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On diversity under a Bayesian nonparametric
dependent model
Sulla diversità per un modello bayesiano nonparametrico
dipendente

Julyan Arbel, Kerrie Mengersen and Judith Rousseau

Abstract We present a dependent Bayesian nonparametric model for the proba-
bilistic modelling of species-by-site data, i.e. population data where observations
at different sites are classified into distinct species. We use a dependent version of
the Griffiths-Engen-McCloskey distribution, the distribution of the weights of the
Dirichlet process, in the same lines as the Dependent Dirichlet process is defined.
The prior is thus defined via the stick-breaking construction. Some distributional
properties of this model are presented.
Abstract Presentiamo un modello parametrico bayesiano dipendente per la model-
lazione probabilistica dei dati specie per siti, cioé i dati sulla popolazione in cui le
osservazioni in diversi siti sono classificati in specie distinte. Usiamo una versione
dipendente della distribuzione Griffiths-Engen-McCloskey, la distribuzione dei pesi
del processo di Dirichlet, in analogia con la definizione del processo di Dirichlet
dipendente. La distribuzione a priori é definita tramite la costruzione stick-breaking.
Alcune proprietà distributive di questo modello sono presentate.
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1 Introduction

In this paper we announce results which will be extensively presented and proved
in Arbel et al. (2013b) about distributional properties of a Bayesian nonparamet-
ric dependent model. The construction of (covariate) dependent random probability
measures for Bayesian inference has been a very active line of research in the last
15 years. This was settled by the pioneering works by MacEachern (1999, 2000)
who introduced a general class of dependent Dirichlet processes. The literature on
dependent processes was developed in numerous models, such as nonparametric re-
gression, time series data, meta-analysis, to cite but a few, and applied to a wealth
of fields such as, e.g., epidemiology, bioassay problems, genomics, finance. Most
contributions to this line of research rely on random probability measures defined
by means of a stick-breaking procedure, a popular method set forth in its general-
ity by Ishwaran and James (2001). This is also the approach retained here, where
the dependence among different stick-breaking priors is obtained by transforming
Gaussian processes. An advantage of such a construction is in the variety of depen-
dence structures that can be handled across the covariate thanks to the covariance
function or the Gaussian processes. Some distributional properties of the introduced
dependent processes are studied. An application of the model in ecotoxicology to a
microbial dataset species collected in Antarctica is conducted in Arbel et al. (2013a).

The modelling of species data under a Bayesian nonparametric framework has
already been introduced by Lijoi et al. (2007, 2008). We follow the same approach,
and add a dependence structure to covariates. In studies oriented towards species
sampling and abundance measures, diversity is also often a notion of interest. The
question of measuring diversity arises in many fields, e.g. ecology as in the present
study, but also biology, engineering or probability theory. There are numerous ways
to study the diversity of a population divided into groups or species. We retain here
the Simpson index HSimp defined by HSimp(p) = 1−∑ j p2

j for a discrete probability
distribution p = (p1, p2, . . .) where p j is the probability of observing species j. For
a discussion of different diversity indices, see for example Cerquetti (2012).

The paper is organized as follows: the typical framework of the sampling model
is described in Section 2, along with the dependent prior. A review of some of the
distributional properties of this model is then presented in Section 3.

2 Data and model

We describe here the notation and sampling process of covariate dependent species-
by-site count data. To each site i = 1, . . . , I corresponds a covariate value Xi ∈X ,
where the space X is a subset of Rd . We focus here on univariate factors, i.e. d = 1.
Individual observations at site i are species, indexed by natural numbers j ∈N∗. No
hypothesis is made on the unknown total number of species in the population of
interest, which might be infinite. We observe (X,Y) = (Xi,YNi

i )i=1,...,I where YNi
i =

(Yn,i)n=1,...,Ni are observations at site i with total abundance (number of observations)



On diversity under a Bayesian nonparametric dependent model 3

Ni and factor Xi. We model the probabilities p = (p(Xi))i=1...I = (p j(Xi) j∈N∗)i=1...I
by the following. For i = 1 . . . I and n = 1 . . .Ni:

Yn,i |p(Xi),Xi
ind∼

∞

∑
j=1

p j(Xi)δ j. (1)

We now proceed to a brief description of the dependent prior. For a complete
account comprising details about posterior sampling, the reader is referred to Arbel
et al. (2013b). We use the same construction as MacEachern (2000) to extend the
GEM distribution in order to define the following dependent version, abbreviated
Dep-GEM. Starting with independent stochastic processes (Vj(X),X ∈X ), j ∈N∗,
satisfying Vj(X)

iid∼ Beta(1,M) marginally in X , the Dep-GEM distribution on the
weights is defined by:

p j(X) =Vj(X)∏
l< j

(1−Vl(X)), (2)

where (Vj(X),X ∈ X ), j ∈ N∗ are independent. Note that (2) can be easily ex-
tended to the two-parameter Poisson-Dirichlet process, denoted by PD(α,M). It
follows the same stick-breaking construction as in Equation (2), with Vj’s defined
with independent Beta(1−α,M+ jα) distributions (i.e. the Vj’s are not identically
distributed), where α > 0 and M > −α . The advantage of the PD(α,M) process
compared to the DP(M) is a more flexible predictive structure.

