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Abstract—Minimizing the energy consumption and hence ex-
tends the network lifetime is a key requirement when designing an
efficient sensor network protocol. QoS-aware routing in Wireless
Sensor Network (WSN), aims to take into account other networks
performance aspects as minimizing end-to-end delay (as well as
jitter), reducing packet loss rate while minimizing the energy
consumption of the network during data transmission. These
objectives are sometimes conflicting, and therefore tradeoffs must
be made between energy conservation and QoS considerations.
The general problem can be reformulated as a Multi-Constrained
Optimal Path problem (MCOP), and is known as NP-complete.
The latter raises a real challenge, as sensor nodes are very
limited in resources capabilities, we propose to use fuzzy inference
mechanism to seek a good tradeoff between all given metrics
and constraints. This paper discusses the implementation of
combining several routing metric, using fuzzy logic to design a
RPL objective function, the routing standard for the Internet of
Things. The proposal is integrated on Contiki operating system
and his deployment were performed on a real world indoor WSN.
Obtained results show improvements compared to the common
implementation of the RPL protocol, and demonstrate relevance
of our contribution.

I. INTRODUCTION

These recent years, Wireless Sensor Networks (WSN)
became an attracting field that arouse interest of the scientific
and industrial communities. Topology of such network is a
collection of large number of sensor nodes deployed in the
target area to detect some physical phenomenon. Usually, a
particular node called the sink attached to a base station,
receives all network data through neighbor nodes using multi-
hop radio communication. Nodes are generally small devices
with low-cost, low-power that are equipped with only a limited
data processing capabilities and low transmission rate, on
a battery operated energy supply and scarce memory. The
introduction of IP-based protocols and open standards led to
the adoption of IPv6 over Low power Wireless Personal Area
Networks (6LoWPAN) and IPv6 Routing protocol for Low
power and lossy networks namely RPL (pronounce ripple)
[20], standardized by Internet Engineering Task Force (IETF).
This opens new opportunities in various fields and application
areas, such as home automation, smart cities and power grids,
healthcare, critical areas control (nuclear power plan, forest
fires, disaster prevention, etc.).

Routing protocol is a key issues for WSN, and RPL [20]
was designed to take into account the unique characteristics of
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this kind of network. A number of metrics [19] are intended
to be accounted by the protocol during the network topology
building phase. These metrics are implemented as an objective
function (OF) with the purpose to setting up various perfor-
mance objectives for the network, in order to satisfy the re-
quirements of the target application. So far, only two objective
functions are specified and standardized for RPL: The first uses
hop-count as routing metric also called o £0 [18], and the other
uses the expected number of transmission needed to success-
fully send a packet to its destination (ETX) namely Minimum
Rank with Hysteresis Objective Function [6].
The use of other defined criteria (energy, latency, throughput,
etc.) are left to implementer, also the possibility of combining
several metrics into one, to ensure quality of service (QoS) or
meet application requirements, is not well-addressed.

Several traffic flows with different QoS requirements may
share the same WSN, including for example, both periodic
and non-periodic data. For instance, one application can report
periodically the temperature and lighting, while reacting to
sudden events like threshold crossing or the entering of a
person in a room. The set of services to be fulfilled when
transmitting a stream of packets from source to destination are
diverse, such as reduce end-to-end delay and maintain jitter
steady, minimize packet loss, while extending the network
lifetime. But these requirements are sometimes conflicting
issues under a WSN context. For instance, one can improve
reliability by increasing the number of maximum allowable
retransmission or using higher transmission power levels.
However, in both cases, more energy will be expended, thus re-
ducing the overall network lifetime. So, tradeoffs must be made
between energy conservation and other QoS considerations.
The problem becomes: how to make these tradeoffs at runtime,
or find integrated performance metrics that accounts the above
requirements online. Traditional wired and wireless network
QoS algorithms and techniques are not directly applicable on
WSN due to their unique features and resource constraints.

Combining several routing metrics in RPL to improve QoS
has already been investigated in the literature [11], and falls
into two forms of combination: additive and lexicographic.
In this paper we propose to take advantage of fuzzy logic
to solve it and contribute to improve RPL by considering
multiple objectives. This approach is motivated in that, using
this paradigm, with a small memory footprint, we can seek for
a halfway between several criteria, even antagonistic (this is



not the case with the aforementioned combination methods).
A necessary condition with the additive composition is that
basic metrics follow the same dimming direction (growing or
decreasing). Lexicographic composition overcomes the latter
restriction, but the main shortcoming with this approach is that,
in most cases when comparing two composite metrics (wrote
as a vector), only the first metric component is considered,
subsequent values are used to break the tie.

