N

N

Spray: an Adaptive Random Peer Sampling Protocol
Brice Nédelec, Julian Tanke, Davide Frey, Pascal Molli, Achour Mostefaoui

» To cite this version:

Brice Nédelec, Julian Tanke, Davide Frey, Pascal Molli, Achour Mostefaoui. Spray: an Adaptive
Random Peer Sampling Protocol. [Technical Report] LINA-University of Nantes; INRIA Rennes -
Bretagne Atlantique. 2015. hal-01203363

HAL Id: hal-01203363
https://hal.science/hal-01203363

Submitted on 22 Sep 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Copyright

https://hal.science/hal-01203363
https://hal.archives-ouvertes.fr

SPRAY: an Adaptive Random Peer Sampling Protocol

Brice Nédelec
Université de Nantes, LINA
brice.nedelec@univ-
nantes.fr

Davide Frey
INRIA Bretagne-Atlantique

davide.frey@inria.fr

ABSTRACT

The introduction of WebRTC has opened a new playground
for large-scale distributed applications consisting of large
numbers of directly-communicating web browsers. In this
context, gossip-based peer-sampling protocols appear as a
particularly promising tool thanks to their inherent ability
to build overlay networks that can cope with network dy-
namics. However, the dynamic nature of browser-to-browser
communication combined with the connection establishment
procedures that characterize WebRTC make current peer-
sampling solutions inefficient or simply unreliable. In this
paper, we address the limitations of current peer-sampling
approaches by introducing SPRAY, a novel peer-sampling
protocol designed to avoid the constraints introduced by We-
bRTC. Unlike most recent peer-sampling approaches, SPRAY
has the ability to adapt its operation to networks that can

grow or shrink very rapidly. Moreover, by using only neighbor-

to-neighbor interactions, it limits the impact of the three-
way connection establishment process that characterizes We-
bRTC. Our experiments demonstrate the ability of SPRAY
to adapt to dynamic networks and highlight its efficiency
improvements with respect to existing protocols.

Categories and Subject Descriptors

C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Network Architecture and De-
sign

General Terms
Network, algorithm, simulation

Keywords
Large scale distributed applications, random peer sampling,
browser-to-browser communication, WebRT'C

Pascal Molli
Université de Nantes, LINA
pascal.molli@univ-

nantes.fr

Julian Tanke
Université de Nantes, LINA

julian.tanke@fu-berlin.de

Achour Mostefaoui
Université de Nantes, LINA
achour.mostefaoui@univ-
nantes.fr

1. INTRODUCTION

Peer sampling constitutes a fundamental mechanism for many
large-scale distributed applications both on the cloud [4] and
in a peer-to-peer setting. Services such as dissemination [6}
19|, aggregation [12] and network management [13}21] have
been based on peer sampling and the recent introduction
of WebRTqH opens the opportunity to deploy such applica-
tions on browsers that can run on laptops, desktops and mo-
bile devices. In this context, WebRTC drastically simplifies
deployment even within complex network systems that uti-
lize firewalls, proxies and Net Address Translation (NAT).

Unfortunately, WebRTC has several constraints that make
existing peer sampling services inefficient or unreliable. Brow-
sers can run on small devices in mobile networks. Hence,
keeping the number of connections as low as possible is a
major requirement. However, peer sampling services such
as CyCLON [20] do not adapt the number of connections to
the real number of participants. For instance, a user must
maintain 10 connections with other remote browsers when
only 6 are enough. On the other hand, the peer sampling ser-
vice SCAMP |[10] is adaptive but uses random dissemination
paths to establish connections which is much more costly
and likely to fail in the WebRT'C context.

In this paper, we introduce SPRAY, a random peer sam-
pling protocol inspired by both ScamP |10] and CyCLON [20)].
Compared to the state of art, (i) SPRAY dynamically adapts
the neighborhood of each peer. Thus, the number of con-
nections grows logarithmically compared to the size of the
network. (ii) SPRAY only uses neighbor-to-neighbor inter-
actions to establish connections. Thus, the connections are
established in constant time. (iii) SPRAY quickly converges
to a topology exposing properties similar to those of a ran-
dom graph. Thus, the network becomes robust to massive
failures, efficiently disseminates information etc. (iv) In the
experimental setup, we show the adaptiveness of SPRAY and
highlight its efficiency improvement compared to CYCLON
and SCAMP, at the cost of little overhead.

The rest of this paper is organized as follows: Section [2] re-
views the related work. Section [3| details the SPRAY proto-
col. Section [4] shows the properties of SPRAY and compares
them to state-of-the-art random peer sampling approaches.
We conclude and discuss about the perspective in Section [5]

"http://www.webrtc.org/

http://www.webrtc.org/

| signaling service |

ANRAE R
P

1,7 4

1 1
"
LR 21 13
"
o

(a) p1 connects to ps using the sig-
naling service. 1: p; pushes its of-
fer ticket; 2: po pulls the ticket; 3:
p2 pushes its response; 4: pi: pulls
the response and establishes a bidi-
rectional connection with p2. ps does

’ signaling service ‘

(b) p1 connects to ps using ps as me-
diator. 1: p; sends its offer ticket to
p2; 2: po forwards it to ps and regis-
ters p1 as the emitter; 3: ps sends its
response to pa; 4: p2 forwards it to
the emitter p; which connects to ps.

signaling service

(c) The resulting network overlay: a
fully connected network composed of
3 members.

the same with p2. Figure [Ib] depicts
the resulting network.

Figure 1: Creating an overlay network on top of WebRTC.

2. RELATED WORK

WebRTC allows real-time peer-to-peer communication be-
tween browsers even when complex network settings such as
firewalls, proxies or Net Address Translation (NAT) are in-
volved. However, WebRTC does not manage addressing nor
routing. To establish a connection, the browsers exchange
offers and acknowledgments through a common mediator,
e.g., mails, dedicated signaling services EL existing WebRTC
connectiong’| etc. In Figure p1 wants to connect to pa.
Therefore, p1 pushes an offer ticket to a shared signaling ser-
viceﬂ Peer p2 pulls the offer, stamps it and pushes it back
to the signaling service. Finally, p1 pulls the stamped ticket
and establishes a bidirectional connection with p2. Iden-
tically, ps establishes a connection to p2. We refer to the
round-trip procedure as three-way handshake. At this point,
Peer p; is able to establish a connection to ps without the
mediation of the former signaling service. Instead, it uses p2
as temporary signaling service. As shown in Figure[Ih] Peer
p1 pushes an offer ticket to p2. As p2 is already connected
to ps, it forwards the offer to ps and registers p; as the emit-
ter. Peer ps stamps the ticket and sends it back to p2 who
then forwards it back to p1. Upon receipt, p1 establishes a
bidirectional connection with ps. Notice that if ps crashes
during the forwarding process, the connection establishment
will fail, even if an alternative route exists as WebRTC does
not manage routing.

Using signaling services and existing WebRTC connections

allows easy deployment of random peer sampling protocols [11]

in browsers that can run on mobile phones or tablets con-
nected to mobile networks. In this context, it is crucial to
keep the number of connections as low as possible in order
to reduce traffic usage and limit resource consumption.