3 Distributional properties

The purpose of this section is to present some elementary distributional properties
of the Dep-GEM prior. It has continuous sample-paths, as stated in the following
proposition.

Proposition 1 Let p∼Dep-GEM (M). Then p is stationary and marginally, p(X)∼
GEM(M). Also, p has continuous paths (i.e. X → (p1(X), p2(X), . . .) is continuous
for the sup norm), and its marginal moments are

E(p j(X)) =
M j−1

(M+1) j , E(pn
j(X)) =

n!
M(n)

(
M

M+n

) j

,

Var(p j(X)) =
2M j−1

(M+1)(M+2) j −
M2( j−1)

(M+1)2 j ,

Cov(p j(X), pk(X)) =
M( j∨k)−1

(M+1)| j−k|+1(M+2) j∧k
− M j+k−2

(M+1) j+k , k 6= j,

for any j,k ≥ 1, n ≥ 0, and where M(n) = M(M + 1) . . .(M + n− 1) denotes the
ascending factorial.
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We now review some results on size-biased permutations which are useful for
deriving distributional properties of the process. Let p = (p1, p2, . . .) be a proba-
bility. A size-biased permutation of p, is a sequence p̃ = (p̃1, p̃2, . . .) obtained by
reordering p by a permutation σ with particular probabilities. Namely, the first in-
dex appears with a probability equal to its weight, P(σ1 = j) = p j ; the subsequent
indices appear with a probability proportional to their weight in the remaining in-
dices, i.e. for k distinct integers j1, . . . , jk,

P(σk = jk|σ1 = j1, . . . ,σk−1 = jk−1) =
p jk

1− p j1 −·· ·− p jk−1

. (3)

The following lemma extends Pitman’s result (for example Equation (2.23) of Pit-
man, 2006):

E
(
∑ f (p j)

)
= E

(
∑ f (p̃ j)

)
= E

(
f (p̃1)

p̃1

)
, (4)

for any measurable function f .

Lemma 2 Let p̃ is a size-biased permutation of p. For any measurable function f
and any integer k ≥ 1, we have

E

(
∑
(∗)

f (pi1 , . . . , pik)

)
= E

(
f (p̃1, . . . , p̃k)

k

∏
i=1

(1− p̃1−·· ·− p̃i−1)/p̃i

)
, (5)

where the sum (∗) runs over all distinct i1, . . . , ik, and with the convention that the
product in the right-hand side of Equation (5) equals 1/p̃1 when i = 1.

When it comes to averaging sums of transforms of k weights pi1 , . . . , pik over all
distinct i1, . . . , ik, the lemma shows that all required information is encoded by the
first k picks p̃1, . . . , p̃k. The case k = 2 was proved by Archer et al. (2013).

One can gain further insight into the Dep-GEM process by studying the ex-
changeable partition probability function (EPPF) for the random variables Yn

1 =
(Y1,1, . . . ,Yn,1) and Ym

2 = (Y1,2, . . . ,Ym,2) observed at covariates X1 and X2. See for
instance Pitman (1995, 2006) for a summary of the importance of partition probabil-
ity functions. The observations partition [n] = {1,2, . . . ,n} and [m] = {1,2, . . . ,m}
into k+ k1 + k2 clusters of distinct values where

• k clusters are commonly observed, with respective frequencies n = (n1, . . . ,nk)
and m = (m1, . . . ,mk),

• k1 (resp. k2) clusters are observed only at the site of covariate X1 (resp. X2), with
frequencies ñ = (ñ1, . . . , ñk1) (resp. m̃ = (m̃1, . . . , m̃k2)).

The EPPF can be expressed as follows
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p(n, ñ,m,m̃) = E

(
∑
(∗)

pn1
i1
(X1)pm1

i1
(X2) . . . pnk

ik
(X1)pmk

ik
(X2)

× pñ1
j1
(X1) . . . p

ñk1
jk1
(X1)× pm̃1

l1
(X2) . . . p

m̃k2
lk2

(X2)

)
(6)

where the sum (∗) runs over all (k+ k1 + k2)-uples (i1, . . . , ik, j1, . . . , jk1 , l1, . . . , lk2)
with pairwise distinct elements.

