT of a Java program is formed by
the hierarchical structure of package names. The Java language
specification stipulates that “The hierarchical naming structure
for packages is intended to be convenient for organizing
related packages in a conventional manner, but has no signif-
icance in itself ... ” [15, ch 7.1]. However, developers seem

to use some sub-package semantics when organising code.
For instance, the package javax.swing has circular de-
pendencies with its “child packages” javax.swing.tree
and javax.swing.table. It appears that these cycles
forming in branches of the PCT are the result of splitting
large packages to facilitate maintainability, but the respec-
tive packages retain a high level of cohesion. AWT fea-
tures a similar structure. However, the core Java interface
libraries also provide an example of a critical cyclic de-
pendency spanning across branches of the PCT: AWT and
Swing mutually depend on each other. Figure 1 also shows
this. The critical dependency is caused by references to
javax.swing.JComponent in several AWT classes, in-
cluding java.awt.Window and java.awt.Component.
On the other hand, javax.swing.JComponent is a sub-
class of java.awt.Component. This design flaw had a
significant impact on early versions of the Java platform, and
there is evidence that it can be removed without impacting on
the functionality of the respective libraries. This is discussed
in more detail in [9].

D. Inadvertent Cycles

There are situations where cycles are a direct result of the
features and limitations of technologies and methods used in
projects. The most simple example in this category are the
cycles formed between non-static nested classes and their outer
classes in Java byte code. In particular, the compiler generates
access fields to reach inner class from outer one and vice-versa.

A more complex case that is common originates from the
use of certain design patterns that induce cycles. An example
is the use of Visitor, one of the classic gang of four patterns
[14]. The pattern consists of abstract and concrete visitors, and
abstract and concrete visited “elements”. The visitors reference
all concrete element types as parameters in the (overloaded)
visit methods, while the element types (both abstract and
concrete) use the abstract visitor type as parameter type in
the accept methods. Visitor is a very popular pattern, in
particular in programs that use hierarchical data structures
such as parsers for domain specific languages (DSLs). Such
an example is depicted in figure 2. The cycle is even an
instance of STK, caused by the inherits relationship between
the concrete elements (such as ASTIdentifier) and the
abstract element (Node). Note that the number of concrete
elements is typically large, in this example, there are 33 such
classes each representing a particular AST node type. This can
result in large SCCs.

These cycles can hardly be interpreted as signs of bad
design, on the contrary, the use of Visitor is widely seen as
good design as it allows developers to “plug-in” functionality
into complex object structures. This is also a case of choosing
a particular design to overcome limitations of the programming
language, in this case the lack of support for multiple dispatch
in Java [26]. Acyclic versions of Visitor have been proposed
[23]. However, acyclic visitors are even more complex than
visitors as additional abstract visitor types are required, and it
appears that they are not widely used.

In the velocity example used in figure 2, the Visitor has
been manually implemented. However, in many cases parser
code is generated by parser generators from abstract grammar

org.apache.velocity.runtime.parser.node

<<abstract visitor>>
ParserVisitor

<<concrete element>>
ASTIdentifier

<<abstract element>>
Node

uses

uses

 extends

<<concrete visitor>>
uses

Fig. 2. A cycle caused by the use of the Visitor pattern in Apache Velocity,
version 1.6.2

specifications. This is becoming more and more common with
the availability of good tools (such as ANTLR), and the
popularity of DSLs. Code with generated cycles can have
interesting change characteristics, for instance, if the code is
regenerated during each iteration as part of automated builds.

III. RELATED WORK

Several authors have investigated the relationship between
anti-patterns and the change-proneness of software artefacts.

Khomh et al. [20] examined classes involved in anti-
patterns and code smells and their change and fault proneness.
The study investigated four systems and thirteen anti-patterns.
The claims from this study are that classes participating in
anti-patterns are more change- and fault-prone than others and
that structural changes affect more classes with anti-patterns
than others. Romano et al. [37] investigated the impact of anti-
patterns on change-proneness using change data from source
code analysis. The results of this study is consistent with [20].
In addition, they showed that certain anti-patterns are prone
to certain types of changes such as API changes. Olbrich et
al. [28] performed a study on two open source applications
to study the impact of code smells. Their results show that
different phases could be identified during the evolution of
code smells and in particular, components infected with code
smells display a higher change frequency than others. Fontana
et al. [13] investigated the correlations between different smells
and antipatterns.

In our study, we have investigated one particular antipattern
on the structural/architectural level, and this is different from
these studies.

On the other hand, while anti-patterns are claimed to be
poor design choices, design patterns are recurring solutions to
design problems. A plethora of studies have also investigated
the relationships between design patterns and class change-
proneness. Bieman et al. [2] investigated the impact of design
patterns on the change proneness of classes by using five
systems, four small ones and one large system. They have
mined the change data from a configuration management
system. They concluded that classes participating in design
patterns are rather more change-prone. A recent study on
mining repository [16], however showed that multiple tangled
code changes could result into an incorrect classification of
change/fault data.

