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Given a sample of size n from a population of individual belonging to different species with unknown proportions, a popular problem of practical interest consists in making inference on the probability D n (l) that the (n + 1)-th draw coincides with a species with frequency l in the sample, for any l = 0, 1, . . . , n. This paper contributes to the methodology of Bayesian nonparametric inference for D n (l). Specifically, under the general framework of Gibbs-type priors we show how to derive credible intervals for the Bayesian nonparametric estimator of D n (l), and we investigate the large n asymptotic behaviour of such an estimator. Of particular interest are special cases of our results obtained under the assumption of the two parameter Poisson-Dirichlet prior and the normalized generalized Gamma prior, which are two of the most commonly used Gibbs-type priors. With respect to these two prior assumptions, the proposed results are illustrated through a simulation study and a benchmark Expressed Sequence Tags dataset. To the best our knowledge, this illustration provides the first comparative study between the two parameter Poisson-Dirichlet prior and the normalized generalized Gamma prior in the context of Bayesian nonparemetric inference for D n (l).

Introduction

The problem of estimating discovery probabilities is typically associated to situations where an experimenter is sampling from a population of individuals (X i ) i≥1 belonging to an (ideally) infinite number of species (X * i ) i≥1 with unknown proportions (q i ) i≥1 . Given an observable sample X n = (X 1 , . . . , X n ), interest lies in estimating the probability that the (n + 1)-th draw coincides with a species with frequency l in X n , for any l = 0, 1, . . . , n. This probability is denoted by D n (l) and referred to as the l-discovery. In terms of the species proportions q i 's, we can write

D n (l) = i≥1 q i 1 {l} (N i,n ),
where N i,n denotes the frequency of the species X * i in the sample. Clearly D n (0) is the proportion of yet unobserved species or, equivalently, the probability of discovering a new species. The reader is referred to [START_REF] Bunge | Estimating the number of species: a review[END_REF] and [START_REF] Bunge | Estimating the number of species in microbial diversity studies[END_REF] for two comprehensive reviews on the full range of statistical approaches, parametric and nonparametric as well as frequentist and Bayesian, for estimating the l-discovery and related quantities.

The estimation of the l-discovery has found numerous applications in ecology and linguistics, and its importance has grown considerably in recent years, driven by challenging applications in bioinformatics, genetics, machine learning, design of experiments, etc. For examples, [START_REF] Efron | Estimating the number of unseen species: How many words did Shakespeare know?[END_REF] and [START_REF] Church | A comparison of the enhanced Good-Turing and delated estimation methods for estimating probabilities of english bigrams[END_REF] discuss applications in empirical linguistics; [START_REF] Good | The population frequencies of species and the estimation of population parameters[END_REF] and [START_REF] Chao | Estimating the number of classes via sample coverage[END_REF], among many others, discuss the probability of discovering new species of animals in a population; [START_REF] Mao | A Poisson model for the coverage problem with a genomic application[END_REF], [START_REF] Navarrete | Some issues on nonparametric Bayesian modeling using species sampling models[END_REF], Lijoi et al. (2007a) and [START_REF] Guindani | A Bayesian semiparametric approach for the differential analysis of sequence data[END_REF] study applications in genomics and molecular biology; [START_REF] Zhang | Estimation of sums of random variables: examples and information bounds[END_REF] considers applications to network species sampling problems and data confidentiality; [START_REF] Caron | Sparse graphs with exchangeable random measures[END_REF] discuss applications arising from bipartite and sparse random graphs; [START_REF] Rasmussen | Optimal and adaptive stopping in the search for new species[END_REF] and [START_REF] Chao | Sufficient sampling for asymptotic minimum species richness estimators[END_REF] investigate optimal stopping procedures in finding new species; [START_REF] Bubeck | Optimal discovery with probabilistic expert advice: finite time analysis and macroscopic optimality[END_REF] study applications within the framework of multi-armed bandits for security analysis of electric power systems. This paper contributes to the methodology of Bayesian nonparametric inference for D n (l). As observed in Lijoi et al. (2007), a natural Bayesian nonparametric approach for estimating D n (l) consists in randomizing the q i 's. Specifically, consider the random probability measure Q = i≥1 q i δ X * i , where (q i ) i≥1 are nonnegative random weights such that i≥1 q i = 1 almost surely, and (X * i ) i≥1 are random locations independent of (q i ) i≥1 and independent and identically distributed as a nonatomic probability measures ν 0 on a space X. Then, it is assumed that