Random peer sampling protocols [11}/14] provide each peer
with a partial view P of the network membership N'. They
populate the partial views with references to peers chosen
at random among N following a uniform distribution us-
ing local knowledge only. Their goal is to converge to an
overlay network exposing properties similar to those of ran-

2http://peerjs.com/
*http://ozan.io/p/
4Many signaling services can exist

dom graphs [5|. They efficiently provide connectedness, ro-
bustness, information dissemination etc. A wide variety
of gossip-based protocols use random peer sampling (e.g.
topology management [3}1321]).

The representatives of random peer sampling protocols using
a fixed-size partial view [14] are lpbcast [6], Newscast [19],
and CYCLON [20|. They have to know a priori the maximum
network size to set their parameters accordingly. These deci-
sions cannot be safely retracted afterwards. This inflexibility
makes it possible to maintains 7 connections in the browser
despite requiring only 4, while, in the following moment, it
still maintains 7 connections while 10 would be needed. Cy-
CLON’s partial views are commonly oversized compared to
the actual network size to prevent having too few connec-
tions per peer, which, consequently, introduces overhead.
When WebRTC is involved, we need a dynamic peer sam-
pling service that is able to adapt to the dynamic number
of participants.

Network size estimators can introduce adaptiveness in peer
sampling. These approaches either use (i) sampling tech-
niques [8l/15/16] which analyze a network subset and deduce
the network size using probabilistic functions, (ii) sketch-
ing techniques [1,/7] which use hashing to compress the high
amount of data and deduce the network size using the colli-
sions, (iii) averaging techniques [2,|12] which use aggrega-
tions that converge over exchanges to a value which de-
pends on the network size. Unfortunately, while they can
be very precise in their estimation, they imply a commu-
nication overhead and may have strong assumptions (e.g.
random graph topology). However, adaptiveness should in-
troduce a minimum overhead to peer sampling in WebRTC
applications.

The sole representative of adaptive-by-design random peer
sampling is SCAMP [9|10]. Its interesting property lies in its
logarithmically growing partial view sizes meeting the sharp
threshold of connectedness of random graphs [5]. Never-
theless, ScAMP suffers from other drawbacks. In particular,
it systematically disseminates the connections at random.
Thus, the originating peer can be several hops away from
the arrival peer. In WebRTC, each random dissemination
path must be traveled back to finalize the connection es-

http://peerjs.com/
http://ozan.io/p/

(a) p1 contacts p2 to join the network.
p1 adds p2 to its neighborhood. p1
sends its request to pa.

(b) The onSubs(p:1) event is raised at
p1 which forwards the subscription to
p1’s neighborhood.

(c) The onFwdSubs(p1) event is raised
at ps_g. The peers add p; to their
neighborhood.

Figure 2: Example of the SPRAY’s joining protocol.

tablishment, as illustrated in Figure[I] This drastically im-
pacts the ScAMP failure probability of establishing a con-
nection. Let Py be the probability that an element of the
dissemination path (either a peer or a connection) crashes
or leaves during a hop of the three-way handshake, with-
out any possible recovery. Let Pgr be the probability that
a connection establishment cannot be completed. Without
three-way handshake, Pg is straightforward:

P, =1 (1 - P! M

E, lway

This corresponds to the probability that each element (arc
and peer) in the path of size k + 1 stays alive during their
part of the dissemination (i.e., otherwise, they are allowed
to crash or leave). In the context of WebRTC, the offer
ticket must travel back to its emitter. As a consequence, the
elements of the random dissemination path are not allowed
to fail until the stamped ticket travels back. We obtain:

Ppegmt =1—((1— PR (1 — Ppy?R (1 - Py)?)
—1— (1= py)FireRe? 2)

In other terms, the first chosen arc and peer in the path must
stay alive 2k + 2 hops, the second chosen arc and peer must
stay alive 2k hops etc. The complexity class of the Scamp
failure rate increases leading to a quicker degeneration of
the connection count. This behavior endangers the network
connectedness, as depicted in Section

Building an adaptive-by-design random peer sampling that
meets WebRTC constraints raises the following scientific
problem:

PROBLEM STATEMENT 1. Lett be an arbitrary time frame,
let N'* be the network membership at that given time t and
let PL be the partial view of peer pr € N*. A cost-efficient
random peer sampling should provide the following best-case
properties:

Vpe € N, |PE| = O(In |N)

2. Connection establishment: o(1)

1. Partial view size:

The first condition states that the partial view size is relative
to the size of the network at any time. It also states that
partial views grow and shrink logarithmically compared to
the size of the network. The second condition states that

each connection establishment requires a constant number
of intermediary peers. Since this number is constant, con-
nection establishments do not depend on the network size.
Lpbcast, Newscast and CYCLON fail to meet the first condi-
tion of the problem statement since they do not adapt their
views to the network size. SCAMP fails to meet the second
condition of the problem statement since each connection
implies an unsafe random dissemination protocol.

3. SPRAY

SPRAY is an adaptive-by-design random peer sampling pro-
tocol inspired by ScaMPp [10] and CyCLON [20]. It comprises
three parts representing the lifecycle of a peer in the network.
First, the joining process injects a logarithmically growing
number of arcs into the network. Hence, the number of arcs
scales with the network size. Next, each peer runs a peri-
odic process in order to balance the partial views both in
terms of partial view size and uniformity of the referenced
peers within them. Quickly, the overlay network converges
to a topology exposing properties close to those of random
graphs. Finally, A peer is able to leave at any time with-
out giving notice (equivalent to a crash) while the network
properties do not degrade.

The key of adaptiveness consists in keeping a consistent
global number of arcs during the whole protocol. Indeed,
unlike CYCLON, SPRAY is always on the edge of the optimal
number of arcs compared to the network size. Since SPRAY
never creates additional arcs after the joining, any removal
is a definitive loss. Thus, firstly, SPRAY’s joining adds some
arcs to the network. Secondly, SPRAY’s shuffling preserves
all arcs in the network. Thirdly, SPRAY’s leaving cautiously
removes some arcs, ideally the number of arcs introduced by
the last joining peer.

Occasionally, keeping the global number of arcs constant
forces the shuffling and the leaving processes to create du-
plicates in partial views. Thus, a partial view may contain
multiple occurrences of a particular neighbor. In this paper,
we show that the number of duplicates remains low and do
not impact the network connectedness.

3.1 Joining

SPRAY’s joining algorithm is the only part of the protocol
where the global number of arcs in the network can increase.
To meet the first requirement of the problem statement, this
number of arcs must grow logarithmically compared to the

network size. As in SCAMP, we assume that peers meet
this constraint. Therefore, each of them uses this knowledge
to propagate the identity of the joining peer. Algorithm
describes SPRAY’s joining protocol. Line [7] shows that the
contacted peer only multicasts the new identity to its neigh-
borhood. Afterwards, to limit the risk of connection failures,
each neighbor immediately adds the joining peer to their
own neighborhood. This fulfills the second condition of the
problem statement. In total, the number of arcs in the net-
work increases of 1+In(|\]) using only neighbor-to-neighbor
interactions.

