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For years,IntegratedDevelopmentEnvironments have demonstrated their usefulness in order toease
the development of software. High-level security or safetysystems require proofs of compliance to
standards, based on analyses such as code review and, increasingly nowadays, formal proofs of
conformance to specifications. This implies mixing computational and logical aspects all along the
development, which naturally raises the need for a notion ofFormal IDE. This paper examines the
FoCaLiZe environment and explores the implementation issues raisedby the decision to provide a
single language to express specification properties, source code and machine-checked proofs while
allowing incremental development and code reusability. Such features create strong dependencies
between functions, properties and proofs, and impose an particular compilation scheme, which is
described here. The compilation results are runnableOCaml code and a checkableCoq term. All
these points are illustrated through a running example.

1 Introduction

Thanks to Wikipedia, an Integrated Development Environment is a “software application that provides
comprehensive facilities to computer programmers for software development”. Such environments do
not provide in general all the necessary tools for critical software developments as safety, security and pri-
vacy standards require the use of formal methods all along the development cycle to achieve high levels
of assurance. Every critical system must be submitted to an assessment process before commissioning. It
consists in a rigorous examination of the demonstration, given by the developer, that the implementation
complies with the specification requirements. Specifications, source and object codes, automated veri-
fications and mechanically-checked (or not) proofs are scrutinized and, if needed, validation is re-done
with other tools. This assessment process takes a lot of timeand is expensive.

The Foc environment was created ten years ago ([6]) by T. Hardin and R. Rioboo as a laboratory
language to study “how to provide comprehensive facilities” to developers of critical systems, complying
to high-level rates of standards like [15, 14, 7]. At this moment, only B, Z and some tools based on
algebraic data types were used in such developments. The idea was to couple the programming facilities
of OCaml with the capabilities of the theorem proverCoq while avoiding the use of some complex
features of these languages. The help provided to developers by object-oriented features like inheritance
and late-binding, by abstraction features like modules, byparametrisation features like functors was
already widely recognized in the software development world. Such features were required in theFoc
specification to manage not only source code but also requirements and proofs. Their possible codings in
Coq were studied[5] and some possibilities of logical inconsistencies brought by mixing these features
were identified. Some of them were avoided by using a dedicated concrete syntax. The remaining
ones require a dedicated static analysis to be eliminated. This was the first version of the “dependency
calculus”, studied by V. Prevosto[10], who also designed the first compiler of the language (which name
evolved inFoCaLiZe). At that time, the programming language was a pure functional strongly typed
kernel, proofs were done directly inCoq. Then, a language for proofs was introduced to enable the use
of the automated theorem proverZenon[1] and automatically translate them into proof terms ofCoq.
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FoCaLiZe is the current version ofFoc. It provides a logical language to express requirements
as first-order formulas depending on identifiers present in the context, powerful data-types and pattern-
matching, object-oriented and modular features, a language of proofs done by Zenon, which may use
unfolding of functions defined by pattern-matching. From the whole development, the compiler issues
a source file written inOCaml and a proof term submitted toCoq. The two files are kept close to the
FoCaLiZe source to ease traceability and the compiler guarantees that, if the FoCaLiZe source can be
compiled, then itsOCaml translation will be runnable and itsCoq translation will be checkable. This is
a way to avoid returning errors from target languages, whichwould be unacceptable for the user.

In this paper, we present the main features of the compiler, trying to explain why they permit to
improve the adaptability ofFoCaLiZe to the needs of formal developments. More returns on user expe-
rience usingFoCaLiZe and help provided by this environment can been found in [4, 3,12].

The first specificity ofFoCaLiZe is the mixing of logical and computational aspects which create
a lot of dependencies between elements of a development. Definitions are considered as terms of the
logical language, properties can embed names of functions being unfolded in proofs. Late-binding allows
to change definitions thus altering proofs done with the old version. The second specificity of the current
version ofFoCaLiZe is the maximizing of sharing between computational and logical codes, at the
source level, through the use of inheritance, late-bindingand modularity which also adds dependencies.
To keep this maximal sharing at object levels, a rather new usage of lambda-lifting relying on a static
analysis of dependencies is used by the compiler and presented here.

The first section presents the paradigmsFoCaLiZe is based on and introduces a running example
to support further discussions. In the next section, the notion of dependency is introduced, followed by
the formal description of their computation. The last section sketches the code generation model on the
basis of the example.

2 From the FoCaLiZe Point of View

2.1 Semantical Framework

Specification requirements and implementations should be together expressible in any FIDE, the first one
by logical language, the second one by a programming language. If these two languages can be related
through a single semantical framework, then the demonstration of the conformance of developments
to requirements can be facilitated. Choosing an imperativestyle related to a Hoare logical language
leads to some difficulties when composing specifications andunfolding function bodies, due to the lack
of referential transparency. SoFoCaLiZe is built upon a pure functional language. Then, whatever is
the logic, functions can be consistently unfolded in proofsand thus, can be used without restriction to
express requirements (called hereproperties) and proofs.

Side-effects are however possible but they have to be confined into dedicated modules, separated
from the rest of the development. Properties of functions making side-effects can be separately demons-
trated and rendered as contracts.

Static strong typing, rich data-types and pattern-matching ease source coding and error detection.
This is why theFoCaLiZe programming (sub-)language is very close to a functional kernel of the
OCaml language. The logical sub-language offers first-order quantifiers and the ability to use iden-
tifiers present in the context in formulas. So formulas can contain free variables, which however are
bound in the development context. These formulas are indeedformulas of a dependent type theory and
are translated as such inCoq, relying on the Curry-Howard isomorphism : data types are translated onto
types, properties onto types and functions on terms. Havingour own logical syntax instead of the one of a
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dependent theory likeCoq allows (not only) to restrict formation rules of terms. For example, properties
can use function names but functions cannot use property names.

2.2 Incremental Specification and Development through a Running Example

To support further discussions, this section will gradually introduce a running example. It represents
a “monitor” which inputs a value and outputs a validity flag indicating the position of the value with
regards to two thresholds, and this value or a default one in case of problem. A fleshed-out version of
this example was used to develop a generic voter used in critical software [4].