X i | Q iid ∼ Q i = 1, . . . , n (1) 
Q ∼ Q, for any n ≥ 1, where Q is the prior distribution over the species composition. Under the Bayesian nonparametric model (1), the estimator of D n (l) with respect to a squared loss function, say Dn (l), arises from the predictive distributions characterizing (X i ) i≥1 . Assuming Q in the large class of Gibbs-type random probability measures by [START_REF] Pitman | Poisson-Kingman partitions[END_REF], in this paper we consider the problem of deriving credible intervals for Dn (l), and we study the large n asymptotic behaviour of Dn (l). Before introducing our esults, we briefly review some aspects of Dn (l).

1.1 Preliminaries on Dn (l)

We start by recalling the predictive distribution characterizing a Gibbs-type prior. Specifically, let

X n be a sample from a Gibbs-type random probability measure Q and featuring K n = k n species X * 1 , . . . , X * Kn with corresponding frequencies (N 1,n , . . . , N Kn,n ) = (n 1,n , . . . , n kn,n ). According to the celebrated de Finetti's representation theorem, X n is part of an exchangeable sequence (X i ) i≥1 whose distribution has been characterized in [START_REF] Pitman | Poisson-Kingman partitions[END_REF] and Gnedin and Pitman (2006) as follows: for any set A in the Borel sigma-algebra of X,

P[X n+1 ∈ A | X n ] = V n+1,kn+1 V n,kn ν 0 (A) + V n+1,kn V n,kn kn i=1 (n i,n -σ)δ X * i (A) (2) 
where σ ∈ (0, 1) and (V n,kn ) kn≤n,n≥1 are nonnegative weights such that V 1,1 = 1 and V n,kn = (nσk n )V n+1,kn +V n+1,kn+1 . The conditional probability (2) is referred to as the predictive distribution of Q. Two peculiar features of Q emerge directly from (2): i) the probability that X n+1 / ∈ {X * 1 , . . . , X * Kn } depends only on k n ; ii) the probability that X n+1 = X * i depends only on (k n , n i,n ). See De [START_REF] De Blasi | Are Gibbs-type priors the most natural generalization of the Dirichlet process?[END_REF] for a review on Gibbs-type priors in Bayesian nonparametrics.

Two of the most commonly used nonparametric priors are of Gibbs-type; these are the two parameter Poisson-Dirichlet (PD) prior in [START_REF] Pitman | Exchangeable and partially exchangeable random partitions[END_REF] and [START_REF] Pitman | The two parameter Poisson-Dirichlet distribution derived from a stable subordinator[END_REF], and the normalized generalized Gamma (GG) prior in [START_REF] James | Poisson process partition calculus with applications to exchangeable models and Bayesian nonparametrics[END_REF] and [START_REF] Pitman | Poisson-Kingman partitions[END_REF]. The Dirichlet process by [START_REF] Ferguson | A Bayesian analysis of some nonparametric problems[END_REF] is a limiting special case for σ → 0. For any σ ∈ (0, 1) and θ > -σ, the predictive distribution of the two parameter PD prior is of the form (2) with

V n,kn = kn-1 i=0 (θ + iσ) (θ) n , (3) 
where (a) n := 0≤i≤n-1 (a + i) with (a) 0 := 1; see [START_REF] Pitman | Exchangeable and partially exchangeable random partitions[END_REF] for details on (3). For any σ ∈ (0, 1) and τ > 0, the predictive distribution of the normalized GG prior is of the form (2) with

V n,kn = σ kn-1 e τ σ Γ(n) n-1 i=0 n -1 i (-τ ) i Γ k n - i σ ; τ σ , (4) 
where Γ(a, b) := +∞ b

x a-1 exp{-x}dx; see [START_REF] Lijoi | Controlling the reinforcement in Bayesian nonparametric mixture models[END_REF] for details on (4). According to (2), the parameter σ admits an interpretation in terms of the distribution of K n : the larger σ the higher is the number of species and, among these, most of them have small abundances. In other terms, the larger σ the flatter is the distribution of K n . The parameters θ and τ are location parameters, namely the bigger they are the larger the expected number of species tends to be.