Di Penta et al. [6] investigated whether certain design
pattern roles are more change-prone in general, and whether
certain roles are prone to particular types of changes. Their
results confirmed that many design pattern roles do undergo
changes within the pattern. Vokac [41] analyzed the defect
rates of classes that participated in selected design patterns of
a large commercial product. The study concluded that Observer
and Singleton patterns are correlated with large code structures
and can thus serve as indicators for special attention. On the
other hand, Factory pattern instances tend to have lower defect
counts. Prechelt et al. [33] reported a controlled experiments
that showed Observer and Decorator patterns to result in
less maintenance time while the results for Visitor pattern
were inconclusive. Vokac et al. [42] replicated the experiment
by [33]. Their results confirmed the previous results that
Observer, Decorator and Abstract Factory patterns favour ease
of maintenance. However, the Visitor and Composite patterns
had strongly negative results on maintenance. On the contrary,
Jeanmart et al. [19] reported a positive relationship between
the use of Visitor pattern and maintenance efforts.

In our study we investigate the impact of one particular
anti-pattern on maintenance using change data as a proxy.
We do not focus on the impact of design patterns in general,
however, we discuss the impact of one particular pattern,
Visitor, as it results in dependency cycles. To the best of our
knowledge, there is no study that has systematically explored
the relationship between change proneness and cycles. The
key papers of research on cycles in dependency graphs are
discussed in the previous section.

IV. METHODOLOGY

A. Data Set

We have conducted the study using the Qualitas Corpus
dataset [40]. This is a curated dataset of open source real
world systems that has been widely used in empirical studies
on software quality issues. Using a standard dataset facilitates
the replication of our study. The Qualitas Corpus version
20120401 contains 111 programs. The full release (20120401f)
combines the standard release (20120401r) with the evolution
release (20120401e) which contains multiple versions of pro-
grams, a total of 661 versions. We chose programs that had at
least 10 versions in the corpus in order to observe evolution
over a longer period of time. This means that the following
programs were included in this study: ant (21 versions), antlr
(20), argouml (16), freecol (28), freemind (16), hibernate
(100), jgraph (39), jmeter (20), jung (23), junit (23), lucene
(28) and weka (55).

The scripts we have used and developed for this study can
be found here: https://bitbucket.org/ootos/scc-project. Table I
provides some statistics of the dataset used. A total of twelve
(12) systems are analyzed consisting of 389 versions.

B. Experiment Setup

The experiments consist of the following steps to extract,
process and analyse data:

1) Graph Extraction: Dependency data is extracted from
Java byte code with scripts using the Apache BCEL library
[5]. Since the units of maintenance are compilation units, we

merge nested classes with their outer, top-level classes. The
dependencies of nested classes are aggregated to their top-
level classes. These aggregated classes form the vertices of
the dependency graph. Extends and inherits edges are created
when the respective constructs are encountered in byte code,
all other occurrences of a class in the byte code of another
class result in the creation of a uses edge.

2) Graph Pre-processing: We sanitise the dependency
graphs by removing test classes and generated code. Test
cases are removed as tests (1) tend to be more stable1 due
to the fact that in many projects they are used as specification
artefacts as suggested by the test-driven development (TDD)
methodology, (2) it is unusual to have cross-references between
tests, and references from core functional code to tests, making
it very unlikely to encounter tests that participate in cycles.
We therefore believe that including tests would have skewed
the results. We have also tried to remove generated code. In
particular, parser APIs generated by ANTLR and similar parser
generators are removed. Even minor changes in grammar
definitions can produce a large amount of changes as many
generated artefacts are regenerated and renamed. But this has
nothing to do with whether these artefacts are in cycles or
not, this is only caused by the fact that they are generated
together. On the other hand, the process of regenerating these
classes often does not incur any maintenance effort, as code
generation is completely automated. Note that generated parser
APIs often use the Visitor pattern and therefore often contain
SCCs, as discussed in section II-D.

We use simple naming pattern filters to remove
tests (looking for the “Test” token in class names). To
remove generated code, we have manually inspected
the (ANT, Maven and Gradle) build scripts of the
projects for references to code generators and the target
packages names used by them. We found two projects
where parser generators are used: (1) hibernate uses
ANTLR and JAXB, and we excluded the following
packages: org.hibernate.hql.internal.antlr.*,
org.hibernate.sql.ordering.antlr and
org.hibernate.internal.jaxb.*. (2) Weka
uses JFlex and CUP, and we excluded the following
packages: weka.core.mathematicalexpression,
weka.filters.unsupervised.instance.subset-
byexpression and weka.core.json.

3) SCC Detection and Classification: Once the dependency
graph is built, we use an implementation of Tarjan’s algorithm
[38] to detect the strongly connected components (SCCs). The
detected SCCs are classified in categories (STK vs non-STK,
Visitor vs non-Visitor), and associated with their PCT diameter
relative to the diameter of the entire dependency graph. STK
is approximated by the presence of inherits edges in a SCC as
discussed in section II-B. Visitor instances are detected based
on naming patterns.

4) SCC Membership: Finally, we establish the association
of a class with a cycle. The most obvious option is to look
for whether the vertex representing the class is an element
of the respective SCC. However, we are also interested in
assessing the impact SCCs have on their direct neighbourhood,

1In the context of this study, stability relates to whether a class is frequently
changed or not

i.e., classes that are not in a cycle, but depend directly on a
class within the cycle (in-neighbours), or a class in a cycle that
directly depends on such a class (out-neighbours). A neighbour
is either an in-neighbour or an out-neighbour.

5) Extracting Change Data: We use the change data set
also used in [7]. This data contains fine-grained, per-class
information of change classified by a change category. Details
on how this is done can be found in this paper.

C. Research Questions

The general problem we are interested in is the correlation
between the presence of certain types of cycles in programs,
and the maintainability of these program measured in terms
of change frequency, as discussed above. We break this down
into the following research questions:

Firstly, we want to investigate whether a class within or
near a cycle is more prone to change than a class outside a
cycle. Our hypothesis is that the structural complexity asso-
ciated with cycles could make it easier for change to spread
to other classes within the cycle, and classes either directly
referencing classes in the cycle, or being directly referenced
by classes from within the cycle.