Object-oriented features are often offered by IDE as they have the reputation to help software deve-
lopment. Here, assessment also should be helped and some of these features like complex rules of visi-
bility (tags private, friend, etc.) and possibilities of runtime late-binding can weight down this process.
FoCaLiZe proposes two object-oriented features: inheritance and late-binding. We call hereinheritance
the ability of introducing, at any stage of the development,properties, functions and proofs (calledme-
thodsin FoCaLiZe) that these new items contribute to fulfill previously stated requirements. As usual,
late-bindingis the possibility of introducing the name, and here the type, of a function while deferring
its definition. This allows to adapt definitions along the inheritance tree and enhances reusability.

species Data =
let id = "default" ;
signature fromInt : int -> Self ;

end ;;

species OrdData =
inherit Data ;
signature lt : Self -> Self -> bool ;
signature eq : Self -> Self -> bool ;
let gt (x, y) = ˜˜ (lt (x, y)) && ˜˜ (eq (x, y)) ;
property ltNotGt : all x y : Self , lt (x, y) -> ˜ gt (x, y) ;

end ;;

The component (species) Data simply says that the input is coded by an integer, converted by
from int to a value of the internal representation, which is denoted by Self . The speciesOrdData
inherits fromData , it declares two functions (lt andeq), defines a derived functiongt and states a
propertyltNotGt using both declared and defined methods.

As function types are parts of specifications, late-bindingcannot change them. But late-binding can
invalidate proofs done with an “old” definition and the compiler must manage this point. Late-binding
also allows stating properties and delay their proofs, while the former are already usable to write other
proofs. Restricting the access to some elements is needed and handled at thecomponentlevel.

A FoCaLiZe component collects not only types, declarations and definitions but also related proper-
ties and proofs. Inside a component, the manipulated data-types have a double role: a programming one
used in type verification, a logical one when translated toCoq (this double view has to be managed by
the compiler and it is not always straightforward as seen further). To simplify theFoCaLiZe model, all
data-types introduced in a component are grouped (by the wayof product and union types) into a single
data-type calledrepresentation). It gives to this notion of component a flavor of Algebraic Data Type, a
notion which has proven its usefulness in several IDE (e.g. [2]). The representation can be just a type
variable (i.e. be not yet given an effective implementation), whose name serves in declarations. It can be
instantiated by inheritance (but not redefined) to allow typing of definitions.
species TheInt =

inherit OrdData ;
representation = int ;
let id = "native int" ;
let fromInt (x) : Self = x ;
let lt (x, y) = x <0x y ;
let eq (x, y) = x =0x y ;
proof of ltNotGt = by definition of gt property int_ltNotGt ;

end ;;

The speciesTheInt defines the representation (int ) and functions already declared, then proves
the property by unfoldinggt and using a property found in the filebasics of the standard library (this
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proof, which could be done inOrdData , will be used later).
Functors allow parametrisation by components. Here a component may not only use functions pro-

vided by other components, but also their properties and theorems. Parametrisation by values of these
parameter components is of course needed. The link between aparameterised component and its para-
meters will be reflected inCoq via the notion ofCoq dependencies.
type statut_t = | In_range | Too_low | Too_high ;;

species IsIn (V is OrdData, minv in V, maxv in V) =
representation = (V * statut_t) ;
let getValue (x : Self ) = fst (x) ;
let getStatus (x : Self ) = snd (x) ;

let filter (x) : Self =
if V!lt (x, minv) then (minv, Too_low)
else

if V!gt (x, maxv) then (maxv, Too_high)
else (x, In_range) ;

theorem lowMin : all x : V, getStatus (filter (x)) = Too_low -> ˜ V!gt(x, minv)
proof =

<1>1 assume x : V,
hypothesis H: snd (filter (x)) = Too_low,
prove ˜ V!gt (x, minv)
<2>1 prove V!lt (x, minv) by definition of filter type statut_t hypothesis H
<2>2 qed by step <2>1 property V!ltNotGt

<1>2 qed by step <1>1 definition of getStatus ;
end ;;

The speciesIsIn has a collection parameterV and two value parametersminv andmaxv from V.
It mainly shows a proof decomposition into several steps (see 2.3), including a step of induction (here a
simple case split) on the union typestatut t .

Should the definition of the representation be exposed or encapsulated by the modularity mechanism?
Inheritance and late-binding require its exposure, as total encapsulation can cumbersome the develop-
ment task. On the contrary parametrisation asks for its abstraction. Indeed, a component seeing the data
representation of its parameters can manipulate this data without using the provided functions, hence
breaking invariants and structural assumptions made by parameters and invalidating the theorems they
provide. Abstract definitions of types is not sufficient as properties can still reveal the exact definition of
a type (a bad point when security properties are considered). ThusFoCaLiZe has two notions of compo-
nents.Specieswhich expose their representation are only used along inheritance and late-binding during
design and refinement.Collectionswhich encapsulate the representation are used as species parameters
during the integration process.

To avoid link-time errors, any call of an effective species parameter must be ensured that all functions
exported by this parameter are really defined. To preserve consistency, all exported properties must
have already received proofs. Thus collections can only be created by encapsulation of species, called
complete species, in which all declarations have received a definition and allproperties have a proof.
Encapsulation builds aninterfaceexposing only the name of the representation, declarationsof (visible)
functions and (visible) properties of this species. The compiler guarantees that all exposed definitions
and theorems have been checked and that the interface is the only way to access collection items.
collection IntC = implement TheInt ; end ;;
collection In_5_10 = implement IsIn (IntC, IntC!fromInt (5), IntC!fromInt (10)) ; end ;;
collection In_1_8 = implement IsIn (IntC, IntC!fromInt (1), IntC!fromInt (8)) ; end ;;

The speciesTheInt beingcomplete, it is submitted to encapsulation (implement ) to create the
collection IntC . This latter is then candidate to be effective argument ofIsIn ’s parameterV and to
apply its methodfromInt to provide effective values for theminv andmax parameters. Hence it can
used to create other collections,In 5 10 andIn 1 8.