The remainder of the paper is organized as follows. Section
2 presents related works on combining metrics for routing in
WSN, as well as works that use fuzzy inference system for
routing design. Section 3 describes an overview of RPL stan-
dard. In section 4, we describe the proposed objective function
design, followed by implementation parameters, experiment
results and discussions in section 5. Finally, we conclude and
discusses future directions in section 6.

II. RELATED WORK

In order to account QoS in RPL, Karkazis et al. [11]
propose to use additive and lexicographic composition to op-
timize more than one performance aspects. They also indicate
conditions that basic metrics must hold to satisfy properties
of convergence, optimality and loop freeness. In the additive
approach, the composite metric M is written as a linear
combination of basic metrics (M = ZZ a;m;, where m,; are
basic metrics, each weighted by given coefficients «;). The
main shortcoming of this scheme is that, basic metrics must
necessarily be defined on the same order relation, thus it re-
stricts the type of metrics to be considered. In the lexicographic
approach, given two basic metrics M = (my,ma,...,mg)
and N = (nq,ne,...,n,) with the respective order relation
=<1, =9,..., g, metric elements are evaluated sequentially:
M =jex N &(m1 =1 n1 or my = n1 A mg =3 na,...). So,
the subsequent metrics values are accounted only to break the
tie. Hence, most of the time many metrics are not considered.

In that context, Link Estimation and Parent Selection
protocol [22] combines hop-count and Link Quality Indicator
(LQI) in lexicographic manner to select the best next hop.
Firstly, the source node selects neighbouring with the minimum
hop towards the sink node as its parent, if there is more
nodes having the same hop-count value, it’s the one with
the largest LQI is chosen. The main disadvantage of this
protocol is the early death of nodes and the unbalanced energy
dissipation. RPLRE [21] overcomes the latter and suggests to
use a probability selection scheme that take into account the
residual energy when choosing next hop, besides LQI and hop-
count. The probability scheme improves selection process and
avoids to choose the same node most often. The result is a
more balanced energy consumption among potential parents,
and the network lifetime is thus extended.

Aslam et al. [2] propose a composite metric that uses
multiple parameters or QoS constraints to find an optimal route
for the Optimized Link State Routing (OLSR) protocol. OLSR
protocol is natively based on hop-count, authors computed
the composite value as a linear combination of maximum
available bandwidth, minimum delay and jitter. Contrary to
the previous methods, EARQ [9] a novel routing protocol
for wireless industrial sensor networks, consider basic metrics
criteria separately, instead as a unique combined metric value.

Protocol aims to provide real-time, reliable delivery of a packet
while considering energy awareness. Firstly, the path with
a lower energy cost is selected according to a probabilistic
model, in addition only paths that may deliver packets in time
are selected to achieve real-time requirement. Moreover, source
node may send a redundant packet via alternate path if the
reliability is not meet. EARQ supposes that every node knows
it location and rely on a GPS mechanism or a location process
for that, but this assumption is not always feasible for many
WSN deployments.

There are many growing interest for the integration of
artificial intelligence techniques or control process like fuzzy
rule-based systems to design protocols for WSN. So, GAFO
[5] uses a genetic adaptive fuzzy hop selection scheme, to
make optimal choices for robust packet transmission in WSN
involved in varying channel conditions. Authors describe a
fuzzy system engine that takes signal to noise ratio and
outage probability as input, to determine the possibility of
a neighbor node to be selected as the next hop for data
forwarding. Experiments show that in the same conditions,
this protocol outperforms the crisp approach on average by
20% for reliability and 15% for total energy consumption.
Likewise, a cluster head election method using fuzzy logic has
been introduced by Gupta et al. [7] to overcome the defect
of LEACH [8], a popular cluster head selection technique.
The main idea for the LEACH protocol is that nodes are
elected depending on a stochastic model and use localized
clustering. The consequence is that some cluster heads may
be very close to each other or may be located in the edge
of the WSN. This careless cluster heads distribution could
not maximize energy efficiency. Other fuzzy-based schemes
[31, [17] were proposed to improve election process involved
on LEACH. Those have proved that the network lifetime can
be efficiently extended using fuzzy variables (concentration,
energy and node centrality). Unfortunately, LEACH is not
applicable to networks deployed in large regions, since it uses
single-hop routing where node can transmit data directly to
cluster head, afterwards the latter transmit data to the sink.