Algorithm 1 The joining protocol of SPRAY.

1: INITIALLY:

2: P +— @; > the partial view is a multiset
3: D; > identity of the local peer
4:

5. EVENTS:

6: function oNSUBS(0) > 0: origin
7 for each (g,) € P do sendTo(q, ' fwdSubs’, o);

8: end function

9: function ONFWDSUBS(0) > o0 : origin
10: P+ P {(o, 0)};

11: end function

12:

The partial view is a multiset of pairs (n, age) which asso-
ciate to the neighbor n with the age age. The multiset al-
lows managing duplicates and age plays the same role as in
CYCLON i.e. it accelerates the removal of crashed/departed
peers by shuffling with the oldest neighbors first. The onSubs
event is called each time a peer joins the network. onSubs
forwards the identity of the joining peer to all neighbors, in-
dependent of the age. The onFwdSubs event is called when
a peer receives such forwarded subscription. It adds the peer
as one of its neighbor with an age set to 0 meaning that it
is a brand new reference.

Figure [2| depicts a joining scenario. Peer p; contacts p2
to join the network composed of {p2, ps, pa, ps, ps}. For
simplicity sake, the figure shows only the new arcs and the
neighborhood of p; and p2. Peer p; directly adds p2 in its
partial view. Peer ps forwards the identity of p; to its neigh-
borhood. Each of these neighbors adds p1 in their partial
view. In total, SPRAY establishes 5 connections and the net-
work is connected.

Unfortunately, the partial views of the newest peers are
clearly unbalanced and violates the first condition of our
problem statement. The periodic protocol described in the
next section will re-balance the partial views.

3.2 Shuffling

Unlike CYCLON, SPRAY shuffles partial views of different
sizes. The shuffling aims to balance the partial view sizes
and to randomly mix the neighborhood between peers. Nev-
ertheless, the global number of arcs in the network is invari-
ant.

In SprAY’s shuffling protocol, the involved peers send half
of their partial view to each other. After integration, they
both tend to the average of their partial views and the sum of
their partial views stays unchanged. In order to keep the arc

number invariant, the partial views of SPRAY are multisets.
If a peer receives an already known reference, it still stores
it, yet as a duplicate. Thus, the SPRAY’s shuffling protocol
never increases nor decreases the arcs count.

If duplicates have negative impact on the network proper-
ties, most of them disappear after shuffling and they pro-
portionally become negligible as the network grows (see Sec-

tion [4.6]).

Algorithm 2 The cyclic protocol of SPRAY.

1: ACTIVE THREAD:

function LooP()
P + incrementAge(P);
let (q, age) < getOldest(P);
let sample +

getSample(P \{(g.age)}, [EL] = 1) & {(p,0)};

> Every At

6: sample < replace(sample, q, p);
7 sendTo(q, 'exchange’, sample);
8: let sample’ < receiveFrom(q);
9 sample < replace(sample, p, q);

10: P «+ (P \ sample) & sample’;

11: end function

12:

13: PASSIVE THREAD:

14: function ONEXCHANGE(o, sample) > o : origin
15: let sample’ < getSample(P, ’V@-‘),
16: sample’ + replace(sample’, o, p);
17: sendTo(o, sample’);

18: sample’ + replace(sample’, p, o);
19: P« (P \ sample’) & sample;

20: end function

21:

Algorithm [2]shows the SPRAY protocol running at each peer.
It is divided between an active thread looping to update
the partial view, and a passive thread which reacts to an
exchange message. The functions which are not explicitly
defined are the following:

e incrementAge(view): increments the age of each ele-
ments in the view and returns the modified view.

e getOldest(view): retrieves the oldest of peers contained
in the view.

e getSample(view, size): returns a sample of the view
containing size elements.

e replace(view, old, new): replaces in the view all oc-
currences of the old element by the new element and
returns the modified view.

e rand(): generates a random floating number between
0 and 1.

In the active thread, Function loop is called every A time
t. First, the function increments the age of each neighbor
in P. Then, the oldest peer q is chosen to exchange a sub-
set of its partial view. If Peer ¢ cannot be reached (i.e. it
crashed/left), the peer p executes the crash handling func-
tion (cf. Section and repeats the process until it finds a
reachable peer ¢q. Thus, the aging process (which is an inher-
itance from CYCLON) speeds up the removal of crashed or
departed peers. Once it finds a reachable neighbor ¢, Peer p
selects a sample of its partial view, excluding one occurrence
of ¢ and including itself. The size of this sample is half of its
partial view, with at least one peer: the initiating peer (cf.

(a) Peer pg initiates the exchange with
p1 by sending to the latter the multiset
{pe, po}.

(b) Peer p1 receives the pg’s message.
It sends back the multiset {p2} and
adds {ps, po} to its partial view.

(c) Peer ps receives the pi’s response,
it adds {p2} to its partial view.

Figure 3: Example of the SPRAY’s shuffling protocol.

Line [5)). The answer of g contains half of its partial view.
Since peers can appear multiple times in P, the exchanging
peers may send references to the other peer, e.g., Peer o’s
sample can contain references to ¢q. Such sample, without
further processing, would create self-loop (¢’s partial view
contains references to ¢g). To alleviate this undesirable be-
havior, all occurrences of the other peer are replaced with
the emitting peer (cf. Line@, . Afterwards, both of them
remove the sample they sent from their view and add the
received sample.

Figure[3]depicts SPRAY’s cyclic procedure. This scenario fol-
lows from Figure Peer p; just joined the network. Peer pg
initiates an exchange with p; (the oldest among the pg’s par-
tial view). It randomly chooses [|Pgs| =+ 2] = 1 peer among
its neighborhood. In this case, it picks pg from {po, ps, p7}.
It sends the chosen peer plus its own identity to Peer p;.
In response, the latter picks [|Pi|+2] = 1 peer from its
partial view. It sends back its sole neighbor p2 and directly
adds the received neighbor to its partial view. After receipt,
Peer ps removes the sent neighbors from its partial view, re-
moves an occurrence of pi, and adds the received peer from
p1. The peers {pes, po} compose the pi’s partial view. The
peers {p2, p7, ps} compose the pg’s partial view.

The example shows that, at first, the initiating peer has 4
peers in its partial view, while the receiving peer has only
1 peer. After the exchange, the former has 3 neighbors in-
cluding 1 new peer. The receiving peer has 2 neighbors, and
both of them are new. Thus, the periodic procedure tends to
even out the partial view size of network members. It also
scatters neighbors in order to remove the highly clustered
groups which may appear because of the joining protocol.

