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We present a dependent Bayesian nonparametric model for the probabilistic modelling of species-by-site data, i.e. population data where observations at different sites are classified into distinct species. We use a dependent version of the Griffiths-Engen-McCloskey distribution, the distribution of the weights of the Dirichlet process, in the same lines as the Dependent Dirichlet process is defined. The prior is thus defined via the stick-breaking construction. Some distributional properties of this model are presented. Abstract Presentiamo un modello parametrico bayesiano dipendente per la modellazione probabilistica dei dati specie per siti, cioé i dati sulla popolazione in cui le osservazioni in diversi siti sono classificati in specie distinte. Usiamo una versione dipendente della distribuzione Griffiths-Engen-McCloskey, la distribuzione dei pesi del processo di Dirichlet, in analogia con la definizione del processo di Dirichlet dipendente. La distribuzione a priori é definita tramite la costruzione stick-breaking. Alcune proprietà distributive di questo modello sono presentate.

Introduction

In this paper we announce results which will be extensively presented and proved in [START_REF] Arbel | Bayesian nonparametric dependent model for the study of diversity in species data[END_REF] about distributional properties of a Bayesian nonparametric dependent model. The construction of (covariate) dependent random probability measures for Bayesian inference has been a very active line of research in the last 15 years. This was settled by the pioneering works by [START_REF] Maceachern | Dependent nonparametric processes[END_REF][START_REF] Maceachern | Dependent Dirichlet processes[END_REF] who introduced a general class of dependent Dirichlet processes. The literature on dependent processes was developed in numerous models, such as nonparametric regression, time series data, meta-analysis, to cite but a few, and applied to a wealth of fields such as, e.g., epidemiology, bioassay problems, genomics, finance. Most contributions to this line of research rely on random probability measures defined by means of a stick-breaking procedure, a popular method set forth in its generality by [START_REF] Ishwaran | Gibbs sampling methods for stick-breaking priors[END_REF]. This is also the approach retained here, where the dependence among different stick-breaking priors is obtained by transforming Gaussian processes. An advantage of such a construction is in the variety of dependence structures that can be handled across the covariate thanks to the covariance function or the Gaussian processes. Some distributional properties of the introduced dependent processes are studied. An application of the model in ecotoxicology to a microbial dataset species collected in Antarctica is conducted in [START_REF] Arbel | Ecotoxicological data study of diversity using a dependent Bayesian nonparametric model[END_REF].

The modelling of species data under a Bayesian nonparametric framework has already been introduced by [START_REF] Lijoi | Bayesian nonparametric estimation of the probability of discovering new species[END_REF][START_REF] Lijoi | Bayesian nonparametric estimators derived from conditional Gibbs structures[END_REF]. We follow the same approach, and add a dependence structure to covariates. In studies oriented towards species sampling and abundance measures, diversity is also often a notion of interest. The question of measuring diversity arises in many fields, e.g. ecology as in the present study, but also biology, engineering or probability theory. There are numerous ways to study the diversity of a population divided into groups or species. We retain here the Simpson index H Simp defined by H Simp (p) = 1 -∑ j p 2 j for a discrete probability distribution p = (p 1 , p 2 , . . .) where p j is the probability of observing species j. For a discussion of different diversity indices, see for example [START_REF] Cerquetti | Bayesian nonparametric estimation of Simpson's evenness index under α-Gibbs priors[END_REF].

The paper is organized as follows: the typical framework of the sampling model is described in Section 2, along with the dependent prior. A review of some of the distributional properties of this model is then presented in Section 3.