From a developer’s point of view, species serve to make an incremental development. Collections,
mostly used as effective parameters of species, are used to assemble separate parts of the development.
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As writing species also needs some primitive notions like booleans, integers,FoCaLiZe has a standard
library which provides these low-level bricks, possibly along with proved properties but without encap-
sulation. The absence of encapsulation is wanted in such a case and allows manipulating basic data-
structures as native constructs while however having properties. As long as the considered datatypes
(i.e. type definitions here) do not have any invariant to preserve, there is no risk of inconsistency by
revealing their effective structure. The standard libraryconsists in source files that can be accessed by an
opening mechanism and is not concerned by the species/collections mechanism. From the development
and assessment points of view, files of the standard library are just on-the-shelf components granted by
the system (or their provider).

2.3 Properties and Proofs

A proof, intended to be mechanically checked, must be decomposed into small enough steps to be chec-
kable by the prover. Our first try (Foc) to directly use the script language ofCoq, revealed several
drawbacks. First, it required the user to have a deep knowledge ofCoq to powerfully use it and to un-
derstand error messages. Second, the user had to be aware of the compilation ofFoCaLiZe elements to
Coq. Third, the proofs too deeply depended onCoq. In FoCaLiZe an intermediate step to do proofs
has been introduced. It is based on natural deduction which,being reminiscent of mathematical rea-
soning, is accessible to a non-specialist without too much effort. It uses the automated theorem prover
Zenon. A proof is a hierarchical decomposition into intermediatesteps[9] unfolding definitions, intro-
ducing subgoals and assumptions in the context until reaching a leaf, that is, a subgoal which can be
automatically handled byZenon. When all the leaves have received proofs, the compiler translates the
whole proof toCoq and builds the context needed for checking this proof. The following example shows
this decomposition into a list of steps, always ended by aqed step, whose goal is the parent goal.

theorem t : all a b c : bool, a -> (a -> b) -> (b -> c) -> c
proof =

<1>1 assume a b c : bool,
hypothesis h1 : a, hypothesis h2 : a -> b, hypothesis h3 : b -> c,
prove c

<2>1 prove b by hypothesis h1, h2
<2>2 qed by step <2>1 hypothesis h3

<1>2 qed by step <1>1

The proof has two outer steps<1>1 and<1>2 . Step<1>1 introduces hypothesesh1 , h2 , h3 and
the subgoalc . It is proved by a 2-step subproof. Step<2>1 usesh1 andh2 to proveb. Step<2>2 uses
<2>1 andh3 in order to provec . Step<1>2 ends the whole proof.

Proofs done in a given species are shared by all species inheriting this one. As late-binding allows
redefinition of functions, proofs using the “old” definitionare no longer correct, must be detected as
soon as the redefinition is compiled, reverted to the property status and should be done again. This
link between proofs and definitions is a particular case ofdependenciesbetween elements of the user
development. The section 3.1 intuitively introduces this concept while the section 3.2 formally describes
the related calculus.

Specification requirements such as the safety/security ones can be split into finer ones (see [3]) and
proved under the hypotheses that these finer properties hold[12]. Thus,FoCaLiZe allows to do proofs
just in timeusing not already proved properties and guarantees that they will be proved later in a derived
complete species. This can help early detection of specification errors. Moreover, some properties can be
granted by other means (contracts, verification tools, etc.). They can be considered as theorems by giving
them a proof reduced to the keywordadmitted . This is a needed but dangerous feature as admitted
properties can lead to logical inconsistencies. The use of this keyword is recorded in the automatically
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done documentation file provided by the compilation process. The assessment process must ultimately
check that any occurrence of this keyword is harmless.

2.4 The Compilation Process

In a nutshell, the compilation process guarantees that the whole development leads to a runnable code
satisfying the requirements. Itscode generationtranslates user code to a source code (called here simply
computational code) in OCaml and to a term (called herelogical code) of Coq. Data types and properties
are translated toCoq types while definitions and proofs are translated as terms. Computational code only
contains declarations and definitions since they are the only material contributing to an executable.

The translations of the user code are type-checked byOCaml andCoq. But these checkings arrive
too late and error diagnostics may be difficult to convey to the user. Thus the compiler has its own typing
mechanism, to early detect typing errors and emit comprehensive diagnostics.

First preliminary tries were done to translate inheritanceand late-binding using oriented-object fea-
tures ofOCaml([6]). But, asCoq does not propose these features, a different way of compilation was
needed to produce logical code (see [10]). These two different compilation schemes jeopardize trace-
ability as the object codes differ a lot. The current compiler uses a single method of compilation to both
target languages, inspired by Prevosto’s work and presented in the next section. It resolves inheritance
and late-binding before code generation while controllingimpacts of redefinitions onto proofs.

2.5 Zenon

The automatic theorem proverZenon is based on a sequent calculus for first-order logic and hasFoCa-
LiZe-specific features such as unfolding of definitions and inductive types. Boolean values and logical
propositions are strictly distinct notions inCoq but this complexity is hidden to theFoCaLiZe user:
explicit conversions (done byIs true ) betweenbool and Prop are inserted in the formula sent
to Zenon. They could be axiomatized but this would blow up the search-space; instead,Zenon has
inference rules dedicated to these conversions.

A proof written in FoCaLiZe is compiled into a tree ofCoq sections, which translates the natural
deduction style into a natural deduction proof inCoq. Each section first introduces the hypotheses of its
corresponding step, then includes the sections of its substeps and ends with the proof of its goal, which
is generated byZenon from the facts of theqed step. Each leaf proof is just temporarily compiled into
a “hole” later filled with aZenon proof by invocation ofZvToV. This tool translates each leaf of the
user’s proof into aZenon input file that contains the goal and assumptions and definitions listed by the
user. ThenZenon outputs aCoq proof which fits right in the correspondingCoq section because every
assumption it was given is available at this point in theCoq file. Once all “holes” are filled, the whole
Coq source file is sent toCoq for verification.