Concerning convergence time of the shuffling algorithm, there
exists a close relationship between SPRAY and the proactive
aggregation protocol introduced in [12}|18]. It states that,
under the assumption of a peer sampling sufficiently ran-
dom, the mean value p and the variance o2 at a given cycle
i are:

o 1 . 2 _ 1
i = TA7] > Giya i = IN|=1

(ai,o — pi)*
zeN

where a;, . is the value held by Peer p, at cycle i. The es-

timated variance must converge to 0 over cycles. In other
terms, the values tends to be the same over cycles. In the
SPRAY case, the value a;, , is the partial view size of Peer p,
at cycle i. Indeed, each exchange from Peer p; to Peer ps is
an aggregation resulting to: |P1| = |Pa| = (|P1] + |P2|) + 2.
Furthermore, at each cycle, each peer is involved in the ex-
change protocol at least once (they initiate one), and in the
best case 1+Poisson(1l) (they initiate one and, in average,
each peer receives another one). This relation being estab-
lished, we know that SPRAY’s partial view sizes converge
exponentially fast to the global average size. Additionally,
we know that each cycle decreases their variance in overall
system at a rate comprised between 1 + 2 and 1 = (2v/e).

The shuffling algorithm provides adaptiveness at the cost of
duplicates. Averaging the partial view sizes over exchanges
provides a quick convergence to a network topology where
the partial views are balanced.

3.3 Leaving and crashing

In SPRAY, peers can leave the network without notice. We
make no distinction between node departures and crashes,
but the protocol must react to both of them. Without such
a reaction, the network could collapse due to an over zealous
removal of arcs. When a peer joins the network, it injects
1+1In(JN|) arcs. Nevertheless, after few exchanges, the par-
tial view of the joining peer becomes populated with more
neighbors. Then, if this peer leaves, it removes In(|\]) arcs
from its partial view, and another In(JN|) arcs from peers
which have this peer in their partial views. Therefore, with-
out any crash handler, we remove 21In(|\]) connections in-
stead of 1+ In(JA]). To alleviate this issue, each peer that
detects a crash may reestablish a connection with anyone in
its neighborhood (which will spread in the network over the
exchanges). The probability of reestablishing a connection
is 1 —1=|P|. Since |P| = In(|N|) peers have the crashed
peer in their partial view, it is likely that all of them will
reestablish a connection, except one. Therefore, when a peer
leaves, it approximately removes the number of connections
it injected when it joined.

Algorithm [3] shows the manner in which SPRAY deals with
departures and crashes. Function onPeer Down shows the
reaction of SPRAY when the peer ¢ is detected as crashed or
departed. A first loop counts the occurrences of this neigh-

(a) Peer p1 crashes.

(b) The peers ps_s notice that they
cannot reach p; anymore.

(c) The peers ps and ps choose to es-
tablish a duplicate with one of their
existing neighbor.

Figure 4: Example of SPRAY’s crash/leaving handler.

Algorithm 3 The crash/departure handler of SPRAY.

let (n, _) < P[|rand() = |P|]];
P+ PwW{(n, 0)};

end if

14: end for

15: end function

1: function ONPEERDOWN(q) > ¢: crashed/departed peer
2: let occ + 0;

3: for each (n, age) € P do > remove and count
4: if (n =q) then

5: P o P\ {(n, age)};

6: occ < occ + 1;

7 end if

8: end for

9: for i <~ 0 to occ do > probabilistically duplicates
10: if (rand() > m) then

11:

12:

13:

16: function ONARCDOWN(q, age) > ¢: arrival of the arc down
17: P+ P\{{q, age)};

18: let (n, _) < P[lrand() = |P|]];

19: P+ Pw{(n, 0)}; > systematically duplicates
20: end function

bor in the partial view, and removes all of them. Then,
the second loop probabilistically duplicates the reference of
a known peer. The probability depends of the partial view
size before the removals.

Figure [4] depicts the SPRAY’s crash/leaving handler. The
scenario follows from prior examples after few other ex-
changes. Peer p: leaves the network without giving no-
tice. With it, 7 connections are down. Peers ps3, ps, and
ps have the crashed/left peer in their partial view. Peer ps
has 1 — 1=+ |Ps| = 2+ 3 chance to replace the dead con-
nections. In this case, it duplicates the connection to pis.
Identically, ps and ps detect the crash/leaving and run the
appropriate operation. Only p3 duplicates one of its connec-
tion. In total, 5 connections have been removed.

The example shows that some peers reestablish connections
if they detect a dead connection. The probability depends
on the partial view size of each of these peer. On average,
one of these peers will likely remove the arc while the other
peers will duplicate one of their existing arcs. In this case,
Peer p: injected 5 connections when it joined. It removes
7 — 2 = 5 connections when it leaves. The global num-
ber of connections remains logarithmic with respect to the
number peers in the network. Nevertheless, we can see that
connectedness is guaranteed with the high probability im-

plied by random graphs. Indeed, if Peer p; is the sole bridge
between two clusters, adding arcs is not enough to ensure
connectedness.

Algorithmalso shows that SPRAY distinguishes peer crashes
and arc crashes. Indeed, Function onArcDown deals with
connection establishment failures. In this function, the fail-
ing arc is systematically replaced with a duplicate. There-
fore, the arc count stays invariant even in presence of con-
nection establishment failures. The distinction between the
functions onPeer Down and onArcDown is necessary be-
cause the former is supposed to remove a small arc quantity
over departures, contrarily to the latter. Without this small
removal, the global arc count would grow unbounded with
network turnover.

In the context of WebRTC, SPRAY calls the onArcDown
function when a connection establishement fails. SPRAY
calls the onPeerDown function when the connection was
established once but the neighbor is not responding any-
more.

4. EXPERIMENTATION

In this section, we evaluate how adaptiveness of SPRAY im-
pacts common metrics of peer sampling performance includ-
ing clustering coefficient, average shortest path length, in-
degree distribution, arc count, and connected components.
We use CYCLON as a baseline with a fixed-size view for ex-
periments relative to adaptiveness. We expect similar be-
haviors when the network size is optimal for CYCLON. We
expect SPRAY to save resources when CYCLON is oversized.
Also, SPRAY should be more robust when CYCLON is under-
sized. Finally, we expect SPRAY to keep a negligible number
of duplicates in its partial views. We use SCAMP as a base-
line for experiments relative to connection failures. Unlike
SCAMP, we expect SPRAY to tolerate connection failures.

The experiments run on the PEERSIM simulator [17]. The
code of the random peer sampling protocols CYCLON, SCAMP,
and SPRAY is available on the Github platforn{’}

4.1 Clustering coefficient
OBJECTIVE: To observe how adaptiveness impacts on clus-
tering and convergence time.

Shttps://github.com/justayak/peersim-spray

https://github.com/justayak/peersim-spray

10° : : : . .
Cyclon 0.1k peers —+—
1k peers ——
10k peers —»—
10 \,\ 100k peers —=—

clustering coefficient (logqq
< S S
» w n

-
ou
o
o
o b
el
S}

15 20 25 30
cycles

(a) Clustering coefficient of CYCLON.

Figure 5: The x-axis denotes the elapsed time in cycles while

DESCRIPTION: The average clustering coefficient C' measures
the connectivity of each peer’s neighborhood in the network.

— 1
C:W‘ZCI (3)

zEN

where C is the local clustering coefficient of Peer p,. The
runs concern 0.1k, 1k, 10k and 100k peers. The representa-
tive of fixed-size approach is CYCLON which is optimally con-
figured for 1k peers: its partial views are set to In(1000) =~ 7
neighbors. During gossip exchanges, the peers using Cy-
CLON shuffle 3 out of their 7 neighbors. Thus, CYCLON is
oversized for 0.1k peers and undersized for 10k peers and
100k peers.

