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Energy-Aware Forwarding Strategy  

for Metro Ethernet Networks 

Abstract—Energy optimization has become a crucial issue in the 

realm of ICT. This paper addresses the problem of energy 

consumption in a Metro Ethernet network. Ethernet 

technology deployments have been increasing tremendously 

because of their simplicity and low cost. However, much 

research remains to be conducted to address energy efficiency 

in Ethernet networks. In this paper, we propose a novel Energy 

Aware Forwarding Strategy for Metro Ethernet networks 

based on a modification of the Internet Energy Aware Routing 

(EAR) algorithm. Our contribution identifies the set of links to 

turn off and maintain links with minimum energy impact on 

the active state. Our proposed algorithm could be a superior 

choice for use in networks with low saturation, as it involves a 

tradeoff between maintaining good network performance and 

minimizing the active links in the network. Performance 

evaluation shows that, at medium load traffic, energy savings of 

60% can be achieved. At high loads, energy savings of 40% can 

be achieved without affecting the network performance. 

Keywords: Energy saving, Internet network, Metro 

Ethernet Network, OSPF, IS-IS, Performance evaluation. 

I. INTRODUCTION 

Much research related to ICT has sought for more efficient 

solutions that can improve energy efficiency. The reduction 

of energy expenditure has become a major concern for 

telecommunications operators and Internet service providers. 

Currently, minimal research has addressed energy saving in 

Carrier Ethernet networks compared with those in IP 

networks. Metro Ethernet is the use of Carrier-Ethernet 

technology in Metropolitan Area Networks (MANs). It can 

be used to connect business local area networks (LANs) and 

individual end users to wide area networks (WAN) or to the 

Internet. Recently, significant innovations have been 

developed around Ethernet standards to meet the 

requirements of next generation broadband networks. These 

developments have made Ethernet a widely used technology, 

deployed at all levels of the network architecture (Access, 

Metro and Core networks). 

Current Ethernet technologies rely on the Spanning Tree 
Protocol (STP), which was standardized in IEEE 802.1D [1], 
and its variants: Rapid Spanning Tree Protocol (RSTP) [2] 
and Multiple Spanning Tree Protocol (MSTP) [3]. These 
protocols manage the topology autonomously and provide a 
loop-free connectivity across a variety of network nodes. 
Although these protocols have been used for most Ethernet 
networks, they are not sufficiently powerful to satisfy Metro 
Ethernet network features as a Carrier-grade technology. 
These protocols have the following main shortcomings:  

i) Inefficient use of resources: STP and its variants restrict 

the number of bridge ports being used, which reduces the 

available bandwidth, especially in cases of high load traffic.  

ii) Suboptimal path: The path selection is based on a single 

spanning tree for the entire network (the shortest path tree 

roots at an arbitrary node) instead of the shortest path 

between source and destination node pairs.  

iii) Re-convergence: STP implements a transactional 

distance-vector class of routing algorithm instead of a routing 

algorithm based on a network link topology database. This 

adversely impacts the convergence time of an Ethernet 

network after a topology change [4]. 

Recently, a new class of shortest path routing solutions has 

been introduced for Ethernet networks, the Shortest Path 

Bridging (SPB), standardized in IEEE 802.1aq [5]. 

SPB aims to ensure frame forwarding on the shortest path 

within a Shortest Path Tree (SPT) region of a network by 

using an extension of the IS-IS link state routing protocol [6]. 

In this way, SPB uses IS-IS procedures to construct and 

update the link state database in each SPT bridge. 

Our work aims to develop an energy-saving strategy within 

a Metro Ethernet network. This idea is inspired from the 

EAR (Energy Aware Routing for Green OSPF) approach [7], 

which is designed for IP networks and is OSPF compliant. 

The EAR approach is an energy-saving strategy that is based 

on powering off parts of network devices (links and 

interfaces). Because we focus on Metro Ethernet networks, 

we propose a Metro Ethernet Energy Aware Forwarding 

Strategy (MEEAFS) that is IS-IS compliant. 

OSPF [8] and IS-IS [9] are link state protocols that use 
Dijkstra's algorithm for computing the shortest path between 
node pairs. OSPF is an IP routing protocol only, while IS-IS 
supports the handling of MAC addresses; it is able to run 
directly over Ethernet as it is not tight to IP. 