Contrary to LEACH were each cluster head must directly
sends data to sink, EDARP [23] establishes a Fuzzy Spanning
Tree that uses the energy and distance to construct a routing
path over all cluster heads. These two criteria are used to
generate a fuzzy election number and lead to the selection
of the best parent into the routing tree. Hence, energy con-
sumption is balanced among all nodes by keeping rotation in
cluster head election and parent’s node selection. FEAR [1]
proceeds slightly differently. Rather than using a clustering
mechanism to build the hierarchical topology, FEAR protocol
directly builds a logical tree topology among all network
nodes. A ranking-based system that relies on fuzzy inference
is used, so that nodes rank their neighbors by considering both
neighbors depth and power consumption. This fuzzy ranking
system is used to construct and maintain the tree topology.
Compared to RPL, FEAR generates more control messages
which implies a greater power consumption. In addition, the
protocol uses a node identification (ID) construction model
where a node’s ID is computed based on the node’s parent ID.
Unfortunately, when a parent node dies, all nodes in its subtree
must recomputed their ID as soon as a new parent is found,
involving more processing and communication overhead.



III. RPL OVERVIEW

RPL [20] is a distance vector routing protocol optimized
for low power and lossy network, where multipoint-to-point is
the dominant traffic pattern. The protocol also support point-
to-multipoint traffic pattern using destination advertisement
mechanism, and provide a basic structure for point-to-point
route. The network topology is organized as one or more
Destination Oriented Direct Acyclic Graph (DODAG) each
rooted at a single point, that acts as sink for the topology. Three
new types of ICMPv6 messages are defined and manipulated:

e  DODAG Information Object (DIO) used to create and
maintain upward routes.

e DODAG Destination Advertisement Object (DAO)
used to install downward routes.

e DODAG Information Solicitation (DIS) actively used
by a node wishing to join the network or asking for
up to date informations.

The topology building starts at the root (initially, the only
router which is part of a DODAG), that sends DIO messages
in its neighbourhood. This message conveys all common con-
figuration parameters, including root ID, mode of operation,
timers values, etc. Upon receipt of a number of such messages,
neighbour nodes may participate in the DODAG according
to the objective function (OF), select theirs parents and then
start to issue their own DIO messages. This process spreads
gradually to cover the whole network while new nodes join the
DODAG. Only one node among parent’s nodes (the preferred
parent) acts as the next-hop on the path towards the root.

RPL pro-actively creates and maintains the topology, by
regularly sending ICMP control messages in the vicinity. The
spreading rate is governed by the trickle algorithm [12], that
reduce the overhead induced by control messages. This is done
by sending DIO less often when the topology is steady, but
reacts and quickly spreads informations on topology change
or when inconsistencies are detected.

An important point is when a given node receives more
than one consistent DIO, each from a different neighbour and
must choose which one would be the preferred parent. This
choice is governed by the objective function that specifies
how this node selects its best parent into the parent set, and
calculates its own rank (a gradient representing its relative
position with respect to the root) from the parent’s rank.
Different criteria also called routing metrics are defined [19]
to capture link or node characteristics on the path for parent
selection purpose. The rank computation is derived from the
set of these selected metrics, and must monotonically decrease
as we move toward the root. This last property enables the
routing structure to maintain its acyclic nature, thus helps to
avoid routing loops.

Unlike existing OFs [6], [18] that rely on a unique routing
metric to construct the DODAG, so, we want to combine
several metrics into RPL by taking into account more than
one performance aspect. The IETF ROLL working group has
left open to the implementer the definition of new OFs, only
the acyclic nature of the graph must be preserved. Routing
metrics and constraints have been proposed by the working

group, but the possibility to combine them is also not well-
addressed. The next section shows how we design a such OF
using fuzzy inference system.

IV. ROUTING METRIC DESIGN
A. Fuzzy Inference System

Fuzzy logic reasoning allows us to transform several input
variables (delay, ETX and energy) into one (Quality). The
fuzzy inference system consists on several steps.

e  Fuzzification: take a crisp value input and determine
its degree of membership (fuzziness) for the appropri-
ate fuzzy sets.

e  Fuzzy inference: Apply combination rules to “fuzzi-
fied” inputs and compute a fuzzy output.

e  Aggregation: If an output depends on more than one
rule, this step unifies all values into one.

e  Defuzzification: Convert the fuzzy output obtained at
the previous step into a crisp value.

In this paper, due to its simplicity and efficiency, we use
the most common fuzzy inference method, namely Mamdani
model [13].