REsuLTs: Figure [5| shows that CYCLON starts with a lower
clustering coefficients than SPRAY. Still, SPRAY converges
faster than CycCLON. Furthermore, when the number of
peers in the network grows, the convergence time of Cy-
cLON suffers heavily. On the contrary, SPRAY converges
very quickly independently of the network size. Figure
also shows that both approaches converge to a low clustering
coefficient which is characteristic of random graphs. Never-
theless, CYCLON and SPRAY do not reach the same values
after convergence. Except when CYCLON is optimally con-
figured, SPRAY’s values are either below (when CYCLON is
oversized) or above (when CYCLON is undersized). Overall,
this shows that SPRAY is 1. faster to converge to a stable
clustering coefficient 2. reflecting the needs of the network
membership. This impacts both load-balancing and robust-
ness to churn (when peers join and leave the network freely).

REASONS: CYCLON starts with a lower clustering coefficient
because each peer performs random walks to advertise them-
selves in the network. Hence, the starting overlay is already
slightly balanced when the simulation starts the shufflings.
On the other hand, a newcomer peer in SPRAY only adver-
tises itself to the neighborhood of its contact peer. There-
fore, the network overlay starts strongly unbalanced, inde-
pendently of the network size. Still, CYCLON converges more
slowly than SPRAY because of its fixed-size partial view and
the size of the shuffle. When they are a priori configured,

Y
o
=}

Spray ' " 0.1k peers ——
1k peers ——

10k peers —=—

100k peers —=—

N

)
a_.

clustering coefficient (log;q
3 3
w n

10

0 5 10 15 20 25 30
cycles

(b) Clustering coefficient of SPRAY.

the y-axis denotes the log,,-scaled clustering coefficient.

they constitute a constraint to the convergence speed. The
clustering coefficient measures how much the neighborhood
of each peer is connected to the rest of the network. It di-
rectly depends of the partial view size of each peer which,
in CYCLON, is fixed. Thus, when the peers number is multi-
plied by 10, the clustering coefficient after convergence is di-
vided by 10. On the other hand, the peers using SPRAY have
variable-size partial views that carefully reflect the network
size with a logarithmic growth. Thus, when the network
has 1k peers, the partial view size adapts to this network
size. This explains the slightly lower clustering coefficient of
SPRAY on this run (SPRAY 7.4 vs CYCLON 7). By extend-
ing the reasoning, this also explains why SPRAY yields lower
values when CYCLON is oversized, and why it yields higher
values when CYCLON is undersized.

4.2 Average shortest path length

OBJECTIVE: To observe how adaptiveness impacts on the
average shortest path length, i.e., on the efficiency of infor-
mation dissemination.

DESCRIPTION: The average path length is the average of the
shortest path length between peers in the graph. It counts
the minimum number of hops to reach a peer from another
given peer. It basically represents the traveling time of any
information to reach all the peers at least once. We average
the path length on a small subset of the network membership
and run 100 times the simulation on SPRAY to avoid any side
effects due to randomness. We also run the simulation on
different configurations of CYCLON targeting different opti-
mal network size. CYCLON set with the partial view size of
7 roughly targets 1.1k peers. CYCLON set with the partial
view size of 9 roughly targets 8.1k peers. CYCLON set with
the partial view size of 11 roughly targets 60k peers. In all
these simulations, we perform the measurements after con-
vergence. The checkpoints for the measurements are 0.1k,
0.5k, 1k, 5k, 10k, 50k, and 100k peers.

RESULTS: Figure [6] shows that both CycCLON and SPRAY
have an average shortest path length relatively small. Thus,
the information can disseminate to all the network very

6 T T T
Cyclon |P|=7 ----e--- s
Cyclon |P|= 9 -+ .
Cyclon [P|=11 ------

5| Spray —— =

Average shortest path length

0.1k 1k 10k 100k

number of peers (log;q)

Figure 6: The average shortest path length of SPRAY and
CycCLON. The x-axis denotes the number of peers in the
network on a log,, scale (from 100 to 100k peers) while
the y-axis denotes the average shortest path length of the
network.

quickly. Figure[6]also shows that, each run of CYCLON taken
alone can be divided in three parts compared to SPRAY.
First, an oversized CYCLON disseminates the information
faster than SPRAY. Then, SPRAY and CYCLON are equiva-
lent where the latter is optimally configured. Finally, SPRAY
yields better results. Yet, overall, SPRAY scales better than
CYCLON since the gradient of the former is lower than any
configuration of the latter one.

REASONS: We perform all the measurements after conver-
gence where the network overlay is closely related to random
graphs. In such graph, the diameter and average short-
est path length stay relatively small, as the resulting val-
ues shown in Figure [f] The second observation concerns
each CYCLON configuration compared alone with SPRAY.
While an oversized CYCLON is much better connected into
the graph and thus yields a lower average path length than
SPRAY, as soon as it is undersized, SPRAY is, thanks to
larger partial views, better connected into the graph. Con-
sequently, it yields the shorter average path length. SPRAY
scales better than any configuration of CYCLON because it
always follows the optimal value.

4.3 In-degree distribution
OBJECTIVE: To observe how adaptiveness impacts the in-
degree distribution, i.e., the load-balancing among peers.

DESCRIPTION: The in-degree of a peer shows how well this
peer is represented in others’ partial view. The in-degree
distribution of the network can highlight the existence of
weakly connected peers and strongly connected hubs. It
has a direct impact on robustness. In this experiment, the
fixed-size partial view approach is CYCLON. It is configured
with partial views of size 7 which is optimal for a network of
roughly 1100 peers. For all the experiments, we perform the
in-degree measurements after convergence. The measure-
ments concern networks with 0.1k, 1k, 100k, 500k peers.

0.1k peers —*—

1k peers ——
100k peers ——
500k peers —e— 4

35 | C)'/clon

% of peers

0.1k peers —»—
1k peers —+—
100k peers ——
500k peers —e— A

2 4 6 8 10 12 14 16 18 20
in-degree

Figure 7: The in-degree distribution of CYCLON and SPRAY.
The x-axis denotes the in-degree in number of nodes while
the y-axis indicates the percentage of peers with such in-
degree. The top figure is dedicated to the runs concerning
CYCLON while the bottom figure concerns SPRAY.

REsuLTs: Figure [7] shows the in-degree distribution of Cy-
CLON and SPRAY. In the top figure, we observe that the
distribution and the degrees of CYCLON are identical, in-
dependently of the network size. Thus, the distribution of
0.1k peers is identical to the 500k one with a mean value
of roughly 7 with a strong peak on this value. On the
other hand, the bottom figure shows that the distribution
of SPRAY follows average partial view size which follows the
network size growth. Figuremalso shows that peers are very
gathered around the mean partial view size. For instance,
for the run with 500k peers using SPRAY, the mean value for
the in-degree is 13.37 and 88 percents of the peers have an
in-degree comprised between 12 and 14 included. It means
that the load is well balanced among peers. Since peers are
equally important in term of connectedness, the network is
robust to failures.