Since we focus on Metro Ethernet networks, we propose 
an energy-aware forwarding strategy for green carrier-
Ethernet networks that is SPB-based and is IS-IS compliant.  

The rest of this paper is organized as follows: Section II 
presents the main related works; Section III presents the 
problem formulation and subsequently describes both EAR 
and MEEAFS strategies. Section IV provides a performance 
study and evaluation for both EAR and MEEAFS strategies. 
Finally, we conclude this paper and we present our 
suggestions for future work in Section V. 
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II. RELATED WORKS 

In the literature addressing energy conservation, many 

strategies have been published. However, minimal research 

has focused on energy saving in Metro Ethernet networks. 

Besides, industrial efforts are devoted to Metro Ethernet, but 

none of them cares about energy economy at routing level.  

In order to better understand the possible ways to limit 

energy consumption in Metro Ethernet systems, we chose to 

overview the main approaches related to energy saving on IP 

networks that could be adapted to Metro Ethernet systems. In 

other words, we overview IP approaches which propose 

energy-aware routing protocols compatible with SPB-based 

Metro-Ethernet.     

The authors in [10] have proposed an optimization model 
based on the traditional Multiple Spanning Tree Protocols 
(MSTP) green routing protocol. This model is intended for 
minimizing the energy consumption of Carrier-Ethernet 
networks. This optimization is performed in such a way that a 
portion of the network is forced by the objective function of 
the model to remain unused, thus making it possible to turn 
off the elements of that portion of the network. These 
network components are put into sleep mode to conserve 
energy. The main shortcoming of this approach is the use of 
MSTP, which is inefficient in the Metro Ethernet context.  

In [11], the authors proposed an IP-related approach that 
switches the router to sleep mode during low-traffic periods 
and returns them to the working state during peak hours. This 
approach could be adapted to an Ethernet Bridge; however, 
this approach puts the whole router to sleep instead of 
powering off some of its interfaces (links), which leads to 
poor network performance.   

In [7], the authors propose an Energy Aware Routing 
algorithm to power off a maximum of active links by 
dividing the network routers into three subsets (exporter, 
importer, neutral). The main idea of this algorithm is that 
only a subset of routers are elected to serve as exporters. 
Elected exporter nodes must have a high number of 
neighbors, so node election is based on the node degree. In 
that case, each exporter computes its SPT to export it toward 
its direct neighbors’ routers. The latter, called importer 
routers, utilize the SPT of the associated exporter routers, but 
use the importer router as the root node. Doing this allows 
the powering off of the links that are no longer in the SPT of 
the importer routers. However, this algorithm considers 
neither the QoS constraints nor the traffic demand. Motivated 
by this EAR idea, we propose an energy-saving strategy 
applied within a Metro Ethernet network, considering a new 
criterion to select adequate exporter bridges and supporting 
acceptable network performance. To achieve this goal, we 
formulate an optimization model for the choice of exporter 
bridges that takes into account energy consumption impact. 
In our model, an energy consumption function needs to be 
minimized that is subject to a set of constraints involving the 
minimal performance guarantees, which are explained in the 
next section. 

III. PROBLEM FORMULATION AND ENERGY-AWARE 

STRATEGIES 

To achieve energy conservation, the Network 
Management System (NMS) is designed to manage and solve 
an optimization problem that considers the network topology 
and traffic demand [12]. Our work takes into account the 
NMS considerations as inputs of our model. It additionally 
aims to power off the maximum number of links while 

retaining sufficient bandwidth on residual paths. In this 
section, we present the problem formulation and the EAR 
strategy. 

A. Problem Formulation  

TABLE I.  SUMMARY OF NOTATION 

Variable Description 
G (N, E, W) Directed graph where N is the set of nodes, E is the 

set of edges between two nodes, and W is the set of 
weights associated with each arc. An arc is equivalent 

to a directed edge. 

|N|,|E| Cardinality of set N and E, respectively. 

𝜀(𝑖, 𝑗) 

𝑐(𝑖, 𝑗) 

The energy consumption of the edge (i, j) ∈E. 
The capacity of the edge(i, j) ∈E. 

𝐴 The set of arcs that are directed links between nodes. 

𝐷 A set of all traffic demands. 

𝑑𝑠𝑡  Demand of traffic flow from s  to t. 
𝑓𝑖𝑗
𝑠𝑡  Traffic demand from s to t that traverses the arc 

from i to j. 
𝑓𝑖𝑗  Traffic routed through the link from i to j. 