Data and model

We describe here the notation and sampling process of covariate dependent speciesby-site count data. To each site i = 1, . . . , I corresponds a covariate value X i ∈ X , where the space X is a subset of R d . We focus here on univariate factors, i.e. d = 1. Individual observations at site i are species, indexed by natural numbers j ∈ N * . No hypothesis is made on the unknown total number of species in the population of interest, which might be infinite. We observe (X, Y) = (X i , Y N i i ) i=1,...,I where Y N i i = (Y n,i ) n=1,...,N i are observations at site i with total abundance (number of observations) N i and factor X i . We model the probabilities p = (p(X i )) i=1...I = (p j (X i ) j∈N * ) i=1...I by the following. For i = 1 . . . I and n = 1 . . . N i :

Y n,i | p(X i ), X i ind ∼ ∞ ∑ j=1 p j (X i )δ j .
(1)

We now proceed to a brief description of the dependent prior. For a complete account comprising details about posterior sampling, the reader is referred to [START_REF] Arbel | Bayesian nonparametric dependent model for the study of diversity in species data[END_REF]. We use the same construction as [START_REF] Maceachern | Dependent Dirichlet processes[END_REF] to extend the GEM distribution in order to define the following dependent version, abbreviated Dep-GEM. Starting with independent stochastic processes

(V j (X), X ∈ X ), j ∈ N * , satisfying V j (X)
iid ∼ Beta(1, M) marginally in X, the Dep-GEM distribution on the weights is defined by:

p j (X) = V j (X) ∏ l< j (1 -V l (X)), (2) 
where (V j (X), X ∈ X ), j ∈ N * are independent. Note that (2) can be easily extended to the two-parameter Poisson-Dirichlet process, denoted by PD(α, M). It follows the same stick-breaking construction as in Equation ( 2), with V j 's defined with independent Beta(1α, M + jα) distributions (i.e. the V j 's are not identically distributed), where α > 0 and M > -α. The advantage of the PD(α, M) process compared to the DP(M) is a more flexible predictive structure.

Distributional properties

The purpose of this section is to present some elementary distributional properties of the Dep-GEM prior. It has continuous sample-paths, as stated in the following proposition.

Proposition 1 Let p ∼Dep-GEM (M). Then p is stationary and marginally, p(X) ∼ GEM(M). Also, p has continuous paths (i.e. X → (p 1 (X), p 2 (X), . . .) is continuous for the sup norm), and its marginal moments are

E(p j (X)) = M j-1 (M + 1) j , E(p n j (X)) = n! M (n) M M + n j , Var(p j (X)) = 2M j-1 (M + 1)(M + 2) j - M 2( j-1) (M + 1) 2 j , Cov(p j (X), p k (X)) = M ( j∨k)-1 (M + 1) | j-k|+1 (M + 2) j∧k - M j+k-2 (M + 1) j+k , k = j,
for any j, k ≥ 1, n ≥ 0, and where M (n) = M(M + 1) . . . (M + n -1) denotes the ascending factorial.

We now review some results on size-biased permutations which are useful for deriving distributional properties of the process. Let p = (p 1 , p 2 , . . .) be a probability. A size-biased permutation of p, is a sequence p = ( p1 , p2 , . . .) obtained by reordering p by a permutation σ with particular probabilities. Namely, the first index appears with a probability equal to its weight, P(σ 1 = j) = p j ; the subsequent indices appear with a probability proportional to their weight in the remaining indices, i.e. for k distinct integers j 1 , . . . , j k ,

P(σ k = j k |σ 1 = j 1 , . . . , σ k-1 = j k-1 ) = p j k 1 -p j 1 -• • • -p j k-1 . (3) 
The following lemma extends Pitman's result (for example Equation (2.23) of [START_REF] Pitman | Combinatorial stochastic processes[END_REF]):

E ∑ f (p j ) = E ∑ f ( p j ) = E f ( p1 ) p1 , (4) 
for any measurable function f .

Lemma 2 Let p is a size-biased permutation of p. For any measurable function f and any integer k ≥ 1, we have

E ∑ ( * ) f (p i 1 , . . . , p i k ) = E f ( p1 , . . . , pk ) k ∏ i=1 (1 -p1 -• • • -pi-1 )/ pi , (5) 
where the sum ( * ) runs over all distinct i 1 , . . . , i k , and with the convention that the product in the right-hand side of Equation (5) equals 1/ p1 when i = 1.