RQ1. Are classes within or near cycles more prone to
change than other classes?

Secondly, we want to investigate whether classes that are
in or near STK cycles are more prone to change than classes
in non-STK cycles as these cycles violate a second principle
of object-oriented design (the dependency inversion principle
(DIP) [22]). This leads to the following question:

RQ2. Are classes in or near cycles with STK more
change prone than classes in cycles without STK?

Finally, we want to investigate whether the PCT −
diameter of a cycle is correlated with the change proneness of
the classes within this cycle, following the argument made by
Falleri et al that PCT-local cycles are less critical than cycles
that span across different branches of the PCT [11]. We thus
hypothesize that cycles with a large PCT-diameter would be
more change-prone than those with a smaller PCT-diameter.

RQ3. Is there a correlation between the PCT −
diameter of a cycle and the change frequency
of the classes in or near this cycle?

D. Metrics and Measurement

For statistical analysis, we compute data series with data
points for each version. The values are change probabilities,
and each data series corresponds to a set of classes resulting
from a classification, such as whether a class is in or near a
particular type of SCC.

1) Computing the change probability of a set of classes:
Given a program P , let C be the set of classes in P , and V
be the set of versions of P such that for each version v ∈ V
a successor version succ(v) exists. For a given set of classes
S ⊆ C and a version v ∈ V we use changed(S, v) to denote
the set of classes in S that have changed from v to succ(v).
We then define the change probability of a class in S as a
function pchange : 2C × V → [0, 1] defined as:

<<root>>

java javax

java.awt javax.swing

LegacyGlueFocus-
TraversalPolicy

JComponent

FocusTraversalPolicy

Window

1

2 3

4

Fig. 3. The PCT-diameter of an SCC

pchange(S, v) =
|changed(S,v)|

|S| .

2) Measuring the PCT diameter of an SCC: Given a set
of packages P and the package containment tree (PCT) they
form (see Section II-C), we compute the PCT-diameter of a
set of classes as the diameter of the packages of these classes
in the PCT. The PCT-diameter is computed by first computing
the shortest distance between each pair of packages in the PCT
and then finding the longest of the computed shortest distances.
This is referred as the longest shortest path in network analysis
[43] We can normalise this value to [0, 1] by dividing this
number by the diameter of the set of all packages within the
program.

For instance, consider the example depicted in figure
3. We have discussed the same cycle earlier. The longest
shortest path between the respective packages has a length
of 4 (java.awt → java → <root> → javax →
javax.swing). Note that the PCT shown in this figure
is incomplete, there are several core Java packages with
5 tokens, such as javax.swing.text.html.parser.
Therefore, the diameter of the entire program is 10, and
the PCT-diameter of the SCC in figure 3 is 0.4 (4/10). The
normalised PCT computation just described defines a PCT
function pct : 2C × V → [0, 1].

3) Detecting SCCs with STK: Finding instances of STK
is computationally expensive as the NP-complete subgraph
isomorphism problem must be solved. However, STK can be
easily approximated by computing SCCs that contain at least
one inherits edge. The drawback of this approach is that these
SCCs may contain both STK and non-STK sub-cycles.

This defines a STK membership function stk : 2C × V →
{false, true}, where stk(SCCi, v) = true iff SCCi is a STK
in version v.

4) Measuring Nearness of a Cycle: We also want to find
out whether classes that are in the neighbourhood of a cycle
of a certain type are penalized by increased change-proneness.
We differentiate between outward nearness (fan-outs of the
classes in cycles) and inward nearness (fan-ins of the classes
in cycles). In many cases, multiple cycles can have the same

QRQ�6&&

6&&�

6&&�

Fig. 4. Neighborhood to an SCC

neighbours. For instance, figure 4 shows an example where
two cycles scc1 and scc2 share the same outward neighbour.
In order to avoid assigning a class to multiple cycles, we use
the following set of rules when a class is near multiple cycles:

1) If the class changes, prioritize cycles with change.
If there are multiple cycles that change, pick one
randomly.

2) If the class does not change, prioritize cycles without
change. If there are multiple cycles that change, pick
one randomly.

3) Otherwise randomly select a cycle.

E. Statistical analysis

1) Analysis Method: The input data for the statistical
analysis are provided by the three functions pchange, stk
and pct that associate SCCs version pairs with information
representing change probability, STK classifications and PCT
values.

We want to investigate (1) the change proneness of SCCs
against non-SCCs, (2) the change proneness of SCCs with
STK over SCCs without STK and (3) whether the PCT
diameters of SCCs are correlated with change proneness.

a) Analyzing Change Proneness of SCCs vs. Non SCCs:
We analyse two data series for the two sets of classes:
the classes in SCCs, and the classes not in SCCs. The
hypothesis here is that classes in SCC are more change-
prone and they propagate change more to their neighbourhoods
because of their structural complexity. It is easy to expand
this investigation to include neighbourhoods of an SCC, by
also considering neighbours (in-neighbours out-neighbours) as
elements of SCCs as described above.

b) Analyzing Change Proneness of STK vs Non-STK :
Here we analyse two data series: the classes within STKs,
and the classes in non-STK SCCs. Note that we do not
directly compare STK instances with non-SCCs, however, this
relationship can be inferred by combining the results of this
and the previous experiment.