       Es The set of links utilized to route traffic. 

      Th Threshold of link load. 

 𝜇𝑖,𝑗  The maximum link utilization. 

Consider a Carrier-Ethernet core network presented as a 
weighted graph G (N, E).The nodes in N represent bridges, 
and the edges in E represent connections between those 
bridges. Let |N| and |E| be the number of network nodes and 
links, respectively. Each link (i, j) ∈ E between two nodes i, j 
∈ N has an energy consumption ε i, j  and a capacityc(i, j). 

The traffic demand between a pair of nodes could be 
presented as dst , where s ∈  N is the originated node and t ∈ 
N is the destination node. fij denotes the number of traffic 

units routed through the link from i to j. 
The optimization of power consumption can be expressed 

formally with the following objective and constraints: 

Minimize = x i,j  i ,j  ∈A  å(𝑖, 𝑗) 

𝑤𝑖𝑡 x(i,j) =
1
0
  𝑖𝑓 𝑒𝑑𝑔𝑒 𝑖 , 𝑗 ∈ 𝐸 𝑖𝑠 𝑠𝑤𝑖𝑡𝑐𝑒𝑑 𝑜𝑛.

𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.
 

Subject to: 

 𝑓𝑖𝑗
𝑠𝑡 −

|𝑁[
𝑗=1  𝑓𝑗 𝑖

𝑠𝑡|𝑁|
𝑗=1 =

  𝑑𝑠𝑡 ,               ∀𝑖 = 𝑠

−𝑑𝑠𝑡 ,             ∀𝑖 = 𝑡  
  0,                  ∀𝑖 ≠ 𝑠, 𝑡

     

                 fij  ≤   μi,j × 𝑐(𝑖, 𝑗)With μi,j ∈ ]0,1]            

Equation (2) represents the classical flow conservation 
constraints ensuring that flows entering and leaving a node 
are equal.  Equation (3) forces the link load to be smaller than 
the maximum target utilization μi,j . 

Let SPTk  be the subgraph of G obtained by the k
th

 bridge 
using Dijkstra's shortest path first algorithm toward all 
network nodes. Let SPG (N, Es) be the subgraph of G 
obtained by the superposition of all SPTk(k = 1,..,|N|), i.e. 
SPG =  SPTii=1..|N| . 

Es includes all of the links that belong to at least one 
SPTk, and identifies all of the paths used to route traffic. We 
consider this type of link as an active link. 

                   Es = link( SPTi)i=1..|N| 



 

 

It can be demonstrated that 

                                       |Es||E|                            

Proof: The equality between |E|s and |E| holds when all 
link costs are equal. In this case, the routing paths correspond 
to the shortest paths, and SPG coincides with G because 
when all links have equal cost, the shortest path between two 
neighbor switches is always the direct link between these two 
neighbors. 

In more general cases, when the link weights are 
different, the number of active links is smaller than |E|, i.e. 

|Es||E|. A first step to obtain a reduction of energy 
consumption is to switch off the links belonging to the set 

E−Es. The minimum value of |Es|, i.e. the minimum number 

of unidirectional links needed to route traffic between any 
pair of bridges, is 

Lmin = 2 N − 1                         

Lmin  is the minimum number of links that guarantees total 
connectivity for the network. The condition (6) is verified 
when all of the nodes compute the same SPT. According to 
this condition, by switching off the |E| - 2(|N| − 1) links of 
G, we would obtain the maximum energy savings, but this 
leads to traffic congestion and subsequently poor network 
performance. 

According to the NMS, given the traffic demand and the 
network topology as inputs, the outputs of the optimization 
problem will be the set of links to switch off and the paths 
that the traffic should use over the residual links. Table I lists 
a summary of the parameter definitions. 
 

B. EAR description 

The EAR algorithm [7] is a distributed, energy-aware 
routing protocol that is able to save energy by performing the 
election of exporter nodes. The scheme involves forcing a 
subset of routers to use some routes that are different from 
those elected in their SPTs. The set of network routers is 
divided into three subsets: exporters, importers, and neutral 
routers. This scheme is achieved by the three following 
phases: i) During the first phase (election of exporter routers), 
each node calculates its shortest path tree (via the Dijkstra 
method); ii) In the second phase, called Modified Path Tree 
(MPT) evaluation, every importer router fulfills its new path 
tree by using the associated exporter’s tree  and extracts the 
links  to be switched off; iii) During the third phase, called 
routing path optimization, after removing the links that have 
been  switched off, each router computes its paths, using the 
Dijkstra algorithm, on the residual network topology. The 
aim of this step is to update the routing paths and to ensure 
that all of the routers are on the same reference topology. 