When it comes to averaging sums of transforms of k weights p i 1 , . . . , p i k over all distinct i 1 , . . . , i k , the lemma shows that all required information is encoded by the first k picks p1 , . . . , pk . The case k = 2 was proved by [START_REF] Archer | Bayesian Entropy Estimation for Countable Discrete Distributions[END_REF].

One can gain further insight into the Dep-GEM process by studying the exchangeable partition probability function (EPPF) for the random variables Y n 1 = (Y 1,1 , . . . ,Y n,1 ) and Y m 2 = (Y 1,2 , . . . ,Y m,2 ) observed at covariates X 1 and X 2 . See for instance [START_REF] Pitman | Exchangeable and partially exchangeable random partitions[END_REF][START_REF] Pitman | Combinatorial stochastic processes[END_REF] and m = (m 1 , . . . , m k ), • k 1 (resp. k 2 ) clusters are observed only at the site of covariate X 1 (resp. X 2 ), with frequencies ñ = ( ñ1 , . . . , ñk 1 ) (resp. m = ( m1 , . . . , mk 2 )).

The EPPF can be expressed as follows

p(n, ñ, m, m) = E ∑ ( * ) p n 1 i 1 (X 1 )p m 1 i 1 (X 2 ) . . . p n k i k (X 1 )p m k i k (X 2 ) × p ñ1 j 1 (X 1 ) . . . p ñk 1 j k 1 (X 1 ) × p m1 l 1 (X 2 ) . . . p mk 2 l k 2 (X 2 ) (6)
where the sum ( * ) runs over all (k + k 1 + k 2 )-uples (i 1 , . . . , i k , j 1 , . . . , j k 1 , l 1 , . . . , l k 2 ) with pairwise distinct elements.

In non covariate-dependent models, the EPPF can be typically derived as follows. First, express the definition of the EPPF in terms of the first few elements of a size-biased permutation p given p by application of Lemma 2 where

f (p 1 , . . . , p k ) = p n 1 1 . . . p n k k .
Second, use the invariance under size-biased permutation (ISBP) property that characterizes the GEM distribution (cf. [START_REF] Pitman | Random discrete distributions invariant under size-biased permutation[END_REF], in order to replace the first few elements of the size-biased permutation p by the first few elements of p. And finally use the stick-breaking representation of p with independent Beta random variables V and compute the moments of Beta random variables in order to obtain a compact expression of the EPPF.

In the case of covariate-dependent models as in ( 6), the hindrance to further computation of a closed-form expression for p(n, ñ, m, m) is, to the best of our knowledge, twofold: (i) the sum in Equation ( 6) does not reduce to any conditional expectation of the first few elements of a size-biased permutation of p, and (ii) the invariance under size-biased permutation property is not straightforward to generalize to covariate-dependent distributions, hence equality in distribution between ( p1 (X 1 ), p1 (X 2 )) and (p 1 (X 1 ), p 1 (X 2 )) is not a known property (whereas it is marginally true).

Notwithstanding this, EPPF have been obtained in the covariate-dependent literature, though not for stick-breaking constructions, but when the dependent process is defined by normalizing random probability measures such as completely random measures. See for instance [START_REF] Lijoi | Bayesian inference with dependent normalized completely random measures[END_REF]; [START_REF] Kolossiatis | On Bayesian nonparametric modelling of two correlated distributions[END_REF]; [START_REF] Griffin | Comparing distributions by using dependent normalized random-measure mixtures[END_REF][START_REF] Müller | A product partition model with regression on covariates[END_REF] for an approach based on product partition models.

The following proposition now gives the joint law for the first picks at two sites under the Dep-GEM prior.