Let us denote by M l,n the number of species with frequency l in X n , and by m l,n the corresponding observed value. The predictive distribution of Q has a fundamental role in determining the Bayesian nonparametric estimator Dn (l) of D n (l). Indeed, according to the definition of D n (l), the estimator Dn (l) arises from (2) by suitably specifying the Borel set A. In particular, if A 0 := X \ {X * 1 , . . . , X * Kn } and A l := {X * i : N i,n = l}, for any l = 1, . . . , n, then one has

Dn (0) = P[X n+1 ∈ A 0 | X n ] = E[Q(A 0 ) | X n ] = V n+1,kn+1 V n,kn (5) 
and Dn (l

) = P[X n+1 ∈ A l | X n ] = E[Q(A l ) | X n ] = (l -σ)m l,n V n+1,kn V n,kn . (6) 
Estimators ( 5) and ( 6) provide Bayesian counterparts to the celebrated Good-Turing estimator Ďn (l) = (l + 1)m l+1,n /n, for any l = 0, 1, . . . , n -1, which is frequentist nonparametric estimator of D n (l) introduced in [START_REF] Good | The population frequencies of species and the estimation of population parameters[END_REF]. The most notable difference between Dn (l) and Ďn (l) consists in the use of the information in X n : Ďn (l) is a function of m l+1,n , and not on (k n , m l,n ) as one would intuitively expect for an estimator of D n (l). See [START_REF] Favaro | A new estimator of the discovery probability[END_REF] for details.

Under the two parameter PD prior, [START_REF] Favaro | Rediscovery Good-Turing estimators via Bayesian nonparametrics[END_REF] established a large n asymptotic relationship between Dn (l) and Ďn (l). Due to the irregular behaviour of the m l,m 's, the peculiar dependency on m l+1,n makes Ďn (l) a sensible estimator only if l is sufficiently small with respect to n. See, e.g., [START_REF] Good | The population frequencies of species and the estimation of population parameters[END_REF] and [START_REF] Sampson | Empirical linguistics[END_REF] for examples of absurd estimates determined by Ďn (l). In order to overcome this drawback, [START_REF] Good | The population frequencies of species and the estimation of population parameters[END_REF] See Chapter 7 in [START_REF] Sampson | Empirical linguistics[END_REF] and references therein for a comprehensive account on smoothing techniques for Ďn (l). According to Theorem 1 in [START_REF] Favaro | Rediscovery Good-Turing estimators via Bayesian nonparametrics[END_REF], as n becomes large, Dn (l) is asymptotically equivalent to Ďn (l; S PD ), where S PD denotes a smoothing rule such that

m ′ l,n = σ(1 -σ) l-1 l! k n . (7) 
Note that ( 7) is a proper smoothing rule since i≥1 σ(1-σ) l-1 /l! = 1. While the smoothing approach were introduced as an ad hoc tool for post processing the irregular m l,n 's in order to improve the performance of Ďn (l), Theorem 1 in [START_REF] Favaro | Rediscovery Good-Turing estimators via Bayesian nonparametrics[END_REF] shows that, for a large sample size n, a similar smoothing mechanism underlies the Bayesian nonparametric framework (1) with a two parameter PD prior. Interestingly, the smoothing rule S PD has been proved to be a generalization of the Poisson smoothing rule discussed in [START_REF] Good | The population frequencies of species and the estimation of population parameters[END_REF] and [START_REF] Engen | Stochastic abundance models[END_REF].

Contributions of the paper and outline

While proposing a Bayesian nonparametric framework for estimating the l-discovery, Lijoi et al. (2007) did not consider the problem of associating a measure of uncertainty to Dn (l). In this paper we provide an answer to this important problem. With a slight abuse of notation, throughout the paper we write X | Y to denote a random variable whose distribution coincides with the conditional distribution of X given Y . Since Dn (l

) = E[Q(A l ) | X n ]
, the problem of deriving credible intervals for Dn (l) boils down to the problem of characterizing the distribution of Q(A l ) | X n , for any l = 0, 1, . . . , n. Indeed this distribution takes on the interpretation of the posterior distribution of D n (l) with respect to the sample X n . For any Gibbs-type priors we provide an explicit expression for E n,r (l