c) Analysing the Correlation between PCT Diameter
and Change Proneness: To answer this question, we use a
slightly different method. The input data are not just two data
series, but consist of two matrices where we map pairs consist-
ing of versions and individual SCCs to a change probability

TABLE II. AVERAGE PERCENTAGE OF CLASSES IN SCCs

Systems % of Classes
SCCs In-Neighbor(incl) In/Out-Neighbor(incl)

ant 35.2% 76.3% 83.6%
antlr 34.0% 56.9% 75.9%

argouml 31.8% 55.7% 74.5%
freecol 80.7% 82.9% 92.9%

freemind 55.3% 80.3% 92.6%
hibernate 62.8% 76.1% 93.6%

jgraph 77.0% 79.5% 98.0%
jmeter 23.0% 73.3% 83.7%
jung 10.3% 75.0% 80.4%
junit 19.7% 46.1% 64.4%

lucene 29.5% 51.3% 73.5%
weka 13.4% 66.9% 77.9%

using the formula defined above, and to the PCT diameter
value, respectively.

2) Testing of the Hypotheses: We have employed two
different statistical analysis methods to test our hypotheses.
The choice of either one depends on the measurement type of
the variables under investigation. To analyse the correlation
between two data series (RQ1 and RQ2), we used a non-
parametric test. To test the hypotheses in this category, the
data is first tested for normality using the Shapiro test. It
turned out that each dataset deviates strongly from normality.
Subsequently, we use a non-parametric test (Wilcoxon rank-
sum)[12] for analysis.

For interval variables used in the experiment for RQ3, we
have used Pearson and Spearman correlation.

3) Measuring interactions among experimental factors: It
is the goal to also understand if there are interactions among
the two factors being investigated in this study. We suspect
that classes with high PCT-diameter could also be prone to
STK anti-pattern. It is thus appropriate to treat the two factors
as a competing treatments and use one factor as a blocking
factor in the experiment [12]. A nested design is chosen where
the factor STK is selected as a blocking factor, since it is
nominal in its scale whereas PCT-Diameter is interval. Next,
the sccs are grouped into hasSTK -True or False groups and
a statistical analysis is performed between PCT-Diameter and
change-probability (dependent variable) in each group.

V. RESULTS

A. System Properties

Table I shows the average values for several system proper-
ties while Table II reports the (average) percentage of classes in
and near cycles. Averages are computed over all versions of the
respective program in the data set. The distribution of classes
within SCC range from 10.3% to 80.7%. For some of the
systems, a surprisingly high number of classes is within cycles,
including freecol (80.7%), jgraph (77%), hibernate (62.8%)
and freemind (55.3%). Two systems, jgraph and freecol, have
relatively large PCT-diameter values. Freemind has the largest
percentage of changed classes (53.6%) as shown in pchange
column, while the rest of the systems have change probabilities
between 10.8% (jung) to 35.3% (freecol).

TABLE I. SUMMARY OF SYSTEM PROPERTIES, AGGREGATED VALUES ARE OBTAINED BY AGGREGATING OVER THE VALUES FOR EACH SCC AND EACH
VERSION v

Systems Versions Num of classes PCT-diameter Size of STK-SCCs Size of Non-STK SCCs Size of SCCs Size of Non-SCCs avg(pchange(C, v))

Mean Max Mean Max Mean Max Mean Max Mean Max Mean

ant 21 162.7 1 0.17 5 3.79 6 3.21 205 113.95 357 211.47 0.285
antlr 20 120.9 1 0.05 6 3.22 10 5.06 166 81.89 328 159.83 0.184

argouml 16 891.6 1 0.09 4 2.92 17 11.46 855 568.92 1705 1214.31 0.325
freecol 28 189.1 1 0.67 2 1.04 2 0.46 473 305.12 90 73.12 0.353

freemind 16 45.1 1 0.33 3 1.14 9 1.79 162 49.86 333 40.29 0.536
hibernate 100 513.2 1 0.19 21 5.06 11 4.12 1406 653.65 1191 372.66 0.160

jgraph 39 25.3 1 1 1 1.00 0 0.00 39 39.00 14 11.67 0.107
jmeter 20 286.5 0.71 0.21 4 2.79 8 6.21 188 132.16 576 440.89 0.283
jung 23 152.7 0.6 0.07 4 1.91 8 6.95 48 31.82 415 273.55 0.108
junit 23 39.6 1 0.09 3 0.76 8 4.62 27 15.52 152 63.62 0.233

lucene 28 163.4 0.75 0.07 6 2.96 9 6.00 143 95.85 339 230.92 0.211
weka 55 325.3 0.875 0.05 13 5.23 26 14.53 263 86.83 969 563.87 0.139

TABLE III. WILCOXON TEST: P-VALUES OF SCCS VS. NON-SCCS
(α = 0.05)