Our work aims to apply the EAR strategy to Metro 
Ethernet. Hence, our MEEAFS proposal computes an SPB to 
enhance Metro Ethernet performance. We also propose a new 
criterion for exporter bridge selection and energy 
conservation. Unlike the EAR algorithm, which is based on 
the node degree for the exporter router selection, MEEAFS is 
based on the link energy consumption of the nodes. 

C. MEEAFS algorithm 

Our MEEAFS algorithm uses as input the graph model 
formulation that is explained above. However, given the 
tradeoff between energy saving and network capacity, 

MEEAFS offers two enhancement criteria. The first one is 
based on the link energy consumption å 𝑖, 𝑗  and the second 
one is based on the link capacities  𝑐(𝑖, 𝑗). 

As in the MEEAFS algorithm, the set of network bridges 
is divided into three subsets: exporter (EB), importer (IB), 
and neutral bridges (NB). The MEEAFS algorithm can be 
summarized as follows: 

1) Selection of the EBs: During this phase, each bridge 

computes its energy impact. This information is obtained by 

computing the energy impact of the line cards (EILCs) of 

each bridge. In [13], an energy profile is defined as the 

energy consumption (in Watt-hours) in the function of the 

traffic load and throughput of a particular network 

component. EILC can be estimated due to the knowledge of 

the topology and the traffic conditions by means of the SPB 

and IS-IS protocols. 𝑊𝑖 denotes the power consumption 

weight of bridge i and is defined as follows: 

                      Wi =   EILCi,k
nci
k=1 

where i ∈ N and nci  is the maximum number of cards in 

bridge i. 

According to (7), the bridge power consumption 

expresses the energy impact as a function of link traffic load. 

Bridges having the lowest power consumption are 

inserted in the exporter bridge list, called EB_list. The direct 

neighbors cannot be considered as candidate EBs. This 

process is applied recursively on the remaining bridges. 

Consequently, the bridges inserted into EB_list have the 

minimum energy consumption impact. The links associated 

to EBs are less likely to be switched off when an IB uses the 

SPT’s EB as its own. In Figure 1(a), initially we assume that 

the A and B bridges are candidates to be exporters. Fig. 1(a) 

shows an example of a network graph with EILC weights. 

According to (5),   WA = 0.3 + 0.4 + 0.3 + 0.4 =
 1.4  and  WB = 0.3 + 0.3 + 0.4 + 0.5 =  1.5. The bridge A 

is elected as EB, and hence B is an IB that will use A as its 

packet forwarder. 

2) Modification of the SPT of IB: In this phase, each IB 

has to execute a slight translation of Dijkstra's algorithm 

based on its associated EB, in order to identify the set of links 

that can be switched off. Each IB transforms its SPT into a 

Modified Shortest Path Tree (MSPT). 

As explained in the first section, SPB uses the IS-IS 
standard to construct and update a link state database in each 
bridge. Thus, the complexity of the classical SPB remains the 
same, when the IB computes an SPT in which the root node 
is the associated EB. Fig. 1(d) shows an example of a 
network graph in which A is elected as an EB and B is an IB 
that uses the SPT of A as its own modified SPT. We denote 
MSPT (B, A) the imported SPT of A for B. The bridge B has 
to force itself as the tree root node by changing the direction 
of the link between A and B. 

Once all of the IBs have computed their MSPT, any 

network link that no longer appears in any MSPT will be 

declared as a link to turn off. Thus, each IB checks iteratively 

if a given link (that belongs to the links to turn off, denoted 

by Loff ) can legitimately be turned off or must be kept in its 

modified shortest path tree (MSPT). For each iteration, the 

considered link is removed from the forwarding table if the 

link load fij is smaller than a fixed threshold Th. 

 

 



 

 

 
Fig. 1.  Illustrative example for MEEAFS phases (1) and (2) 

3) Forwarding path optimization: At the end of the 

previous phase, each IB has to assess the modified 

forwarding path tree MSPT. Thereafter, each IB indicates the 

set of links that has to be removed. In order to optimize the 

forwarding path trees, each IB having at least one switched 

off link processes IS-IS Hello until the topology database has 

been updated. Once the update process is terminated, SPB 

performs the shortest path calculation on the residual network 

topology. 