) := E[(Q(A l )) r | X n ], for any r ≥ 1. Due to the bounded support of Q(A l ) | X n , the sequence (E n,r (l)) r≥1 characterizes uniquely the distribution of Q(A l ) | X n and
, in principle, it can be used to obtain an approximate evaluation of such a distribution. In particular, under the two parameter PD prior and the normalized GG prior we present an explicit and simple characterization of the distribution of

Q(A l ) | X n .
We also study the large n asymptotic behaviour of Dn (l), thus extending Theorem 1 in [START_REF] Favaro | Rediscovery Good-Turing estimators via Bayesian nonparametrics[END_REF] to Gibbs-type priors. Specifically, we show that, as n tends to infinity, Dn (0) and Dn (l) are asymptotically equivalent to D′ n (0) = σk n /n and D′ n (l) = (l -σ)m l,n /n, respectively. In other terms, at the order of asymptotic equivalence, any Gibbs-type prior leads to the same approximating estimator D′ n (l). As a corollary we have that Dn (l) is asymptotically equivalent to the smoothed Good-Turing estimator Ďn (l; S PD ), namely S PD is invariant with respect to any prior of Gibbs-type.

Refinements of D′

n (l) are presented for the two parameter PD prior and the normalized GG prior. A thorough study of the large n asymptotic behaviour of (2) reveals that: i) for V n,kn in (3) and (4) the estimator Dn (l) admits large n asymptotic expansions whose first order truncations coincide with D′ n (l); ii) second order truncations depend on θ > -σ and τ > 0, respectively, thus providing approximating estimators which are different between the two parameter PD prior and the normalized GG prior. A discussion of these second order asymptotic refinements is presented with a view towards the problem of finding corresponding refinements of the relationship between Dn (l) and Ďn (l; S PD ).

Our results are illustrated through a simulation study and the analysis of a benchmark Expressed Sequence Tags (ESTs) dataset. To the best of our knowledge, only the two parameter PD prior has been so far applied in the context of Bayesian nonparametric inference for the discovery probability. In this paper we consider both the two parameter PD prior and the normalized GG prior, thus providing their comparative study. It turns out that the two parameter PD prior leads to estimates of the l-discovery, as well as associated credible intervals, which are very close to those obtained under the assumption of the normalized GG prior. This unexpected behaviour is motivated by resorting to a representation of the two parameter PD prior in terms of a suitable mixture of normalized GG priors. Credible intervals for Dn (l) are also compared with corresponding confidence intervals for the Good-Turing estimator, which were obtained in [START_REF] Mao | Predicting the conditional probability of discovering a new class[END_REF] and [START_REF] Baayen | Word frequency distributions[END_REF]. A second numerical illustration is devoted to the large n asymptotic behaviour of Dn (l). In particular, by using simulated data we compare the exact estimator Dn (l) with its first order and second order approximations.

In Section 2 we present some distributional results for Q(A l ) | X n ; these results provide a fundamental tool for deriving credible intervals for the Bayesian nonparametric estimator Dn (l). In section 3 we investigate the large n asymptotic behaviour of Dn (l), and we discuss its relationships with smoothed Good-Turing estimators. Section 4 contains some numerical illustrations. Proofs and technical derivations are postponed to the Appendix.

2 Credible intervals for Dn (l)

We first recall an integral representation for the V n,kn 's characterizing the predictive distributions (2). This representation was introduced by [START_REF] Pitman | Poisson-Kingman partitions[END_REF], and it leads to a useful parameterization for Gibbs-type priors. See also Gnedin and Pitman (2006) for details. For any σ ∈ (0, 1) let f σ be the density function of a positive σ-stable random variable, that is +∞ 0 exp{-tx}f σ (x)dx = exp{-t σ } for any t > 0. Then, for any nonnegative function h, one has

V n,kn = V h,(n,kn) := σ kn Γ(n -σk n ) +∞ 0 h(t)t -σkn 1 0 p n-1-σkn f σ ((1 -p)t)dpdt. ( 8 
)
According to ( 2) and ( 8), a Gibbs-type prior is parameterized by (σ, h, ν 0 ). We denote by Q h a Gibbs-type random probability measure with parameter (σ, h, ν 0 ). The expression (3) for the two parameter PD prior is recovered from ( 8) by setting h(t) = p(t; σ, θ) := σΓ(θ)t -θ /Γ(θ/σ), for any σ ∈ (0, 1) and θ > -σ. The expression (4) for the normalized GG prior is recovered from ( 8) by setting h(t) = g(t; σ, τ ) := exp{τ σ -τ t}, for any τ > 0. See Section 5.4 in [START_REF] Pitman | Poisson-Kingman partitions[END_REF] for details.