Systems SCCs + In-Neighbor + In/Out-Neighbor

ant 0.5 0.035* 0.037*
antlr 0.665 0.233 0.238

argouml 0.147 0.075 0.178
freecol 0.004* 0.001* 5.27E-05*

freemind 0.198 0.009* 8.81E-04*
hibernate 0.052 4.70E-05* 0.021*

jgraph 3.39E-10* 9.18E-10* 2.24E-11*
jung 0.742 0.038* 0.041*
junit 0.435 0.003* 0.010*

lucene 0.142 0.108 0.078
weka 0.511 0.005* 0.005*
jmeter 0.420 0.007* 0.022*

B. RQ1 Are classes within or near cycles more prone to
change than other classes?

The results for RQ1 are presented in Table III. In column
2, the significance test results for classes within SCC against
those outside SCC are listed. While columns 3 and 4 show
the results when we investigated the neighborhood of the
SCCs. Only two systems (freecol and jgraph) have significant
change proneness for the SCC group. However, when we
considered the SCC direct neighbourhood, 75% of the systems
showed significant change proneness. As shown in the results,
the change frequencies of the classes increase as the size
of the neighbourhood expands. This is not surprising giving
that the size of the class set increases as shown in Table II.
However, what is surprising is the big impact of SCCs on their
neighbourhood. Investigation of the actual changes revealed
that in many cases, SCCs and their direct (in-) neighbours
account for more than 90 % of the total change. For instance,
Ant has the average of 76.3% classes in SCCs and its direct
in-neighbours, but these classes account for 94% of the total
change volume. We can therefore confirm the hypothesis that
the presence of SCCs could have a significant impact on the
stability of the classes near those SCCs (Table VII column 3).

This may indicate a significant increase in maintenance
costs, in particular as many test cases would be required to
achieve sufficient coverage of the many unstable classes in the
neighbourhood of cycles.

C. RQ2:Are classes in or near cycles with STK more change
prone than classes in cycles without STK?

Table IV presents the results of testing this hypothesis.
Column 2 of the table presents the p-values of testing SCCs
with STK against SCCs without STK. The 3rd column
presents the results when the in-neighbours are included in the
SCC graph and the 4th column presents the results when both
in-neighbours and out-neighbours are included in the SCC
graph.

Out of the 12 systems we have studied, only 3 systems
have SCCs with STK that show significant change proneness
over SCCs without STK (see Table VII for summary of the
results of the hypothesis).

Hibernate presents an interesting case because we detected
instances of the Visitor pattern in many of its cycles. The
Visitor cycles all have the STK property and the results show
that in hibernate the STK cycles are more change prone than
non STK cycles. To understand the role of cycles with Visitor
pattern in this category, we removed the Visitor SCCs and ob-
served that the mean values of the change probability increased
from 17.9% to 19.6%. That means that the Visitor SCCs are
relatively stable and as a result, removing them produces an
increased change ratio. For us, this is an interesting result
in the sense that, although using the Visitor pattern produces
instances of an ”anti-pattern” in the sense that it violates certain
object-oriented design principle, nevertheless, it is stable.

A study of trade-offs between design patterns and the anti-
patterns is an interesting topic for future studies.

D. RQ3:Is there a correlation between the PCT − diameter
of a cycle and the change frequency of the classes in or near
this cycle?

The results of testing this hypothesis is presented in table
V. All values in asterisks have a correlation of 0.5 or greater
and are significant at α = 0.05. We report both the Pearson
and Spearman correlation results. Only one (freecol) of the
systems has a fair correlation between the PCT-diameter and
the change probability. As earlier reported in Table I, freecol
has a very large relative PCT-diameter. We have no result for
jgraph because it only contains one SCC and as a result, one
data point. We detect no consistent pattern in the relationship
between the PCT-diameter of class cycles and their change

TABLE IV. WILCOXON TEST: P-VALUES OF CHANGE PRONENESS OF
STK-SCCS VS. NON-STK SCCS (α = 0.05)

Systems SCC + in-neighbor + in/out-neighbor

ant 0.009* 0.013* 0.008*
antlr 0.550 0.210 0.196

argouml 0.171 0.185 0.229
freecol 9.08E-11* 5.45E-11* 4.80E-11*

freemind 0.224 0.111 0.080
hibernate 8.68E-08* 1.38E-08* 2.44E-09*

jgraph - - -
jung 0.627 0.837 0.843
junit 0.994 0.996 0.992

lucene 0.374 0.354 0.371
weka 0.733 0.304 0.247
jmeter 0.648 0.453 0.121

TABLE V. CORRELATION TEST BETWEEN PCT-DIAMETER AND
CHANGE-PROBABILITY

SCC groups + in-neighbor + in/out-neighbor
Systems Pearson Spearman Pearson Spearman Pearson Spearman

ant 0.01 0.28 0.04 0.20 0.03 0.20
antlr -0.02 0.16 -0.16 -0.08 -0.09 -0.01

argouml 0.20 0.22 0.13 0.11 0.24 0.28
freecol 0.46 0.64* 0.54* 0.78* 0.50* 0.69*

freemind -0.08 -0.10 0.04 -0.08 0.10 0.04
hibernate 0.21 0.48 0.19 0.44 0.26 0.49

jgraph - - - - - -
jung -0.04 -0.01 0.00 0.29 0.00 0.32
junit 0.07 0.00 0.24 0.29 0.22 0.30

lucene -0.02 0.18 0.08 0.21 0.07 0.17
weka 0.08 0.19 0.08 0.21 0.11 0.22
jmeter -0.02 0.08 0.06 0.17 0.25 0.32

proneness (see Table VII). This result is also surprising as
we expected that cycles spanning across branches of the PCT
would be more prone to change.