The only acceptable errors fromZenon are simple:“out of memory”, “time out” , “no proof found”.
They mean thatZenon didn’t find any proof, either because some hypotheses were missing (in this case
the user may add lemmas to split the proof) or because the proposition is false. If a proof is found,Coq
must raise no error when checking it otherwise there is a bug in Zenon or FoCaLiZe.

3 Toward Effective Code

This section begins by an informal presentation of the notion of dependencies since they strongly impact
the form of the target codes generated by theFoCaLiZe compiler. Next comes the formal computation
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of these dependencies. Finally, the code generation model is depicted on the basis of the above example.

3.1 Dependencies in User Code

A methoddependingon the definition of another methodmis said to have adef-dependencyonm. Some
def-dependencies are eliminated by a good choice of syntax.For example, function bodies cannot con-
tain property names nor keywords for proofs, thus a functioncannot def-depend on a proof. There are
only two possibilities of def-dependencies. First, proofswith a by definition of m step (which
unfolds the definition ofm) def-depend onm. If mis redefined, these proofs must be invalidated. Second,
functions and proofs can def-depend on the representation.Properties must not def-depend on the repre-
sentation, as explained by the following example. The complete speciesWrong may be encapsulated
into a collection, whose interface contains the statementtheo . This one should be well-typed in the lo-
gical code. But typingx + 1 in theo requires to identify (unify)Self with int . The encapsulation
of the representation prevents it. Thus the speciesWrong must be rejected by the compiler.
species Wrong =

representation = int ;
let incr (x) : Self = x + 1 ;
theorem theo : all x : Self , incr (x) = x + 1 ;

end ;;
collection Bad = implement Wrong ;;

Bad . . . bad interface

representation : self
incr (x) : Self -> int
theorem theo :

all x : Self , incr (x) = x + 1 ;

Note that function calls do not create def-dependencies andthat encapsulation of collections prevents
any def-dependency on methods of collection parameters. Thus analysis of def-dependencies must en-
sure that proofs remain consistent despite redefinitions and that properties have no def-dependencies on
the representation (in other words, interfaces of collections should not reveal encapsulated information).

Apart from the def-dependencies of proofs on definitions andof properties on representations, there
are other dependencies calleddecl-dependencies. Roughly speaking, a methodm1decl-depends on the
methodm2 if m1depends on the declaration ofm2. The following example gives a first motivation for
their analysis.
species S =

signature odd : int -> bool ;
let even (n) =

if n = 0 then true else odd (n - 1) ;
end ;;

species T =
inherit S ;
let odd (n) =

if n = 0 then false else even (n - 1) ;
end ;;

In S, even is at once declared and defined, so its type can be inferred by the type-checker, using the
type ofodd . Thuseven decl-depends onodd but odd does not depend oneven . In T, definingodd
creates a decl-dependency ofodd on even and an implicit recursion between them. To keep logical
consistency, such an implicit recursion must be rejected. Recursion between entities must be declared
(keywordrec ). The compiler has to detect any cycle in dependencies through the inheritance hierarchy.

More generally, a functionm decl-depends onp if m calls p, a propertym decl-depends onp if
typing of m in the logical theory requiresp’s type, a proof decl-depends onp if it contains a stepby
property p or an expression whose typing needsp and, recursively,mdecl-depends on any method
upon whichp decl-depends and so on. Def-dependencies are also decl-dependencies. These cases are
not the only cases of decl-dependencies. The first version ofthis calculus is described in [11].

3.2 Dependencies Computation

To support generation of well-formed code, the notion of dependencies must be reinforced and formally
studied. The theoremltNotGt syntactically decl-depends ongt , lt , rep and def-depends ongt .
Thus, its proof is ultimately compiled to aCoq term, wheregt is unfolded, making arising the identifier
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eq . The type ofeq is needed toCoq-typecheckgt and must be provided through theλ -lift abst eq
of eq . Only λ -lifting syntactic def- and decl- dependencies would lead to a generated code looking like:
Theorem ltNotGt (abst_T : Set) (abst_lt := lt) (abst_gt := OrdData.gt abst_T abst_eq abst_lt) :

forall x y : abst_T, Is_true ((abst_lt x y)) -> ˜Is_true ((abst_gt x y)).
apply ”Large Coq term generated by Zenon” .

where the:= construct binds def-dependencies, and whereabst eq is unbound ! Moreover, raisingeq
also exhibits a def-dependency on the carrier through the one of eq . Dependecies over collection para-
meters methods suffer from the same incompleteness. Hence,a process of “completion” of syntactically
found dependencies has to be applied beforeλ -lifting.

It requires to compute thevisible universeof a methodmwhich is the set of methods ofSelf needed
to analyzem. Then, the minimal (Coq) typing environment ofm is built by deciding, for each method
p of its visible universe if only its type must be kept (issueing λ -lift of p) or if its body is also needed
(hence “:= -binding” of p). Finding the minimal set is especially important since this allows to reduce the
amount ofλ -liftings of method and collection generators. A last completion of the set of dependencies
for parameter methods achieves the building.

In the following, we assume that inheritance has been processed, leading to anormal formof a
species in which all its methods are present, in their most recent version and well-typed. Although this
process is not trivial ([11, 13]), it is out of the scope of this paper.

3.2.1 On Methods ofSelf

Let S be a species. We denote by*x+S (resp. ** x++S) the set of methods ofS on which the methodx
decl-depends (resp. def-depends). This set is obtained by walking the Abstract Syntax Tree looking for
apparition of methods names in expressions (resp. ofby definition in proofs). Only dependencies
on the carrier have to be checked differently, by typechecking. As proofs and properties names are
syntactically forbidden inside property expressions and function bodies, typechecking of properties and
functions requires only the types of the function names appearing in them (i.e. appearing in*+).