Besides providing a parameterization for Gibbs-type priors, the representation (8) leads to a simple numerical evaluation of V h,(n,kn) . Specifically, let B a,b be a Beta random variable with parameter (a, b) and, for any σ ∈ (0, 1) and c > -1, let S σ,c be a positive random variable with density function

f Sσ,c (x) = Γ(cσ +1)x -cσ f σ (x)/Γ(c+1). S σ,c
is typically referred to as the polynomially tilted σ-stable random variable. Simple algebraic manipulations of (8) lead to write

V h,(n,kn) = σ kn-1 Γ(k n ) Γ(n) E h S σ,kn B σkn,n-σkn , (9) 
with B σkn,n-σkn independent of S σ,kn . According to (9) a Monte Carlo evaluation of V h,(n,kn) can be performed by sampling from B σkn,n-σkn and S σ,kn . In this respect, an efficient rejection sampling for S σ,c has been proposed by [START_REF] Devroye | Random variate generation for exponentially and polynomially tilted stable distributions[END_REF]. The next theorem, combined with ( 9), provides a practical tool for obtaining an approximate evaluation of the credible intervals for Dn (l).

Theorem 1. Let X n be a sample from

Q h featuring K n = k n species, labelled by X * 1 , . . . , X * Kn , with corresponding frequencies (N 1,n , . . . , N Kn,n ) = (n 1,n , . . . , n kn,n ). Furthermore, for any set A in the Borel sigma-algebra of X let µ n,kn (A) = 1≤i≤kn (n i,n -σ)δ X * i (A). Then, for any r ≥ 1 E[(Q h (A)) r | X n ] = r i=0 V h,(n+r,kn+r-i) V h,(n,kn) (ν 0 (A)) r-i (10) × 0≤j1≤•••≤ji≤r-i i q=1 (µ n,kn (A) + j q (1 -σ) + q -1). Let M n := (M 1,n , . . . , M n,n ) = (m 1,n , .
. . , m n,n ) be the frequency counts from a sample X n from Q h . As pointed out in the Introduction, in order to obtain credible intervals for Dn (l) we are interested in Theorem 1 for two particular specifications of the Borel set A, namely A 0 = X \ {X * 1 , . . . , X * Kn } and A l = {X * i : N i,n = l}, for any l = 1, . . . , n. For these Borel sets, (10) reduces to

E n,r (0) = E[(Q h (A 0 )) r | X n ] = r i=0 r i (-1) i V h,(n+i,kn) V h,(n,kn) (n -σk n ) i (11) 
and

E n,r (l) = E[(Q h (A l )) r | X n ] = V h,(n+r,kn) V h,(n,kn) ((l -σ)m l,n ) r , (12) 
respectively. Equations ( 11) and ( 12) take on the interpretation of the r-th moments of the posterior distribution of D n (0) and D n (l) under the assumption of a Gibbs-type prior. In particular for r = 1, by using the recursion 11) and ( 12) reduce to the Bayesian nonparametric estimators of D n (l) displayed in ( 5) and ( 6), respectively.

V h,(n,kn) = (n -σk n )V h,(n+1,kn) + V h,(n+1,kn+1) , (
The distribution of Q h (A l ) | X n is on [0, 1] and, therefore, it is characterized by (E n,r (l)) r≥1 .
The approximation of a distribution given its moments, is a longstanding problem which has been tackled

by various approaches such as expansions in polynomial bases, maximum entropy methods and mixtures of distributions. For instance, the polynomial approach consists in approximating the density

function of Q h (A l ) | X n
with a linear combination of orthogonal polynomials, where the coefficients of the combination are determined by equating E n,r (l) with the moments of the approximating density.

The higher the degree of the polynomials, or equivalently the number of moments used, the more accurate the approximation. As a rule of thumb, ten moments turn out to be enough in most cases.