B. Composite metric design

To illustrate fuzzy inference reasoning, we consider the net-
work topology depicted in the figure 1. Node N, in order
to send data to the final destination S, must select the next
hop (either P1 or P2) as preferred parent. This choice is
governed by received informations as shown. We would like
to know which parent is the most suitable next hop based on
those criteria (energy, delay and ETX), according to the fuzzy

inference engine.

ENERGY=70% ENERGY=75%
DELAY=1000 DELAY=700
ETX=2 ETX=4

~. 7

Fig. 1: Parent Selection Process

1) Linguistic variables: Node’s performances knowledge
are represented as linguistic variables. In this case, we consider
the following three metrics (or linguistic variables in the fuzzy
inference vocabulary):

e ETX - The expected number of required transmissions
before a packet reaches the destination. It assesses the
transmission accuracy.

e Delay - The average time for a packet to reach its
destination.



e  Energy - The energy cost of the path, also energy of
the node having the smallest remaining battery level
on the path.

We use cross-layer mechanisms to retrieve ETX and delay
from data link and network layers. To estimate ETX, a
sending node record number of transmission before receiving
an acknowledgement. The average value is computed as an
EWMA (Exponentially Weighted Moving Average) over the
time. The one-hop delay is computed as the required time to
send a packet and received the acknowledgement. This time
includes MAC contention mechanisms. The overall end-to-end
delay is the delay up to the sink.

Node’s energy is estimated based on the online energy esti-
mation model [16] and its implementation we conducted in
[14], [10]. The model takes into account the energy spent
under a constant current load at each node state (transmitting,
receiving, idle and sleeping). We also consider the recovery
effect which assesses the energy recovered during inactivity
period.

2) Fuzzification process: To avoid the complexity of di-
rectly combine the selected three linguistic variables into one,
we perform the fuzzification process in two stages, as shown
in the figure 2.

Delay
—_—
First Stage QoS Second Stage QUALITY
{ o E—
Fuzzy Inference FUZ%)' Inference
ETX Engine Engine
_—
Energy

Fig. 2: Fuzzy Inference Engine

First stage of fuzzification: On the first stage, we combine
delay and ETX as inputs to compute QoS, which is taken in
its turn as input for the next stage. The linguistic variables
used to represent delay are divided into short, average
and 1ong membership functions, and ETX fall into small,
average and high. Figure 3 depicts their membership
functions normalized by the number of hops (hc) upwards to
the sink, since delay (respectively ETX) is computed at the
path level. Table I illustrates the relationship between these two
linguistic variables for the computation of QoS. This table is
built according to the desired rules, easy to express, and which
depend on the knowledge of an expert. For instance, a long
delay and high ETX implies a very slow QoS. So, shorter is
the ETX and smaller is the delay, better is the QoS to consider.

[ ETX/Delay [[ short [ average [ long |
small very_fast fast average
average fast average slow
high average slow very_slow

TABLE I: QoS Output Metric

ETX
1
0.5 small X average >< high
0
3 6 9 12

Delay

0.5 short >< average>< long
0
600

0Of 1200 1800 2400

Fig. 3: One-hop membership functions

For instance, considering a crisp value ETX, formula 1 in-
dicates how is its the level of membership in the average
fuzzy set, at one hop (ie. hc = 1). Similar formulas establish
the level of membership for others ETX fuzzy sets (small
and high), as well as delay and energy linguistic variables.

0 if etrxr<3
62’”:33 if 3<etr<6
average(etr) = 1 if 6<etx<9 €))
egz:léz if 9<etr <12
if etx >12
For the example provided in figure 1, node N

computes as level of membership small (etx)=0.66,
average (etx)=0.33, and high (etx) =0 for the parent
node P1. The same types of computations for P1’s delay
allow us to determine as respective fuzzy sets short,
average and long, the values 0.83, 0.16 and 0.

Since QoS relates to ETX and delay, the previously com-
puted membership functions are combined according to the
table I. The Mamdani model allows us to use the minimum
operator as the composition function, and maximum for the
aggregation operator. For instance, formula 2 indicates how to
compute average (QoS) fuzzy set from inputs. In this case,
three rules are fired, we aggregated them with the maximum
operator. Likewise, we establish formulas for QoS fuzzy sets
ranging from very_fast to very_slow.

min(high(etz), short(delay)
average(QoS) = max | min(avg(etz), avg(delay)) ?2)
min(small(etz, long(delay))

For our illustrative topology in figure 1, node N computes three
non-zero QoS membership functions concerning neighbour
P1l: very_fast (QoS)=0.66, fast (QoS)=0.33, and
average (QoS)=0.16. These values are defuzzified (as
described in §IV-B3) into a single QoS output (QoS=0.78),
and then used in the next fuzzification stage.