Proposition 3 Let the samples Y n 1 = (Y 1,1 , . . . ,Y n,1 ) and Y m 2 = (Y 1,2 , . . . ,Y m,2 ) at two sites X 1 and X 2 , given the process p ∼Dep-GEM (M). The joint law of Y 1,1 and Y 1,2 is:

P(Y 1,1 = j,Y 1,2 = k) = (M + 1 -µ M )M | j-k|-1 (M 2 -1 + µ M ) ( j∧k)-1 /(M + 1) j+k , (7 
) for k = j and

P(Y 1,1 = j,Y 1,2 = j) = µ M (M 2 -1 + µ M ) j-1 /(M + 1) 2 j , (8) 
where µ M (X 1 , X 2 ) = (M + 1) 2 E V (X 1 )V (X 2 ) .

We proceed now to the investigation of the dependence at the diversity level. Under a GEM(M) prior on p without dependence, the prior expectation of the Simp-son diversity follows from Lemma 2 and equals E(H Simp ) = M/(M + 1) [START_REF] Cerquetti | Bayesian nonparametric estimation of Simpson's evenness index under α-Gibbs priors[END_REF]. The following proposition characterizes the dependence induced in the Simpson diversity index in terms of the covariance between the indices at two sites.

Proposition 4 The covariance between the Simpson diversity indices at two sites, H Simp (X 1 ) and H Simp (X 2 ), and the variance of the Simpson diversity index, induced by the Dep-GEM distribution, are as follows

Cov(H Simp (X 1 ), H Simp (X 2 )) = ν 2,2 (1 -ω 2,0 ) + 2ν 2,0 γ 2,2 (1 -ω 2,0 )(1 -ω 2,2 ) -ν 2 1,0 , (9) 
Var

(H Simp (X)) = M + 6 (M + 1) (3) - 1 (M + 1) 2 = 2M (M + 1)(M + 1) (3) , (10) 
where

ν i, j = E[V i (X 1 )V j (X 2 )], ω i, j = E[(1-V (X 1 )) i (1-V (X 2 )) j ], and 
γ i, j = E[V i (X 1 )(1- V (X 2 )) j ].
The values of ν i, j , ω i, j , γ i, j cannot be computed in a closed-form expression when i× j = 0, but can be approximated numerically. The asymptotics of Cov(H Simp (X 1 ),

H Simp (X 2 )) w.r.t. |X 1 -X 2 | are as follows • |X 1 -X 2 | → 0: the covariance in Proposition 4 converges to Var(H Simp (X 1 )), a
property that is also inherited from the continuity of the sample paths of p. • |X 1 -X 2 | → ∞: it can be checked that in the independent case, the covariance vanishes to 0.

The variations of the Simpson diversity w.r.t. the precision parameter M are as follows

• M → 0: the prior degenerates to a single species with probability 1, hence H Simp → 0. • M → ∞: the prior tends to favour infinitely many species, and H Simp → 1. In both cases, Var(H Simp ) → 0. We see that the covariance vanishes also in these two cases by using the inequality |Cov(H Simp (X 1 ), H Simp (X 2 ))| ≤ Var(H Simp (X 1 ))Var(H Simp (X 2 ))

1/2

= Var(H Simp (X 1 )).

• M = 1/2: the variance (10) of the Simpson index is maximum for the precision parameter value M = 1/2.

Despite the fact that the first moments of the diversity indices under a GEM prior can be easily derived, a full description of the distribution seems hard to achieve. For instance, the distribution of the Simpson index involves the small-ball like probabilities P(∑ j p 2 j < a) for which, to the best of our knowledge, no result is known under the GEM distribution.

  for a summary of the importance of partition probability functions. The observations partition [n] = {1, 2, . . . , n} and [m] = {1, 2, . . . , m} into k + k 1 + k 2 clusters of distinct values where • k clusters are commonly observed, with respective frequencies n = (n 1 , . . . , n k )
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