E. Interaction between STK and PCT-diameter

The results in table VI shows the correlation between
PCT-diameter and change when grouped in the STK category

TABLE VI. CORRELATION TEST BETWEEN PCT-DIAMETER AND
CHANGE-PROBABILITY BLOCKED BY STK/NON-STK

Systems STK Non-STK
Pearson Spearman Pearson Spearman

ant -0.05 0.24 - -
antlr -0.09 0.17 0.04 0.09

argouml 0.22 0.31 0.12 0.07
freecol -0.23 -0.23 - -

freemind 0.60* 0.56* - -
hibernate 0.26 0.61* 0.12 0.02

jgraph - - 0.00 0.00
jung 0.10 0.18 -0.16 -0.12
junit 0.33 0.40 -0.05 -0.04

lucene -0.09 0.18 - -
weka 0.07 0.17 0.13 0.20
jmeter 0.08 0.18 0.05 0.05

TABLE VII. SUMMARY OF HYPOTHESES TEST: Y DENOTES H0 IS
REJECTED

RQ1 RQ2 RQ3
Systems in-SCC in/near SCC in-SCC in/near SCC in-SCC in/near SCC

ant N Y Y Y N N
antlr N N N N N N

argouml N N N N N N
freecol Y Y Y Y Y Y

freemind N Y N N N N
hibernate N Y Y Y N N

jgraph Y Y - - N N
jung N Y N N N N
junit N Y N N N N

lucene N N N N N N
weka N Y N N N N
jmeter N Y N N N N

and non STK category. The STK category is represented in
columns 2 and 3, while the non-STK category is represented
in columns 4 and 5. The results indicate that there are just
two systems (freemind and hibernate) with fair correlation (see
table VI). This result is different from the correlation results
in Table V that reports only freecol with a relatively high and
significant correlation. We therefore conclude that there is no
relationship between the STK property of a cycle and the PCT-
diameter of the cycle in this dataset.

VI. DISCUSSION

A. Cycles and the Shape of Java Programs

Overall, the results are somehow surprising, and we do not
have an ultimate explanation for all the findings. However, the
results seem to be consistent with some other recent research
on the shape of software. Several authors have studied the
networks formed by software artefacts and their relationships
and found that they are scale-free, and have a heavy tail
distribution with a very few nodes with high connectivity [44],
[17], [18], [32].

A commonly used model to explain how scale-free net-
works come to exist is preferential attachment [34] – in a
nutshell, this model stipulates that nodes that are added to
the network have a higher probability to link to nodes with
an already high degree. In particular, in the case of software
that would mean that there are classes with a high in-degree
based on their popularity (because they provide useful utilities,
or because they are widely known by developers), and the in-
degree of these classes increases further as new classes are
added to the program that use these utilities. On the other
hand, classes with a lot of incoming dependencies have a high
responsibility, and therefore tend to be more stable. It has
been demonstrated that such a model can explain the network
topology found in Java programs [39]. Conversely, this model
suggests that high coupling is unavoidable [39]. This is in a
way similar to the finding we made here: we found evidence
that software evolution follows a pattern that leads to properties
that are traditionally regarded as indicators of a bad design.

The results we obtained could therefore be explained by a
model where cycles form in the heavy tail of the distribution.
In particular, this would explain the results for RQ1: classes in
cycles are relatively stable, but not the classes that reference the
cycles (we called them “in-neighbours”). This could also offer
an explanation for RQ2: developers may abstract from classes

providing useful utilities, but eventually these abstractions
themselves reference these utilities as they are useful, for
instance, in order to provide defaults for certain services. An
example where this happens is the combination of abstraction
and the Singleton design pattern [14], where an abstract service
class references a single instance of one of its subclasses. There
are several case of this kind in the Java Runtime Environment,
all with a high in-degree, including java.lang.Runtime
and java.awt.Toolkit.

Note that this model is supported by the results of earlier
research that many cycles form around hubs (nodes with
betweenness centrality, usually corresponding to a high degree)
[1], and that there are a few dependencies that support a
large percentage of cycles and other antipattern instances, and
therefore present high-impact refactoring opportunities [9].

However, this model does not offer an explanation for
the results for RQ3. But we notice that package naming is
sometimes influenced by considerations not related to the
semantics of the actual code. Examples are the use of different
package branches in the Java Developer Kit (such as java.*,
javax.*, sun.*, org.w3c.*, ..) based on intellectual
property rights, and the use of org.junit and junit
branches in junit to provide older versions for backward
compatibility.

But at this stage, this is only one model that could be used
to explain the observations we have made. Further research is
needed to assess the validity of this explanation.

B. Threats to Validity

Graph extraction: Our tools cannot recognise weak uses
relationships created by reflection. This is a common limitation
for tools based on static analysis.

Graph pre-processing: Our method to recognise and remove
tests is prone to both false positives and false negatives. We
expect that it may make non-SCCs to appear slightly more
stable for the reasons discussed in section IV-B. Our method
to detect generated code may be incomplete as other scripts
and tools could have been used in some projects. We think
that this is unlikely as most successful open source projects
automate routine tasks using build scripts.

SCC Membership: The mechanism to assign vertices to
the neighbourhood of cycles is not deterministic, and this
could influence the outcome of the respective experiments.
However, we executed these experiments at least 10 times,
and found that the impact of this on the outcome of the
experiments is negligible. In addition, we did not detect any
siginificant difference by using a different mechanism (e.g.
random assignment of neighborhood).

Detecting STK: As described above in section IV-D3, we
use an approximation to detect STK mainly for performance
reasons. The result of this is that we may classify some larger
STKs cycles as STK even though they are predominantly non-
STK.

Detecting Visitors: Instances of the visitor design pattern are
detected using naming patterns. This might yield both false
positives and false negatives. However, in our experience the
accuracy of this method is very high.