Considering theorems proofs (i.e. bodies), def-dependencies can arise forcing the need to keep some
definitions (not only types) to be able to typecheck. Then, one also needs to make sure that these def-
initions can themselves be typechecked. Moreover, proofs may involve decl-dependencies on logical
methods, whose types are logical statements (i.e. expressions). Methods appearing in such types must
also be typechecked. For all these reasons, the context needs to keep trace of the methods belonging to

the transitive closure of the def-dependency relation, plus the methods on which these latter decl-depend.
This context is called thevisible universeof a methodx and is noted∣ x ∣. In the same spirit than in [10],
∣ x ∣ is defined as follows:

y ∈ *x+S

y ∈∣ x ∣

y<de f
S x

y ∈∣ x ∣

z<de f
S x y∈ *z+S

y ∈∣ x ∣

z∈∣ x ∣ y ∈ *T S(z)+S

y ∈∣ x ∣

wherex <de f
S y stands fory def-depends onx by transitivity andTS(x) stands for the type ofx in the

speciesS.

From the notion of visible universe, it is possible to define,for a methodx of a species, what are the
other methods needed to havex well-typed.

• Methods not present in the visible universe are not required.
• Methods present in the visible universe on whichx doesn’t def-depend are required but only their

type is needed.
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• Methods present in the visible universe on whichx def-depends are required with both their type
and body.

Let Sbe a species containing the set of methods{yi ∶ τi = ei}. Let x being one of theyi , the minimal
typing environment ofx is defined as follows:

∅⋒x= ∅
y /∈ ∣ x ∣ {yi ∶ τi = ei}⋒x= Σ
{y ∶ τ = e ; yi ∶ τi = ei}⋒x= Σ

y ∈∣ x ∣ y<de f
S x {yi ∶ τi = ei}⋒x= Σ

{y ∶ τ = e ; yi ∶ τi = ei}⋒x= {y ∶ τ = e ; Σ}
y ∈∣ x ∣ y /<de f

S x {yi ∶ τi = ei}⋒x= Σ
{y ∶ τ = e ; yi ∶ τi = ei}⋒x= {y ∶ τ ; Σ}

Using the minimal typing environment it is possible to generate the method generators for non-
parametrised species only since collection parameters arenot taken into account.A fortiori it is not
possible to generate collection generators.

3.2.2 On Methods from Parameters

Following the same principle than in the previous section, we note the direct dependencies of an expres-
sione in a speciesSon a parameterC byDoP[EXPR](S,C)[e] and define it by a simple search on the AST
(looking for occurrences of the formC!x for anyx). In the coming rule,E(S) stands for the parameters
of the speciesS andBS(x) returns the body of the methodx in the speciesS (i.e. an expression for a
let -definition and a proof for a theorem).

The challenge is to find the minimal set of parameters methodsrequired to typecheck a method. We
now present the five first rules driving the calculus since they do not have any order of application. A last
one will be exposed after.

DoP[BODY] (S,C)[x] = DoP[EXPR] (S,C)[BS(x)] DoP[TYPE] (S,C)[x] = DoP[EXPR] (S,C)[TS(x)]

DoP[DEF] (S,C)[x] =DoP[EXPR] (S,C)[BS(z)] ∀z such asz<de f
S x DoP[UNIV ] (S,C)[x] =DoP[EXPR] (S,C)[TS(z)] ∀z∈ ∣ x ∣

E(S) = (. . . ,Cp is ...

, . . . ,Cp′ is S′(. . . ,Cp, . . .)) E(S′) = (. . . ,C′k is I ′k, . . .)
z∈ DoP[TYPE] (S,Cp′)[x] ∨ z∈ DoP[BODY](S,Cp′)[x] (y ∶ τy) ∈ DoP[TYPE] (S

′
,C′k)[z]

(y ∶ τy[C
′

k←[ Cp]) ∈ DoP[PRM] (S,Cp)[x]

The rule [BODY] (resp. [TYPE]) takes into account dependencies on a method explicitly stated in
the body (resp. type) of a definition.

The rules [DEF] and [UNIV ] serve to collect dependencies on a parameter induced by thedepen-
dencies a method has inside its hosting species. Note that methodsz introduced by the rule [DEF] are
obviously included in those introduced by [UNIV ]. In effect, the visible universe is wider than only
transitive def-dependencies and their related decl-dependencies: if there is no def-dependencies then the
relation<de f

S will be empty although decl-dependencies may lead to a non-empty visible universe. The
rule [DEF] allows to inspect bodies. The rule [UNIV ] allows to inspect types. Hence, anyz introduced
by [DEF] will also has its type inspected by [UNIV ].

Finally, the rule [PRM] applies to take into account dependencies of a method on a previous parameter
Cp used as argument to build the current parameterCp′ . It differs from the previous rules, since the result
of the calculus is not only a set of names: types are explicit.This is because the type of the methods of
this set differs from the one computed during the typechecking of the species used as parameter.

If C is an entity parameter, we set:DoP[XXX ] = {C}, i.e. that the identifier of the parameter is
considered as it’s only method.

None of these rules took into account decl-dependencies that methods of parameters have inside their
own species and that are visible through types. The following example show that usingP!th0 to prove
th1 which only deals withP!f however needs to haveP!g in the context.
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species A =
signature f : Self -> int ;
signature g : Self -> int ;
property th0 : all x : Self, f (x) = 0 /\ g (x) = 1 ;

end ;;

species B (P is A) =
theorem th1 : all x : P, P!f (x) = 0
proof = by property P!th0 ;

end ;;

Note that because of the encapsulation process applied to collection parameters, def-dependencies
are never possible and only types are visible. Hence the following rule serves to complete an initial set
of dependenciesD.

E(S) = (. . . ,Cp is Ip, . . .) z∈ D(S,Cp)[x] (y ∶ τy) ∈ *TIp(z)+Ip

(y ∶ τy[Self←[ Cp]) ∈ D
+(D,S,Cp)[x]

CLOSE

Note that new dependencies brought by this rule cannot themselves require applying this rule again
to make them typecheckable. In effect, only logical methodscan introduce new dependencies and they
only can depend on computational methods whose types are “ML-like” ones, hence cannot introduce
methods names.

3.3 Code generation

Providing detailed algorithms implementing code generation is out of the scope of this paper. Instead,
we illustrate their expected behaviour by showing the output obtained by compiling our above example.