REASONS: Once configured, CYCLON must handle any num-
ber of peers in the network with a fixed-size partial view.
Proportionally, the number of times that a particular peer
is referenced does not change compared to the network size.
Indeed, the number of arcs that a new peer brings to the
network when it joins constitutes that many arcs targeting
it after the shuffling rounds. Since the partial view size is
constant, the in-degree of peers stays stable. On the other
hand, in SPRAY, each joining peer brings a increasing num-
ber of arcs in the network. Thus, the in-degree of each peer
grows reflecting the network size. Hence, the distribution in
the bottom figure shifts slowly to higher in-degree values as
the network size grows. SPRAY does not peak on a partic-
ular value as CYCLON because the average partial view size
for a particular network size falls in-between integer values.
For instance, if the average partial view size is 6.5, then half
of them will have a size of 6 while the other half will have
a size of 7. Such network is robust to failure because no
peer is more important than other in term of connectedness.
Therefore, if some random peer crashes, it will not affect the
network as much as if a strongly connected peer crashed.

-
o

“2 Cyclon -~ 1L h L
x 8}t Spray |
72 3 S SO
s 6 1
g ,,,,,,,,,,,,,, — I —
e 4r [e b
c | —
<1 i
o 2} . i
k] —
* 0

30 T
© Spray ——
o 25 E
5
o 15 i
N
o 10 4
8 5
2 i

o AN A A

10 20 30 40 50 60 70 80
cycles

(a) The x-axis denotes the elapsed time in cycles. The upper
graph y-axis shows the number of total connections in the

overlay while the lower graph y-axis shows the variance o2 of
the partial view sizes in the network.

10
8 1
[0} H
N :
@ H —_—
2 .l 7 ~—]
S :
K| —
E H
[e%
o 4} E
jo2}
1Y
Fo) B
> B
8 |
2 - -
Cyclon -
0 Spray
0 10 20 30 40 50 60 70 80
cycles

(b) The x-axis denotes the elapsed time in cycles. The y-axis
denotes the average partial view size.

Figure 8: CYCLON (partial view size configured to 9) and SPRAY in a dynamic network. 2.5k peers join the network at cycles
0, 10, 20, and 30. Then 5k peers leave at cycle 40. Finally 2.5k peers join at cycles 60 and 70. The final network contains

10k members.

4.4 Dynamic network
OBJECTIVE: To show the impact of adaptiveness when the
network size changes over time.

DESCRIPTION: In this experiment we focus on a dynamic
network where peers can join and leave. The runs involve
CycLON and SPRAY. CYCLON’s configuration targets roughly
8.1k peers. Thus, it is oversized compared the network size
during the simulation (maximum 1k peers). During the first
half of the experimentation, 250 peers are added 4 times suc-
cessively by intervals of 10 cycles each. Thus, the network
size goes from 0 to 1k peers in 40 rounds. Then, half of the
network leaves without giving notice (500 peers). Finally,
250 peers join two additional times. The final network con-
tains 1k members. The measurements concern 1. the number
of connections in the network over cycles, 2. the variance of
the partial view sizes over cycles (cf. Section , 3. the
average partial view size of peers.

RESULTS: Figure 8] shows the result of the experiment. The
x-axis represents the cycles (i.e. the arbitrary unit time
frame). The top part of Figureshows the number of con-
nections established in the network (scale x10%) while its
bottom part shows the variance in the partial view size of
the members. Concerning SPRAY, we can see that at each
batch of joining, the connection number grows to reflect the
needs of the new network membership. The observation
is consistent with the variance measures. Indeed, at each
batch of insertions, the variance suddenly grows. Then, it
exponentially decreases and converges to zero in less than
10 cycles. The variance is higher when the network size is
lower. For instance, the first 250 peers lead to the highest
variance. At the 40*" cycle, half of the peers leave/crash.
Approximately half of the connections are directly removed
without disturbing the variance of partial views. The 10
following cycles show a slight decrease of arcs. Then new

members are introduced in the network yielding the same
results as the earlier joins. CYCLON exposes an identical
behavior. Nevertheless, the number of arcs is invariably
higher than the SPRAY one (from 1000 to 2500 additional
connections). Figure [8b|shows the average partial view size
of SPRAY and CYCLON. As expected, CYCLON immediately
converges to the configured partial view size (9 neighbors).
On the other hand, SPRAY’s partial views logarithmically
grow while the network grows. When the removals occur
at cycle 40, the peers using CYCLON remove the dead arcs
while refilling their partial view until they reach the config-
ured partial view size. SPRAY only remove the arcs to reflect
the departed peers. At the end, the SPRAY partial views
contain in average 6.6 neighbors (recall, In(1000) = 6.9).

REASONS: Since the partial views of SPRAY adapt them-
selves to the network size, the number of connections grows
as the network membership grows. The peaks in variance
correspond to the joining parts of the experiment. The dis-
parity comes from the fact that new peers arrive in the net-
work with a small partial view. The peaks are smaller when
the network is larger. Indeed, the peers - which were al-
ready network members before the new arrivals - had a few
cycles to exchanges and even out their partial views. As
consequence, it lessens the weight of joinings. The removal
of 500 peers does not disturb the variance since each crash-
ing/leaving peer is chosen at random. Thus, no peers suffer
more of these removals than others. The slightly decreasing
number of arcs after the removal is due to peers realizing
that some arcs are dead, leading to a probabilistic removal
(cf. Algorithm |3)).

4.5 Massive failures
OBJECTIVE: To show that both SPRAY and CYCLON are
equally robust to massive failures.

0.9 I weak
08

0.7
06
05
04
03 f
02

number of components / network size

0.1

0 — . & e G L L
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 99
% of peers removed

1

Figure 9: Robustness of CYCLON and SPRAY to massive fail-
ures. The x-axis denotes the percentage of peers removed
at once in a network containing 10k members. The y-axis
denotes the number of components over the current net-
work size (after the removals). The measurements concern
the weak and strong components which basically means the
number clusters in undirected or directed graph respectively.

DESCRIPTION: Counting the strong components in a net-
work allows estimating the area that are reachable by the
information dissemination protocols. For instance, there are
2 strong components if a part of the network can reach an-
other part and the converse being false. Counting the weak
components in a network allows estimating the point where
the network is still in a repairable state, i.e., after some
shufflings, the network will converge to an overlay where
the information dissemination is able to reach all members
again. CYCLON has a partial view size set to 9. The net-
work contains 10k members. We perform the removals after
the approaches converged to a stable overlay network. We
remove the batch of peers at once, from 25 to 95 percents
of peers every 5 percents, i.e., 16 runs for each approach.
We perform a last measurement at 99 percents. We perform
the measurements immediately after the removals. The re-
movals concern a percentage of the peers chosen at random
among the 10k members.