Controlling for size and dependencies: We have not con-
trolled for the size of classes and the size of their dependencies
within each group. Both metrics have been shown to correlate
with the change/fault-proneness of components [45], [27], [21].
By investigating the size/dependencies of classes in cycle and
their neighborhood, we can further understand the association
between the fact that classes in and near cycles are more
change-prone as reflected in the results (Table VII, column
3) and whether those classes account for the significant size
and dependencies in the systems.

VII. CONCLUSION

We have investigated whether classes in and near depen-
dency cycles are more likely to change than other classes. We
did this in order to investigate whether cycles are related to
poorer maintainability as change ripple effects propagate easier
through cycles. We used change frequency as an indicator for
maintainability. We found no evidence that classes in cycles
are more change prone. However, classes in and near cycles
have an increased change probability.

We also investigated two heuristics that had been proposed
to distinguish between critical and harmless cycles: subtype
knowledge and location of the cycle within the package con-
tainment tree (PCT). We found no strong correlation between
these criteria and change proneness.

We believe that our findings indicate the need for more
research to describe and detect cycles as well as other types
of anti-patterns that are truly detrimental to the maintainability
of a program. A particularly interesting open problem is the
relationship between cycles and the scale-free property of class
dependency graphs.

In addition, it would be interesting to control for the size
of classes and their dependencies as it has been shown to have
a confounding effect on the validity of metrics [10]. We plan
to investigate this in future work.

REFERENCES

[1] Hussain A Al-Mutawa, Jens Dietrich, Stephen Marsland, and Catherine
McCartin. On the shape of circular dependencies in java programs.
In Software Engineering Conference (ASWEC), 2014 23rd Australian,
pages 48–57. IEEE, 2014.

[2] James M Bieman, Greg Straw, Huxia Wang, P Willard Munger, and
Roger T Alexander. Design patterns and change proneness: An
examination of five evolving systems. In Software metrics symposium,
2003. Proceedings. Ninth international, pages 40–49. IEEE, 2003.

[3] David Binkley and Mark Harman. Locating dependence clusters
and dependence pollution. In Software Maintenance, 2005. ICSM’05.
Proceedings of the 21st IEEE International Conference on, pages 177–
186. IEEE, 2005.

[4] David Binkley and Mark Harman. Identifying’linchpin vertices’ that
cause large dependence clusters. In Source Code Analysis and Manipu-
lation, 2009. SCAM’09. Ninth IEEE International Working Conference
on, pages 89–98. IEEE, 2009.

[5] Markus Dahm. The Apache bytecode engineering library (BCEL).
URL: http:// jakarta.apache.org/bcel, 2010.

[6] Massimiliano Di Penta, Luigi Cerulo, Yann-Gaël Guéhéneuc, and Giu-
liano Antoniol. An empirical study of the relationships between design
pattern roles and class change proneness. In Software Maintenance,
2008. ICSM 2008. IEEE International Conference on, pages 217–226.
IEEE, 2008.

[7] Jens Dietrich, Kamil Jezek, and Premek Brada. Broken promises:
An empirical study into evolution problems in java programs caused
by library upgrades. In Software Maintenance, Reengineering and
Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week-
IEEE Conference on, pages 64–73. IEEE, 2014.

[8] Jens Dietrich, Catherine McCartin, Ewan Tempero, and Syed M Ali
Shah. Barriers to modularity-an empirical study to assess the potential
for modularisation of java programs. In Research into Practice–Reality
and Gaps, pages 135–150. Springer, 2010.

[9] Jens Dietrich, Catherine McCartin, Ewan Tempero, and Syed M Ali
Shah. On the existence of high-impact refactoring opportunities in
programs. In Proceedings of the Thirty-fifth Australasian Computer
Science Conference-Volume 122, pages 37–48. Australian Computer
Society, Inc., 2012.

[10] K. El Emam, S. Benlarbi, N. Goel, and S.N. Rai. The confounding
effect of class size on the validity of object-oriented metrics. IEEE
Transactions on Software Engineering, 27(7):630–650, July 2001.

[11] Jean-Rémy Falleri, Simon Denier, Jannik Laval, Philippe Vismara, and
Stéphane Ducasse. Efficient retrieval and ranking of undesired package
cycles in large software systems. In Objects, Models, Components,
Patterns, pages 260–275. Springer, 2011.

[12] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A
Rigorous and Practical Approach. PWS Publishing Co., Boston, MA,
USA, 2nd edition, 1998.

[13] Francesca Arcelli Fontana, Vincenzo Ferme, Alessandro Marino, Bar-
tosz Walter, and Pawel Martenka. Investigating the impact of code
smells on system’s quality: An empirical study on systems of different
application domains. In Software Maintenance (ICSM), 2013 29th IEEE
International Conference on, pages 260–269. IEEE, 2013.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns: elements of reusable object-oriented software. Pearson
Education, 1994.

[15] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley.
The Java TMLanguage Specification 7th Edition. Oracle, Inc., California,
USA, 2012.

[16] Kim Herzig and Andreas Zeller. The impact of tangled code changes.
In Mining Software Repositories (MSR), 2013 10th IEEE Working
Conference on, pages 121–130. IEEE, 2013.

[17] David Hyland-Wood, David Carrington, and Simon Kaplan. Scale-
free nature of java software package, class and method collaboration
graphs. In Proceedings of the 5th International Symposium on Empirical
Software Engineering, Rio de Janeiro, Brasil. Citeseer, 2006.