Code generation starts after resolution of inheritance andlate-binding, typing and dependency analy-
ses. Note that issuing very similar target codes should easeassessment. Thus the code generation phase
should be common to the two targets until concrete syntaxes are produced. Moreover a good sharing
of code alleviates the assessment task and eases control of code size and reuse. Therefore we try to
maximize sharing.

As inheritance and late-binding must be resolved at compile-time to ensure proof validity, it would
be possible to generate code for collections only, but this prevents any sharing as shown below. Code
generation ofIn 5 10 and In 1 8 use the last definition of methods ofIsIn but they do not share
their bodies. Some possible sharing of the methods of the parameterIntC are also lost. Not only code
size increases but assessment takes longer since any collection should be checkedin extenso. Thus, code
has to be generated for all species.

Method Generators In the following example, the speciesIsInE redefinesfilter .
species IsInE (X is OrdData, low in X, high in X) =

inherit IsIn (X, low, high) ;
let filter = ...

end ;;
collection ExtIn_3_8 = implement IsInE (...) ; end ;;

lowMin def-depends onfilter . Its body, that is, the proof oflowMin in IsIn , can be shared
by all species inheritingIsIn , if they do not redefinefilter . But it cannot be shared withIsInE as
the proof must be re-done. Thus, redefinitions cancel sharing of def-dependencies.

Assume that a methodIsIn!m decl-depends onfilter . Then all species inheritingIsIn!m
and not redefiningmcan share its body, up to the calls offilter . Similarly the collectionsIn 5 10 ,
In 1 8 andExtIn 1 8 can share the methods ofIntC , up to the calls of methods on whichIntC
decl-depends. Thus, the body of a definitionm(function or proof) of a speciesS can be shared along
inheritance, up to the calls to methods ofS and of its parameters upon whichmdecl-depends (thanks
to the absence of cycles in decl-dependencies). The sharingis done by abstracting, inm’s body, the
names of these decl-dependencies, using the standard technique of λ -lifting[8]. The result of thisλ -
lifting is called themethod generatorof m. To obtain the final code ofm, this generator will have to be
applied to the most recent values of its decl-dependencies,provided by the species (or its descendants)
(spec-arguments) or by the effective parameters (param-arguments).
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Moreover, if the logical target language (likeCoq) requires explicit polymorphism, representations of
Self and of parameters on which amethoddecl-depends are alsoλ -lifted (leading to parameters of type
Set in Coq and named withT in the example below). As the methods and representation of aspecies
can depend on representations and methods of collection parameters,λ -liftings of decl-dependencies
upon parameters must be the outermost abstractions.

The generated codes for species are grouped into modules of the target languages, to enforce mo-
dularity and to benefit of a convenient namespace mechanism.Now either these modules contain all
the inherited and non-redefined method generators of the species (but this leads to code duplication) or
a method generator is created once, when a method is (re)defined and appears only in the species that
defines it. We use the latter solution.

Example continued.The example of section 2.2 is pursued, using aCoq-like syntax.OCaml files
are just obtained by removing some types, properties and proofs and are not listed here. In method
generators, any occurrence of the name of a decl-dependencymis replaced byabst_m and abstracted.
If by adding a definition, this decl-dependency is turned into a def-dependency, thenabst_m is bound
to the definition ofmby the constructabst_m := Coq term.

Generating code for speciesData : The defined methodid has no dependencies, hence trivially leads
to a simple definition.
Module Data.

Definition id : basics.string__t := "default".
End Data.

Generating code for speciesOrdData : The body ofgt decl-depends oneq , lt and the representation
as its inferred type isSelf→Self→bool. Note that this body remains close to the source one. Inherited
and only declared methods induce no code.
Module OrdData.

Definition gt (abst_T : Set) (abst_eq : abst_T -> abst_T -> basics.bool__t)
(abst_lt : abst_T -> abst_T -> basics.bool__t) (x : abst_T) (y : abst_T) : basics.bool__t :=

basics.not (abst_lt x y) && basics.not (abst_eq x y)
End OrdData.

Generating code for speciesTheInt : This species redefinesid and defineseq , fromInt andlt . id
has no dependencies whereaseq , from int andlt only have a def-dependency on the representation,
whose value (the built-in typeint ) is bound (:= construct) toabst T in the corresponding method
generators.

The proof ofltNotGt decl-depends on the representation. It def-depends ongt because it unfolds
its definition. Note thatlt andeq do not appear in this proof : unfolding ofgt does not unfold them
recursively. But typingltNotGt requires typinggt and thus typinglt andeq . Hence,ltNotGt
has decl-dependencies onlt andeq , coming from the def-dependency ongt . So,lt andeq must be
λ -lifted in ltNotGt , to build the value ofabst gt by applying the method generatorgt found in the
moduleOrdData to its three arguments. Note that only the types oflt andeq are used byltNotGt :
these methods can be redefined without impacting this theorem.
Module TheInt.

Definition id : basics.string__t := "native int".
Definition eq (abst_T := basics.int__t) (x : abst_T) (y : abst_T) : basics.bool__t := (basics._equal_0x x y).
Definition fromInt (abst_T := basics.int__t) (x : basics.int__t) : abst_T := x.
Definition lt (abst_T := basics.int__t) (x : abst_T) (y : abst_T) : basics.bool__t := (basics._lt_0x x y).
Theorem ltNotGt (abst_T : Set) (abst_eq : abst_T -> abst_T -> basics.bool__t)

(abst_lt : abst_T -> abst_T -> basics.bool__t) (abst_gt := OrdData.gt abst_T abst_eq abst_lt) :
forall x y : abst_T, Is_true ((abst_lt x y)) -> ˜Is_true ((abst_gt x y)).

apply ”Large Coq term generated by Zenon” ;
End TheInt.

As illustrated by this example, the dependency calculus cannot be reduced to a simple “grep”. For
any method, the analysis must compute the sets of methods of the species and of the parameters which
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are needed to elaborate the type and the value of its logical code (inCoq, they are called visible universe
and minimal typing environment). This is the price to pay forhaving no errors in target codes.