Second stage of fuzzification: As the second stage of the
fuzzy inference system, we combine the previously computed
QoS with the energy linguistic variable to provide QUALITY.
For a given node, energy could be low, medium or full,



and the output values for QUALITY is divided into seven levels
ranging from awful to excellent. Table II shows how to
derive QUALITY based on QoS and energy.

[ QoS /Energy [ low | medium | full ]
very_slow awful bad average
slow bad degraded average
average degraded average acceptable
fast average | acceptable good
very_fast average good excellent

TABLE II: QUALITY Output Metric

3) Defuzzification process: All fuzzy values obtained after
aggregation step are converted into a single crisp output. The
most common and accurate defuzzication method uses the
centroid, where the result is the center of gravity of the polygon
drawn using fuzzy values of the output membership function.
Figure 4 illustrates the defuzzification process for QUALITY
linguistic variable and formula 3 how to compute the final
crisp value Q. Output values range from 0 to 100 and indicate
how is the level of quality to choose a neighbour as the next
hop, according to the selected metrics.

Q=" 3)
ST QUALITY (ev;)

i=1

where k is the number of fired rules, «; is the domain value
related to the i*" rule, and QUALITY (o) is the level of
trustiness value according to this corresponding domain.

For the proposed topology, three membership functions:
acceptable (QUALITY)=0.25,

good (QUALITY)=0.70,

excellent (QUALITY)=0.30,

are fired as P1’s QUALITY output. The center of gravity
for the depicted region is 77. Similar computations produce
value 70 for P2. So, the best next hop for N according to the
fuzzy inference engine on these three criteria (ETX, delay and
energy) is P1. By considering the lexicographic composition
of metrics ETX, delay and energy respectively, this would
have led to choose P2 as the next hop.

awful bad degr. excellent

accept. good

0.5

10 18 24 32 38 46 52 60 66

Fig. 4: QUALITY defuzzification

74 80 88

V. EXPERIMENTS RESULTS
A. Network setup

To evaluate the proposed combined metric, we deployed a
real indoor WSN of twenty-eight sensor nodes as depicted by
figure 5. They are placed in fourteen offices, two nodes per
office, the displayed labels are node’s ID and links indicate

the next hop choose by node at a given time. Nodes are
TelosB MTM-CMS5000-MSP type, equipped with MSP430
16-bit Texas Instruments micro-controller, CC2420 radio fre-
quency chips, various sensors (temperature, relative humidity
and light sensor), one USB interface and operates on two AA
Batteries. RF power range between O through -25 dBm (soft-
ware configurable) and allows emission range from 20 to 30m
in indoor environment. Sensor nodes, located in fixed place
without mobility, sense data and transmit them to the sink for
processing every 5 minutes. Sink node is directly attached to
the gateway, and thus is assumed to have unconstrained battery
power. Nodes run Contiki version 2.7, a well-known operating
system for embedded devices [4]. Table III summarizes other
parameters of the protocol stack.

176.127

§§h3115

127 Blis

Fig. 5: Node placement

[ Settings | Values ]
Application Layer Periodic Sensor Data collection
Transport Layer UDP

Network Layer
MAC Layer
Radio Duty Cycle
PHY + Radio chip

uIPv6 + 6LoWPAN + RPL (routing)
non-persistent CSMA
ContikiMAC
IEEE 802.15.4 w/ CC2420

TABLE III: Protocol stack

B. Performance evaluation

We develop two scenarios of a data collection application,
were each node sense its vicinity and transmit measured
environmental parameters data (temperature, brightness and
humidity) to the sink through neighbors using multihop links,
during slightly more than two weeks. In the first scenario,
network is organized according to the standard RPL that uses
ETX as the single routing metric. The second scenario instead
uses the proposed combined metric scheme: ETX, Delay and
Energy according to the Fuzzy Inference Engine. We are
interested to evaluated the reliability of the application to
collect sent data, the stability of the routing by assessing the



number of best parent change over the time and finally the
network lifetime by looking at energy depletion of nodes.