 

 

Fig. 2.  Flowchart describing the operation of MEEAFS 

 

Algorithm 1.MEEAFS 

1. Input: a network graph G(𝑁,𝐸) 

2. for i = 1; i<= N; i++ do 

3. calculate the weight of each bridge using (7); 

4. end for 

5. B_list=list[N]; 

6. EB_list= ø; 

7. IB_list=ø; 

8. NB_list=ø; 

9. while (B_list ! empty) 

10. EB_list= EB_list ∪ finding_exporter(B_list); 

11. end while 

12. while(EB_list ! empty) 

13. IB_list= IB_list ∪ finding_importer(B_list, 

EB_list); 

14. end while 

15. while(B_list ! empty) 

16. NB_list= NB_list ∪ finding_neutral(B_list, EB_list, 

IB_list); 

17. end while 

18. Loff = ø; /*links to be turned off */ 

19. i=0; 

20. while(IB_list ! empty) 

21. modify_the_shortest_path_tree_of(IB_list[i]); 

22. Loff =Loff  ∪ fixing_link(IB_list[i]) 

23. if (L - Loff = 2(B- 1)) according to (6) 

24. exit and go to 28. ; 

25. end if 

26. i++; 

27. end while 

28. for each l∈Loff  
29.    if 𝑓𝑖𝑗 >  𝑇 /* according to (3)*/ 

30. Loff = Loff – l; 

31. end if 

32. end for 

33. /* path optimization */ 

34. 𝐸𝑠 = 𝐸 – Loff; 

35. compute _all_shortest_path using SPB for the 

residual topology G′(𝑁,𝐸𝑠); 

36. output 𝐺 ′(𝑁,𝐸𝑠)/* network graph with the set of 

links to be used*/. 

 

Input : 

G, W, D 

Election of Exporter and 

Importer bridges 

Modification of SPT of IBs 

 For each link e in Loff  

Updated Loff  

 G′ = G − updated Loff  
Output: 

Shortest path computation on  G′using IS-IS 

Find Loff  : the set of links to be saved 

 

Connectivity maintained 
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IV. PERFORMANCE ANALYSIS 

This section presents the MEEAFS performance obtained 

in different scenarios using the ns-3 simulator. Initially, the 

simulator reads a weighted adjacency matrix of an input 

topology of 50, 100, 200 and 300 nodes, respectively. These 

weights represent the energy impact of links (two adjacent 

nodes). We have considered four core network topologies: 

the first one is composed of 50 nodes and 348 links; the 

second one composed of 100 nodes and 964 links; the third 

one is composed of 200 nodes and 1,926 links; and the fourth 

one is composed of 300 nodes and 2,276 links. Each bridge is 

assumed to generate traffic toward any other bridge. Traffic 

demands arrive at the network nodes following a Poisson 

process with arrival demands rate λ and required 𝑘𝑑  traffic 

units that is randomly generated between 0.001*𝑐 and 0.1*𝑐 

(c being the link capacity in traffic unit).We consider the 

following two evaluations:  

(1) A comparison of the MEEAFS algorithm versus the 

EAR algorithm with different topologies. 

(2) A general performance analysis of the MEEAFS 

algorithm. 

The obtained results are the average of ten independent runs. 

To evaluate the energy savings that could be achieved by 

EAR and MEEAFS, we consider the 𝜎 index: 

σ% = 100.
|E|−|Es |

|E|−Lm in


 
Fig. 3.  Energy saving versus link load threshold 

Figure 3 depicts the energy savings obtained by EAR and 
MEEAFS algorithms for the four topologies. The EAR 
energy savings are constant, because the EAR algorithm has 
not defined a threshold either to turn off or to keep links in 
the active state. The EAR algorithm also does not consider 
the traffic load.  

Therefore, when EAR is used, 55% of possible links are 
turned off.  However, we notice that the performance of 
MEEAFS is dependent on the Th value. The power saving 
obtained by MEEAFS increases with the increase of the 
threshold Th. This algorithm was able to achieve more than 
65% energy savings when the value of the threshold was 
greater than 75%. 