REsuLTS: Figure El shows the ratio of strong/weak compo-
nents over the network size after removals. First, the fig-
ure shows that both the random peer sampling protocols,
SPRAY and CYCLON, suffer from deteriorated behavior at
high removal percentages, CYCLON being slightly better in
this term. Figure |§| shows that the information dissemi-
nation (strong components) starts to slowly degrade at 45
percents, and quickly degrade at 70 percents. Fortunately,
Figure |§| also shows that the approaches are able to recover
from such clustering until high removal rate. Indeed, the
weak components start to increase at 70 percents, meaning
that some part of the network are completely disjoint and
beyond repair.

REASONS: The random peer sampling approaches CYCLON
and SPRAY expose very similar results because CYCLON’s
configuration targets a network size of 10k peers, while SPRAY
adjusts itself automatically to this network size. Therefore,

% of peers without duplicates

9t / |
9 f |
Spray —+—
90 birthday paradox approximation ---------
0.1k 1k 10k 100k 500k

number of peers (logyq)

Figure 10: Duplicates in networks of different size: the log; -
scaled x-axis denotes the network size while y-axis denotes
the proportion of peers without any duplicates in their par-
tial view.

the arc number in the approaches are close from being iden-
tical CYCLON is slightly better because, in this case, it has
more arcs (due to SPRAY’s randomness) and because it does
not have duplicates (SPRAY contains a small amount of du-
plicates in the partial view, cf. Section . It requires a
high amount of removals to endanger the information dis-
semination protocol’s ability to reach all peers. Indeed, since
all peers are equally important in the network (cf. Figureﬁ[)7
removing a particular peer does not greatly affect the whole
network. The network membership protocol is able to repair
the topology later than the information dissemination starts
to fail because the direction of arcs is not as important as
in the latter. Indeed, CYCLON and SPRAY are still able to
repair a network until parts of the network become disjoint,
i.e., there is no arc between these parts of the network.

4.6 Duplicates in partial views
OBJECTIVE: To show that a small proportion of peers con-
tain duplicates in their partial view.

DEScCRIPTION: Using SCAMP as random peer sampling pro-
tocol, we measure the amount of peers which have a par-
tial view containing at least one duplicated reference. We
perform the measurements on networks containing 0.1k, 1k,
10k, 100k, and 500k peers. We measure the number of du-
plicates after convergence. We put this in relation with a
theoretical approximation from the birthday paradox. The
probability of a peer to not have duplicates is approximately:

1= (1 — exp(— ln(lN\)Z**(‘lﬁf("NI) -1) (4)

REsurrs: Figure shows the proportion of peers using a
partial view containing duplicates. As we can observe, there
always exist partial views with at least one duplicate. The
proportion is more important when the network size is small
(e.g. 5 percents for 0.1k peers), and it becomes a minor over-
head when the network size is larger (e.g. less than 1 percent
for 10k peers). The birthday paradox approximation seems
to follow very closely the experimental results. It empirically

N
o
2 E
-]
c 4
Qo
2]
‘G:) j
] Spray - .
° Cyclon 1
S o
= 0 Scamp
o 1
T 09f - —]
= 08} ,
c 07F i
2 06 i
g 05} .
g 04} E
8 8'2 - 1
x 2F i
8 o1f 1
2 0

0 10 20 30 40 50

cycles (x10%)

Figure 11: CYCLON, SCAMP, and SPRAY in network subject
to failures in the connection establishments. The x-axis de-
notes the elapsed time in cycles (103-scaled). The y-axis of
the top figure denotes the global number of arcs (103-scaled).
The y-axis of the bottom figure denotes the ratio of weak
components over the current network size.

confirms that there exist a relation between the duplicates
and the birthday paradox. The proportion of peers without
duplicates tends to 100 percents as the network size grows.

REASONS: As the network grows, the chances of a particular
peer to have at least twice the reference to another peer
becomes smaller. Indeed, while the network grows linearly,
the number of references to a particular peer only grows
logarithmically. Nevertheless, the birthday paradox reminds
that this proportion is not as small as it seems to be.

4.7 Failures in connection establishment
OBJECTIVE: To show that SPRAY does not suffer from fail-
ures in connection establishments, contrarily to SCAMP.

DESCRIPTION: We measure both the arc count and the num-
ber of weak components in the network. The simulations
involve CYCLON (configured with partial view containing
9 neighbors targeting a network of roughly 8100 peers),
SCAMPEI, and SPRAY. They run over 50k cycles. The net-
work initially contains 10k members. To establish a con-
nection, we use the WebRTC three-way handshake, i.e., the
initial peer emits an offer ticket, the arrival peer stamps
the ticket, the initial peer finalizes the connection using the
stamped ticket (cf. Section . The probability that the
ticket fails to arrive to its destination is set to 10~3 for each
hop.

REsULTS: Figure[I1]has two parts. The top figure shows the
arc count of the random peer samplings while the bottom fig-
ure shows the weak components of the network. First, we ob-
serve that, as expected, the arc count of CYCLON and SPRAY
stays constant over cycles: 90k and 93k arcs for CYCLON and
SPRAY respectively. Second, we observe that SCAMP suffers

6 A modified version of SCAMP whose periodic protocol works
properly when there is no connection failures. Available at
https://github.com/justayak/peersim-spray

from the failures on connection establishments. It directly
impacts on the connectedness of the network represented by
the weak components ratio. The network of SCAMP quickly
degrades.

REASONS: The arc count of both CYCLON and SPRAY re-
mains constant over time but for different reasons. In Cy-
CLON, the shuffling protocol makes sure that the partial view
is filled to its maximum. Thus, when it uses a not success-
fully established connection to perform an exchange, it sim-
ply discards the connection, knowing that the next exchange
is likely to overfill its partial view. In SPRAY, when a con-
nection fails to establish and the protocol tries to use it for
an exchange, it will replace this arc with another known ref-
erence. Thus, the arc count stays constant and the shuffling
protocol makes sure that duplicates disappear over time (the
arc moves to another peer where it is not a duplicate). In
ScAMP, the connections are much more likely to fail than
in the aforementioned protocols. Indeed, contrarily to these
latter, SCAMP does not cautiously establish connections with
the neighbors of its neighbors. Each hop of its ticket dissem-
ination is an opportunity of failure. Since there is no routing
in such network, the only way for a stamped ticket to come
back to its emitter is the path it traveled in the first place.
Hence, all peers belonging to the path must stay alive un-
til the stamped ticket comes back in order to consistently
forward it. Furthermore, its periodic protocol starts with
an immediate cutting of the incoming arcs of the initiating
peer because it assumes that each connection spread in the
network will establish. Since it does not, the peer eventu-
ally becomes disconnected. Also, when its neighbors execute
the periodic protocol, they delete their reference in its par-
tial view. In such case, the peer becomes disconnected and
partitions quickly appear.

5. CONCLUSION AND PERSPECTIVES

WebRTC opened a new playground for large-scale distributed
applications deployed on a network of browsers. Browsers as
infrastructure ease the deployment of large-scale distributed
applications for end-users. As a core component of many
large-scale distributed applications, we pointed out current
peer-sampling protocols’ limitations in term of adaptivity or
reliability.