1) Packet Loss Ratio: As depicted by figure 6, experiment
results indicate that the combined metric scenario obtain better
results in packet loss ratio than the native ETX RPL. While
the former stabilizes the loss rate around 5%, in the latter this
loss is almost three times higher. When looking at the network
startup phase, we can notice that the proposed scenario be-
haves better. Indeed, the combined metric based RPL remains
relatively stable, whilst during the three first days, there is a
high loss ratio for the ETX based routing (about 25%). This
behavior of the ETX-based routing during the first three days
is due to the bad routes selected and shows its slowness to
reach to a steady state.

30 T

25 [ S —
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T

Loss Ratio (%)
&
T
]
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1 12 13 14 15 16

L
1 2 383 4 5 6 7 8 9 10 1
Days

Fig. 6: Packet loss ratio over time at sink node

2) Routing Stability: This performance metric allows us to
assess the number of best parent changes in the network over
the time. A high variation rate reveals an unstable topology
and is not desirable, since it can impact the packet delivery
and routing table flapping. As shown in figure 7, the number
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Fig. 7: Number of parent changes per hour

of best parent changes remains relatively low and rather steady
over time for the fuzzy-based scenario, compared to the ETX-
based scenario. The picture also displays the linear regression
of number of parent changes distribution. We can see that, the
number of parent changes per hour is more higher, with an
average of 43.52 for the native ETX-based metric, whereas
the same average is 6.63 for the combined metric experiment.
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Fig. 8: Remaining power distribution

3) Average Remaining Power: All nodes start with the
same power level (100% battery power level). Figure 8 depicts
the remaining power distribution of nodes after sixteen days
of experiments. It is clear that, the pyramid induced by the
drawn histogram is more to the left side for the fuzzy-based
metric than the ETX scenario. Thus, the proposed combined
metric is more energy conservative than the native ETX metric.
More specifically, in the combined metric scenario, 67.85%
of nodes have their energy higher than 83% of the initial
battery level, while this proportion is only 21.42% for the
ETX-based routing. Moreover, the combined metric scenario
maintains a great number of nodes (39.27%) at a same high
power level (83%). Likewise, we can denote that weak power
nodes (having their remaining battery power level < 81% of
the initial power level) in the ETX based scenario (50% nodes)
outnumber the combined metric scenario (17.85% nodes). This
shows that the proposed combined metric is more power
efficient than the native ETX based routing, since it accounts
battery level in addition to other criteria.

4) End-to-end delay: Delay is another metric that we
consider when selecting the best next hop according the
three selected parameters (in addition to energy and ETX).
The real challenge to evaluate end-to-end delay in the real
WSN deployment lies in the fact that all nodes must be
synchronized or share the same reference clock. This requires
the implementation of additional mechanisms that would be
very expensive in terms of memory and processing resources,
which already are very limited on the deployed sensor nodes.
For those reasons and for simplicity purposes, we emulated
the deployed WSN on similar conditions using Cooja [15], a
popular WSN simulator environment. Nodes share the same
image code as the live deployment, however they also share
the same clock with Cooja, which enables us to accurately



evaluated the end-to-end delay. Figure 9 shows the cumulative
discrete function (CDF) of end-to-end delay. Although the gap
between the two developed scenarios is not very large, the
proposed fuzzy-combined metric behaves better. For instance,
we can see that in the fuzzy-based metric, 75% of packet have
a delivery times less or equal to ls, where this proportion is
68% for the ETX-based metric. Note that, since fuzzy-based
scenario have a better delivery ratio as shown in §V-B1, the
computed end-to-end delay in this scheme is more accurate
than ETX-based ones, because more packets are accounted.
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Fig. 9: CDF of end-to-end delay

VI

This paper describes the design and implementation of a
new RPL objective function that combines several metrics to
optimize more than one network performance aspects. The pro-
posed solution uses fuzzy inference system to merge expected
transmission count, delay and node’s remaining power into one
unique value. We performed a real sensor network deployment
in indoor environment, to assess the metric. Experiment results
shows that the proposed combined metric outperformed the
ETX based routing on packet loss ratio, routing stability,
energy efficiency and even on end-to-end delay. The proposed
fuzzy inference system is used to find a tradeoff between input
metrics which can be antagonistic. In our future works we
aim to find a way to favor some metrics compared to others,
and thus better tune the contribution of each metric. Moreover
network can generate several traffic flows which don’t have the
same QoS requirements. For instance, some flows must comply
with strict end-to-end delay requirements, while other must
meet the transmission accuracy. It would be very interesting
to investigate how to account those flows in regard to their
requirement and take them into account at runtime.

CONCLUSION
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