Collection generatorsCode generation for collections must create computationalrunnable code and
checkable logical code. Suppose that a collectionC is built by encapsulating a complete speciesS. The
code of a methodS!m is obtained by applying its method generator, sayG m, to its effective arguments.
The right version of this method generatorG mcomes from the last definition ofm in the inheritance
path ending onS. The effective spec-arguments ofG mcan be retrieved from the species having created
G mand from the instantiations of formal parameters done during inheritance. These applications can
be safely done as the speciesS is complete and as the dependency analysis provides an ordering on all
methods of a species, such that thenth method depends only on the(n−1) first ones. The effective
param-arguments ofG mcome from the application of the speciesS to effective collection parameters.

Thus a simple solution to generate collection code is to do itmethod by method, by applying method
generators to their effective arguments. These applications are computed at runtime in the target lan-
guages. This solution allows us to generate only the needed applications for a given method. But a
possibility of sharing is lost, when collections are issuedfrom the same parameterized species, applied
to different effective collection parameters (case ofIn 5 10 andIn 1 8). Then the applications of the
method generators to the spec-arguments can be shared between all these collections. Regarding mem-
ory use, the gain is small. But regarding assessment processes, such an intermediate step of applications
represents a large gain as it avoids having to review severalcopies of the same code, applied to different
param-arguments. We retain this solution. To ease code review, the applications to the spec-arguments
are grouped into a record (we assume that target languages offer records) calledcollection generator
while theλ -liftings of all parameters decl-dependencies are moved outside the record body. Thus the
material coming from the species is found in the body while the effective parameters contribution appears
in the applications of the body.

It is possible to go further by replacing the bunch ofλ -liftings of parameter dependencies with
a uniqueλ -lifting abstracting the collection parameter. Then the target modules should be first-class
values of the target languages with a certain kind of subtyping as interfaces inclusion provides a simple
but useful subtyping. Even if our target languages have suchfeatures, it seems better to leave the code
generation model open to a wide range of potential targets.

Example endedWe continue the example of 2.2 by completing the moduleTheInt with the col-
lection generator and its record type.
Record me_as_species :=

mk_record {
rf_T : Set ;
rf_id : basics.string__t ;
rf_eq : rf_T -> rf_T -> basics.bool__t ;
rf_fromInt : basics.int__t -> rf_T ;
rf_lt : rf_T -> rf_T -> basics.bool__t ;
rf_gt : rf_T -> rf_T -> basics.bool__t ;
rf_ltNotGt : forall x y : rf_T, Is_true (rf_lt x y) ->

˜Is_true (rf_gt x y)
}.

Definition collection_create :=
let local_rep := basics.int__t in
let local_id := id in
let local_eq := eq in
let local_fromInt := fromInt in
let local_lt := lt in
let local_gt := OrdData.gt local_rep local_eq local_lt in
let local_ltNotGt := ltNotGt local_rep local_eq local_lt in
mk_record

local_rep local_id local_eq local_fromInt local_lt
local_gt local_ltNotGt.

The type of each method of the species is recorded into a record field labeledrf , its valuelocal
(obtained by a future application of the collection generator to all the param-arguments) has no more
λ -lift. Here, as this collection has no parameter, there is noλ -lifting on the record itself. The value of
local gt for example is obtained by applying the method generator coming fromOrdData to its spec-
arguments, whose values have already been generated, thanks to the absence of cycles in dependencies.
The functionmk record builds the record out of these values.
Generating code for speciesIsIn . The types of the fields are translations of the types of the methods
of the collection. The dependency calculus shows that the record depends on the carrier of the parameter
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V, on the two value parametersminv andmaxv and on the methodV!gt . These decl-dependencies
areλ -lifted. For example, the type ofrf lowMin is the translation of the propertylowMin , which
decl-depends onV!gt . The abstraction onV!gt needed forlowMin is also done on the other fields.

Module IsIn.
Record me_as_species (V_T : Set) (_p_minv_minv : V_T) (_p_maxv_maxv : V_T)

(_p_V_gt : V_T -> V_T -> basics.bool__t) : Type :=
mk_record {
rf_T : Set ;
rf_filter : V_T -> rf_T ;
rf_getStatus : rf_T -> statut_t__t ;
rf_getValue : rf_T -> V_T ;
rf_lowMin :

forall x : V_T, Is_true (basics._equal_ _ (rf_getStatus (rf_filter x )) Too_low) -> ˜Is_true (_p_V_gt x _p_minv_minv)
}.

Next, methods generators are created for methods defined inIsIn .

Definition getValue (_p_V_T : Set) (abst_T := (_p_V_T * statut_t__t)) (x : abst_T) : _p_V_T := basics.fst _ _ x.
Definition getStatus (_p_V_T : Set) (abst_T := (_p_V_T * statut_t__t)) (x : abst_T) : statut_t__t := basics.snd _ _ x.
Definition filter (_p_V_T : Set) (_p_V_lt : _p_V_T -> _p_V_T -> basics.bool__t)

(_p_V_gt : _p_V_T -> _p_V_T -> basics.bool__t) (_p_minv_minv : _p_V_T) (_p_maxv_maxv : _p_V_T)
(abst_T := (_p_V_T * statut_t__t)) (x : _p_V_T) : abst_T :=
( if (_p_V_lt x _p_minv_minv) then (_p_minv_minv, Too_low)

else ( if (_p_V_gt x _p_maxv_maxv) then (_p_maxv_maxv, Too_high) else (x, In_range))).
Theorem lowMin (_p_V_T : Set) (_p_V_lt : _p_V_T -> _p_V_T -> basics.bool__t)

(_p_V_gt : _p_V_T -> _p_V_T -> basics.bool__t)
(_p_V_ltNotGt : forall x y : _p_V_T, Is_true ((_p_V_lt x y)) -> ˜Is_true ((_p_V_gt x y)))
(_p_minv_minv : _p_V_T) (_p_maxv_maxv : _p_V_T) (abst_T := (_p_V_T * statut_t__t))
(abst_filter := filter _p_V_T _p_V_lt _p_V_gt _p_minv_minv _p_maxv_maxv) (abst_getStatus := getStatus _p_V_T) :
forall x : _p_V_T,

Is_true ((basics._equal_ _ (abst_getStatus (abst_filter x)) Too_low)) -> ˜Is_true ((_p_V_gt x _p_minv_minv)).
apply ”Large Coq term generated by Zenon” ;

Methods have no decl-dependencies on methods ofIsIn , exceptlowMin which has a def-depen-
dency onfilter . The other decl-dependencies are on the representation ofIsIn (and through it, on
the one ofV), on V’s methods and on valuesminv andmaxv. The def-dependency oflowMin leads
to the binding (:= ) of abst filter to the application of the method generatorfilter to all its
arguments, represented by abstracted variables in the context.