In this paper, we described SPRAY, an adaptative-by-design
random peer sampling approach designed to fit the WebRTC
constraints. SPRAY provides: (i) logarithmically growing
partial views reflecting the global network size, (ii) constant
time complexity on connection establishments using solely
neighbor-to-neighbor interactions,

In experiments, we demonstrated how SPRAY adaptiveness
improves random peer sampling performances when network
size is changing. In particular, the average shortest path
length scales better, the in-degree evolves with the network
size, and it converges faster. We also demonstrated that
SPRAY stays robust to massive failures. SPRAY and Cy-
CLON are quite similar when the network size is optimal for
CycCLON. However, SPRAY saves connections when CYCLON
is oversized and is more robust when CYCLON is undersized.
Adaptiveness comes at the price of duplicates in the partial
views. However, the simulations supported by theoretical
analysis shows that the number of duplicates remains very

https://github.com/justayak/peersim-spray

low and becomes negligible in large networks.

Future work includes a Javascript implementation of SPRAY.
An in-browser implementation opens the gate to emulations,
and even real peer-to-peer distributed and decentralized ap-
plications.

Future work also includes investigations on topology man-
agers such as T-Man [13] or Vicinity [21]. Indeed, they tra-
ditionally rely on random peer sampling approaches using
fixed-size partial view. Thus, they maintain a fixed-size view
of their most closely related neighbors using a ranking func-
tion. With SPRAY, it is possible to extend their behavior
to use dynamic partial views. If the view size could adapt
to the size of a cluster (e.g. if the topology creates disjoint
clusters), it would improve the traffic, robustness, etc.

Acknowledgments

This work was partially funded by the French ANR project
SocioPlug (ANR-13-INFR-0003), and by the DeSceNt project
granted by the Labex CominLabs excellence laboratory (ANR-
10-LABX-07-01).

6.
1]

REFERENCES

C. Baquero, P. Almeida, R. Menezes, and P. Jesus.
Extrema propagation: Fast distributed estimation of
sums and network sizes. Parallel and Distributed
Systems, IEEE Transactions on, 23(4):668-675, April
2012.

F. Blasa, S. Cafiero, G. Fortino, and G. D. Fatta.
Symmetric push-sum protocol for decentralised
aggregation. In Proceedings of AP2PS 2011, the Third
International Conference on Advances in P2P
Systems, pages 27-32. IARIA, November 2011. ISBN:
9781612081731.

F. Dabek, R. Cox, F. Kaashoek, and R. Morris.
Vivaldi: A decentralized network coordinate system.
SIGCOMM Comput. Commun. Rev., 34(4):15-26,
Aug. 2004.

G. DeCandia, D. Hastorun, M. Jampani,

G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
SIGOPS Oper. Syst. Rev., 41(6):205-220, Oct. 2007.
P. Erdés and A. Rényi. On random graphs i. Publ.
Math. Debrecen, 6:290-297, 1959.

P. T. Eugster, R. Guerraoui, S. B. Handurukande,

P. Kouznetsov, and A.-M. Kermarrec. Lightweight
probabilistic broadcast. ACM Trans. Comput. Syst.,
21(4):341-374, Nov. 2003.

P. Flajolet, E. Fusy, O. Gandouet, and et al.
Hyperloglog: The analysis of a near-optimal
cardinality estimation algorithm. In Proceedings of the
2007 International Conference on Analysis of
Algorithms, 2007.

A. Ganesh, A.-M. Kermarrec, E. Le Merrer, and

L. Massoulié. Peer counting and sampling in overlay
networks based on random walks. Distributed
Computing, 20(4):267-278, 2007.

A. Ganesh, A.-M. Kermarrec, and L. Massoulié.
Scamp: Peer-to-peer lightweight membership service
for large-scale group communication. In J. Crowcroft

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

and M. Hofmann, editors, Networked Group
Commumnication, volume 2233 of Lecture Notes in
Computer Science, pages 44-55. Springer Berlin
Heidelberg, 2001.

A. Ganesh, A.-M. Kermarrec, and L. Massoulié.
Peer-to-peer membership management for
gossip-based protocols. Computers, IEEE
Transactions on, 52(2):139-149, Feb 2003.

M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and

M. van Steen. The peer sampling service:
Experimental evaluation of unstructured gossip-based
implementations. In H.-A. Jacobsen, editor,
Middleware 2004, volume 3231 of Lecture Notes in
Computer Science, pages 79-98. Springer-Verlag, 2004.
M. Jelasity and A. Montresor. Epidemic-style
proactive aggregation in large overlay networks. In
Distributed Computing Systems, 2004. Proceedings.
24th International Conference on, pages 102-109,
2004.

M. Jelasity, A. Montresor, and O. Babaoglu. T-man:
Gossip-based fast overlay topology construction.
Computer Networks, 53(13):2321 — 2339, 2009.
Gossiping in Distributed Systems.

M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M.
Kermarrec, and M. Van Steen. Gossip-based peer
sampling. ACM Transactions on Computer Systems
(TOCS), 25(3):8, 2007.

D. Kostoulas, D. Psaltoulis, I. Gupta, K. P. Birman,
and A. J. Demers. Active and passive techniques for
group size estimation in large-scale and dynamic
distributed systems. Journal of Systems and Software,
80(10):1639 — 1658, 2007. Methodology of Security
Engineering for Industrial Security Management
Systems.

E. Mane, E. Mopuru, K. Mehra, E. Mane, E. Mopuru,
K. Mehra, and J. Srivastava. Network size estimation
in a peer-to-peer network, 2005.

A. Montresor and M. Jelasity. Peersim: A scalable
P2P simulator. In Proc. of the 9th Int. Conference on
Peer-to-Peer (P2P’°09), pages 99-100, Seattle, WA,
Sept. 2009.

A. Montresor, M. Jelasity, and O. Babaoglu. Robust
aggregation protocols for large-scale overlay networks.
In Dependable Systems and Networks, 2004
International Conference on, pages 19-28, June 2004.
N. Tolgyesi and M. Jelasity. Adaptive peer sampling
with newscast. In H. Sips, D. Epema, and H.-X. Lin,
editors, Furo-Par 2009 Parallel Processing, volume
5704 of Lecture Notes in Computer Science, pages
523-534. Springer Berlin Heidelberg, 2009.

S. Voulgaris, D. Gavidia, and M. van Steen. Cyclon:
Inexpensive membership management for
unstructured p2p overlays. Journal of Network and
Systems Management, 13(2):197-217, 2005.

S. Voulgaris and M. van Steen. Epidemic-style
management of semantic overlays for content-based
searching. In J. Cunha and P. Medeiros, editors,
Euro-Par 2005 Parallel Processing, volume 3648 of
Lecture Notes in Computer Science, pages 1143—1152.
Springer Berlin Heidelberg, 2005.

	Introduction
	Related work
	Spray
	Joining
	Shuffling
	Leaving and crashing

	Experimentation
	Clustering coefficient
	Average shortest path length
	In-degree distribution
	Dynamic network
	Massive failures
	Duplicates in partial views
	Failures in connection establishment

	Conclusion and perspectives
	References