In non covariate-dependent models, the EPPF can be typically derived as fol-
lows. First, express the definition of the EPPF in terms of the first few ele-
ments of a size-biased permutation p̃ given p by application of Lemma 2 where
f (p1, . . . , pk) = pn1

1 . . . pnk
k . Second, use the invariance under size-biased permuta-

tion (ISBP) property that characterizes the GEM distribution (cf. Pitman, 1996),
in order to replace the first few elements of the size-biased permutation p̃ by the
first few elements of p. And finally use the stick-breaking representation of p with
independent Beta random variables V and compute the moments of Beta random
variables in order to obtain a compact expression of the EPPF.

In the case of covariate-dependent models as in (6), the hindrance to further
computation of a closed-form expression for p(n, ñ,m,m̃) is, to the best of our
knowledge, twofold: (i) the sum in Equation (6) does not reduce to any condi-
tional expectation of the first few elements of a size-biased permutation of p, and
(ii) the invariance under size-biased permutation property is not straightforward to
generalize to covariate-dependent distributions, hence equality in distribution be-
tween (p̃1(X1), p̃1(X2)) and (p1(X1), p1(X2)) is not a known property (whereas it is
marginally true).

Notwithstanding this, EPPF have been obtained in the covariate-dependent liter-
ature, though not for stick-breaking constructions, but when the dependent process
is defined by normalizing random probability measures such as completely random
measures. See for instance Lijoi et al. (2013); Kolossiatis et al. (2013); Griffin et al.
(2013), and Müller et al. (2011) for an approach based on product partition models.

The following proposition now gives the joint law for the first picks at two sites
under the Dep-GEM prior.

Proposition 3 Let the samples Yn
1 = (Y1,1, . . . ,Yn,1) and Ym

2 = (Y1,2, . . . ,Ym,2) at two
sites X1 and X2, given the process p∼Dep-GEM (M). The joint law of Y1,1 and Y1,2
is:

P(Y1,1 = j,Y1,2 = k) = (M+1−µM)M| j−k|−1(M2−1+µM)( j∧k)−1/(M+1) j+k,
(7)

for k 6= j and

P(Y1,1 = j,Y1,2 = j) = µM(M2−1+µM) j−1/(M+1)2 j, (8)

where µM(X1,X2) = (M+1)2E
(
V (X1)V (X2)

)
.

We proceed now to the investigation of the dependence at the diversity level. Un-
der a GEM(M) prior on p without dependence, the prior expectation of the Simp-
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son diversity follows from Lemma 2 and equals E(HSimp) = M/(M+1) (Cerquetti,
2012). The following proposition characterizes the dependence induced in the Simp-
son diversity index in terms of the covariance between the indices at two sites.

Proposition 4 The covariance between the Simpson diversity indices at two sites,
HSimp(X1) and HSimp(X2), and the variance of the Simpson diversity index, induced
by the Dep-GEM distribution, are as follows

Cov(HSimp(X1),HSimp(X2)) =
ν2,2(1−ω2,0)+2ν2,0γ2,2

(1−ω2,0)(1−ω2,2)
−ν

2
1,0, (9)

Var(HSimp(X)) =
M+6

(M+1)(3)
− 1

(M+1)2 =
2M

(M+1)(M+1)(3)
, (10)

where νi, j =E[V i(X1)V j(X2)], ωi, j =E[(1−V (X1))
i(1−V (X2))

j], and γi, j =E[V i(X1)(1−
V (X2))

j].

The values of νi, j,ωi, j,γi, j cannot be computed in a closed-form expression when
i× j 6= 0, but can be approximated numerically. The asymptotics of Cov(HSimp(X1),HSimp(X2))
w.r.t. |X1−X2| are as follows

• |X1−X2| → 0: the covariance in Proposition 4 converges to Var(HSimp(X1)), a
property that is also inherited from the continuity of the sample paths of p.

• |X1−X2| → ∞: it can be checked that in the independent case, the covariance
vanishes to 0.

The variations of the Simpson diversity w.r.t. the precision parameter M are as fol-
lows

• M → 0: the prior degenerates to a single species with probability 1, hence
HSimp→ 0.

• M→∞: the prior tends to favour infinitely many species, and HSimp→ 1. In both
cases, Var(HSimp)→ 0. We see that the covariance vanishes also in these two
cases by using the inequality

|Cov(HSimp(X1),HSimp(X2))| ≤
[
Var(HSimp(X1))Var(HSimp(X2))

]1/2

= Var(HSimp(X1)).

• M = 1/2: the variance (10) of the Simpson index is maximum for the precision
parameter value M = 1/2.

Despite the fact that the first moments of the diversity indices under a GEM prior
can be easily derived, a full description of the distribution seems hard to achieve. For
instance, the distribution of the Simpson index involves the small-ball like probabil-
ities P(∑ j p2

j < a) for which, to the best of our knowledge, no result is known under
the GEM distribution.
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