[18] Makoto Ichii, Makoto Matsushita, and Katsuro Inoue. An exploration
of power-law in use-relation of java software systems. In Software
Engineering, 2008. ASWEC 2008. 19th Australian Conference on, pages
422–431. IEEE, 2008.

[19] Sebastien Jeanmart, Yann-Gael Gueheneuc, Houari Sahraoui, and Naji
Habra. Impact of the visitor pattern on program comprehension and
maintenance. In Proceedings of the 2009 3rd International Symposium
on Empirical Software Engineering and Measurement, ESEM ’09,
pages 69–78, Washington, DC, USA, 2009. IEEE Computer Society.

[20] Foutse Khomh, MassimilianoDi Penta, Yann-Gal Guhneuc, and Giu-
liano Antoniol. An exploratory study of the impact of antipatterns on
class change- and fault-proneness. Empirical Software Engineering,
17(3):243–275, 2012.

[21] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. A
field study of refactoring challenges and benefits. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, page 50. ACM, 2012.

[22] Robert C Martin. The dependency inversion principle. C++ Report,
8(6):61–66, 1996.

[23] Robert C Martin. Acyclic visitor. In Pattern languages of program
design 3, pages 93–103. Addison-Wesley Longman Publishing Co., Inc.,
1997.

[24] Robert C Martin. Design principles and design patterns. Object Mentor,
1:34, 2000.

[25] Hayden Melton and Ewan Tempero. An empirical study of cycles

among classes in java. Empirical Software Engineering, 12(4):389–
415, 2007.

[26] Radu Muschevici, Alex Potanin, Ewan Tempero, and James Noble.
Multiple dispatch in practice. In Acm sigplan notices, volume 43, pages
563–582. ACM, 2008.

[27] Nachiappan Nagappan and Thomas Ball. Use of relative code churn
measures to predict system defect density. In Software Engineering,
2005. ICSE 2005. Proceedings. 27th International Conference on, pages
284–292. IEEE, 2005.

[28] Steffen M Olbrich, Daniela S Cruzes, and Dag IK Sjoberg. Are all code
smells harmful? a study of god classes and brain classes in the evolution
of three open source systems. In Software Maintenance (ICSM), 2010
IEEE International Conference on, pages 1–10. IEEE, 2010.

[29] Jan Overbeck. Integration testing for object-oriented software. PhD
thesis, Vienna University of Technology, Vienna, Austria, 1994.

[30] Tosin Daniel Oyetoyan, Daniela S Cruzes, and Reidar Conradi. A
study of cyclic dependencies on defect profile of software components.
Journal of Systems and Software, 86(12):3162–3182, 2013.

[31] David Parnas. Designing software for ease of extension and contraction.
Software Engineering, IEEE Transactions on, (2):128–138, 1979.

[32] Alex Potanin, James Noble, Marcus Frean, and Robert Biddle. Scale-
free geometry in oo programs. Communications of the ACM, 48(5):99–
103, 2005.

[33] Lutz Prechelt, Barbara Unger, Walter F. Tichy, Peter Brossler, and
Lawrence G. Votta. A controlled experiment in maintenance: comparing
design patterns to simpler solutions. Software Engineering, IEEE
Transactions on, 27(12):1134–1144, 2001.

[34] Derek de Solla Price. A general theory of bibliometric and other
cumulative advantage processes. Journal of the American Society for
Information Science, 27(5):292–306, 1976.

[35] Jane Radatz, Anne Geraci, and Freny Katki. IEEE standard glossary of
software engineering terminology. IEEE Std, 610121990:121990, 1990.

[36] Arthur J Riel. Object-oriented design heuristics. Addison-Wesley
Publishing Company, 1996.

[37] Daniele Romano, Paulius Raila, Martin Pinzger, and Foutse Khomh.
Analyzing the impact of antipatterns on change-proneness using fine-
grained source code changes. In Reverse Engineering (WCRE), 2012
19th Working Conference on, pages 437–446. IEEE, 2012.

[38] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2):146–160, 1972.

[39] Craig Taube-Schock, Robert J Walker, and Ian H Witten. Can we avoid
high coupling? In ECOOP 2011–Object-Oriented Programming, pages
204–228. Springer, 2011.

[40] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus
Lumpe, Hayden Melton, and James Noble. Qualitas corpus: A curated
collection of java code for empirical studies. In 2010 Asia Pacific Soft-
ware Engineering Conference (APSEC2010), pages 336–345, December
2010.

[41] Marek Vokac. Defect frequency and design patterns: An empirical
study of industrial code. Software Engineering, IEEE Transactions on,
30(12):904–917, 2004.

[42] Marek Vokáč, Walter Tichy, Dag IK Sjøberg, Erik Arisholm, and Magne
Aldrin. A controlled experiment comparing the maintainability of
programs designed with and without design patternsa replication in
a real programming environment. Empirical Software Engineering,
9(3):149–195, 2004.

[43] S. Wasserman and K Faust. Social network analysis : methods and
applications. Structural analysis in the social sciences. Cambridge
University Press, 1994.

[44] Richard Wheeldon and Steve Counsell. Power law distributions in
class relationships. In Source Code Analysis and Manipulation, 2003.
Proceedings. Third IEEE International Workshop on, pages 45–54.
IEEE, 2003.

[45] Thomas Zimmermann and Nachiappan Nagappan. Predicting defects
using network analysis on dependency graphs. In Proceedings of the
30th international conference on Software engineering, pages 531–540.
ACM, 2008.

View publication statsView publication stats

https://www.researchgate.net/publication/273757421