The body of the collection generatorIsIn!collection create are the applications of the
method generators to their param-arguments (no spec-arguments here). Then these param-arguments
areλ -lifted.

Definition collection_create (_p_V_T : Set) _p_minv_minv _p_maxv_maxv _p_V_lt _p_V_gt _p_V_ltNo tGt :=
let local_rep := (_p_V_T * statut_t__t) in
let local_filter := filter _p_V_T _p_V_lt _p_V_gt _p_minv_minv _p_maxv_maxv i n
let local_getStatus := getStatus _p_V_T in
let local_getValue := getValue _p_V_T in
let local_lowMin := lowMin _p_V_T _p_V_lt _p_V_gt _p_V_ltNotGt _p_minv_minv _ p_maxv_maxv in
mk_record

(_p_V_T : Set) _p_minv_minv _p_maxv_maxv _p_V_gt local_rep local_f ilter local_getStatus local_getValue local_lowMin.
End IsIn.

Generating code for collectionIntC : The module generated fromIntC contains all the definitions
obtained by just extracting the fields of the collection generator TheInt.collection create as
there are no parameters.

Module IntC.
Let effective_collection := TheInt.collection_create.
Definition me_as_carrier := basics.int__t.
Definition id := effective_collection.(TheInt.rf_id).
Definition eq := effective_collection.(TheInt.rf_eq).
Definition fromInt := effective_collection.(TheInt.rf_fromInt).
Definition lt := effective_collection.(TheInt.rf_lt).
Definition gt := effective_collection.(TheInt.rf_gt).
Definition ltNotGt := effective_collection.(TheInt.rf_ltNotGt).

End IntC.

Generating code for collectionIn 5 10 : Here,IsIn.collection create is applied to effective
arguments found in the moduleIntC and definitions are extracted as above. The four underscoresare
just arguments inferred byCoq, which denote the four parameters of the record.
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Module In_5_10.
Let effective_collection :=

IsIn.collection_create IntC.me_as_carrier (IntC.fromI nt 5) (IntC.fromInt 10) IntC.lt IntC.gt IntC.ltNotGt.
Definition filter := effective_collection.(IsIn.rf_filter _ _ _ _ ).
Definition getStatus := effective_collection.(IsIn.rf_getStatus _ _ _ _).
Definition getValue := effective_collection.(IsIn.rf_getValue _ _ _ _).
Definition lowMin := effective_collection.(IsIn.rf_lowMin _ _ _ _).

End In_5_10.

3.4 Summarizing Dependencies Usage inλ -lifting

As previously introduced, dependencies are subject to beλ -lifted to define record types, method genera-
tors and collection generators. In a symmetrical fashion, they determine the effective methods to provide
to these generators, which can only be achieved taking care of the instantiations of formal collection and
entity parameters by effective arguments along the inheritance. The detailed mechanism of this is out of
the scope of the present paper. Instead, we summarize here the material toλ -lift for each category of
code generated element, in order of apparition for a species:

• Parameters carriers For record type and collection generator: all those of the parameters. For
method generators: per method, only those of the used parameters.

• Parameters methods
– For record type: “union” of all the dependencies of all the methods got by [CLOSE] ([T YPE]).
– For method generators: the dependencies of the related method obtained by rules: [BODY]

+ [TYPE] + [CLOSE] ([D EF] + [U NIV ] + [PRM]).
– For collection generator: “union” of methods dependenciesabstracted in each of the method

generators.
• Methods of Self Only needed for method generators: those belonging to the minimal typing

environment that are only declared.

Note that because of relative dependencies between methodsof parameters inside their own species,
λ -lifts of methods must be ordered for a same parameter to ensure they only refer to previouslyλ -lifted
elements. Moreover, parameters are processed in order of apparition in the species: this way, all the
methods of a same parameter areλ -lifted in sequence.

4 Conclusion

Building FoCaLiZe, a lot of questions, choice points, etc. arose from the will to avoid dissociating the
computational and logical aspects in a formal development while keeping the FIDE palatable. The mix
of inheritance, late binding, encapsulation, inductive data types and unfolding of definitions in proofs
creates complex dependencies, which have to be analyzed to ensure development correctness. This ana-
lysis gives the basis of the compilation process through thenotions of method and collection generators,
that we introduced to allow code sharing. The code generation model producing computable and logical
target codes is outlined through an example. The formal computation of dependencies was presented
with an short summary of their usage in theλ -lifting process.

Several other FIDEs mentioned in the introduction have followed other choices. It should be very
interesting to compare their compilation models with ours,particularly on the method used to establish
correspondence between runnable and logical code and on their semi-automation of proofs.

Zenon greatly contributes toFoCaLiZe since it brings proof automation. This point is especially
crucial to keep proofs simpler. We plan to extend it to handlerecursion termination, arithmetic, temporal
properties and, as it targets other provers thanCoq, to experiment with other target type theories.
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A huge amount of work remains to do in order to enhanceFoCaLiZe. But, with all its weaknesses,
it has already proved to be efficient in non-trivial developments. While safety domains already have a
large number of good tools, security domains are much less well endowed, and the recent interest in
combining safety and security requirements will increase demand for such tools.
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