Figure 4 depicts the energy savings obtained by MEEAFS 
in both medium and high loads of traffic. We have already 

observed that in medium loads more energy saving can be 
achieved compared with high loads. Indeed, as the traffic 
load increases, fewer links can be turned off.  

 
Fig. 4.  Energy savings versus link load threshold 

In order to analyze the impact of the MEEAFS algorithm 
on network performance, we evaluate the average traffic load 
on active links by varying the number of turned off links 
(thus varying Th). We introduce the ρ% parameter (average 
link load of active links), which is computed as follows [14]: 

100.
 ρi

|Es |
i=1

|Es |
 

Where ρi  is the traffic utilization of link i.  

In Fig.5, the average traffic load on active links as a 
function of Th is reported when MEEAFS is performed. In 
this scenario, we generate medium loads with traffic demand 
rate λ equal to 0.2. We observe that our strategy achieves 
satisfactory results in terms of average link load.  

 
Fig. 5.  Average traffic load in active links at medium load 

Figure 6 reports the average traffic load on active links. In 
this scenario, we generate high loads with traffic demand rate 
λ equal to 0.7. In this case, we observe that our strategy can 
achieve an acceptable link load if the threshold does not 
exceed 55%.  
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Fig. 6.  Average traffic load in active links at high load  

The increase of threshold value corresponds to the 
increase in energy savings. As shown in Fig. 3, the MEEAFS 
algorithm reports significant performance at medium traffic 
loads, with energy saving that can exceed 60%. Moreover, 
the MEEAFS algorithm can achieve approximately 40% 
energy savings at high traffic loads without affecting the 
network performance. Therefore, the choice of the threshold 
value in each scenario is critical to modulate the energy 
savings. Hence, MEEAFS could potentially guarantee a 
reduced impact on traffic performance. 

Load balancing is considered to be a requirement that 
should be fulfilled in Carrier Ethernet. Hence, the third 
performance analysis is devoted to measuring the fairness of 
the traffic distribution on the active links Es. The fairness 
index FI is used to measure whether the traffic load is fairly 
distributed among all of the links. We utilize Jain’s Fairness 
Index [15]: 

𝐹𝐼% =
  ñ𝑖

|𝐸𝑠|
𝑖=1  

2

|𝐸𝑠|∗ ñ𝑖
2|𝐸𝑠|

𝑖=1..

                   (10) 

When FI=1, this indicates that the traffic is distributed in 
a fair way.  

 

Fig. 7.  Fairness index versus link load threshold at medium load 

Figures 7 and 8 summarize the value of FI obtained by 
MEEAFS and EAR in medium and high loads of traffic, 
respectively.  

 
Fig. 8.  Fairness index versus link load threshold at high load 

We observe that the fairness index in both load conditions 
(high and medium) is nearly similar. Similarly, the fairness 
index decreases when the number of turned-off links 
increases, i.e., when the threshold Th values increase. Thus, 
as we discussed earlier, the choice of threshold value is 
critical to obtain the desired performance versus the energy 
saving gain.  

V. CONCLUSION AND FUTURE WORK 

This work proposes a new routing algorithm, called 
MEEAFS, to save energy in Carrier Ethernet networks. It 
allows a subset of bridge interfaces to be turned off. Our 
algorithm is based on a modification of the Internet Energy 
Aware Routing Algorithm [7]. Among the EAR algorithm’s 
limitations, the traffic loads on links are ignored and the 
energy consumption impacts of link cards are not taken into 
account. Our algorithm resolves those constraints. It is based 
on a heuristic that identifies the exporter bridges and fixes a 
value of link load threshold to ensure acceptable network 
performance. Nevertheless, MEEAFS could affect the 
average route length. It is not evaluated in this paper and it 
will be considered in the next work.    

The presented results show that important energy savings 
may be achieved with MEEAFS for our scenarios. This was 
typically true at medium traffic loads and for threshold values 
higher than 50%. However and obviously, at high traffic 
loads, MEEAFS cannot achieve significant energy reduction 
without degrading network performance.  

We tested the behavior of MEEAFS by considering only 
the core network segment. Based on these encouraging 
results, our future work will consider an actual network 
topology, including all of the network segments: core, metro, 
and access. For example, realistic network topologies from 
available datasets might be used, such as the RocketFuel [16] 
and Topology Zoo datasets [17], and dynamic 
(cyclostationary) traffic matrices could be generated [18]. 
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