See [START_REF] Provost | Moment-based density approximants[END_REF] for details. The approximating density function of Q h (A l ) | X n can then be used to obtain an approximate evaluation of the credible intervals for Dn (l). This is typically done by generating random variates, via rejection sampling, from the approximating distribution of Q h (A l ) | X n . See [START_REF] Arbel | Full Bayesian inference with hazard mixture models[END_REF] for details.

Under the assumption of the two parameter PD prior and the normalized GG prior, ( 11) and ( 12) lead to explicit and simple characterizations for the distributions of

Q p (A l ) | X n and Q g (A l ) | X n ,
respectively. Before stating these results, let us introduce some additional notation. Let G a,1 be a Gamma random variable with parameter (a, 1) and, for any σ ∈ (0, 1) and b > 0, let R σ,b be a random variable with density function f R σ,b (x) = exp{b σ -bx}f σ (x). R σ,b is typically referred to as the exponentially tilted σ-stable random variable. Finally, let us define

W a,b = bR σ,b bR σ,b + G a,1 , (13) 
where G a,1 is independent of R σ,b . Note that the random variable W a,b is nonnegative and defined on the set [0, 1]. In the next propositions we show that the distributions of

Q p (A l ) | X n and Q g (A l ) | X n ,
for any l = 0, 1, . . . , n, are obtained by a suitable randomization of W a,b over b.

Proposition 1. Let X n be a sample from Q p featuring K n = k n species with M n = (m 1,n , . . . , m n,n ). Furthermore, let Z p be a nonnegative random variable with density function of the form

f Zp (x) = σ Γ(θ/σ + k n ) x θ+σkn-1 e -x σ 1 (0,+∞) (x).
Then,

Q p (A 0 ) | X n d = W n-σkn,Zp d = B θ+σkn,n-σkn and Q p (A l ) | X n d = B (l-σ)m l,n ,n-σkn-(l-σ)m l,n (1 -W n-σkn,Zp ) d = B (l-σ)m l,n ,θ+n-(l-σ)m l,n .
Proposition 2. Let X n be a sample from Q g featuring K n = k n species with M n = (m 1,n , . . . , m n,n ). Furthermore, let Z g be a nonnegative random variable with density function of the form

f Zg (x) = σx σkn-n (x -τ ) n-1 exp{-x σ }1 (τ,+∞) (x) 0≤i≤n-1 n-1 i (-τ ) i Γ(k n -i/σ; τ σ ) . ( 14 
)
Then,

Q g (A 0 ) | X n d = W n-σkn,Zg and 
Q g (A l ) | X n d = B (l-σ)m l,n ,n-σkn-(l-σ)m l,n (1 -W n-σkn,Zg ).
According to Proposition 1 and Proposition 2, the random variables

Q p (A 0 ) | X n and Q g (A 0 ) | X n have a common structure driven by (13). Moreover, for any l = 1, . . . , n, note that Q p (A l ) | X n and Q g (A l ) | X n are obtained by taking the same random proportion B (l-σ)m l,n ,n-σkn-(l-σ)m l,n of (1 -W n-σkn,Zp
) and (1 -W n-σkn,Zg ), respectively. Under the assumption of the two parameter PD prior and the normalized GG prior, Proposition 1 and Proposition 2 provide practical tools for deriving credible intervals for the Bayesian nonparametric estimator Dn (l), for any l = 0, 1, . . . , n. This is typically done by performing a numerical evaluation of appropriate quantiles of the distribution of Q p (A l ) | X n and Q g (A l ) | X n . Note that, in the special case of the Beta distribution, quantiles can be also determined explicitly as solutions of a certain class of non-linear ordinary differential equations. See [START_REF] Steinbrecher | Quantile mechanics[END_REF] and references therein for a detailed account on this approach.

In this paper we resort to a Monte Carlo evaluation of the credible intervals of Dn (l); this approach requires to generate random variates from the distribution of Q

p (A l ) | X n and Q g (A l ) | X n .
With regards to the two parameter PD prior, sampling from Q p (A l ) | X n , for any l = 0, 1, . . . , n, is straightforward. Indeed, according to Proposition 1, it requires to generate random variates from a Beta distribution. With regards to the normalized GG prior, sampling from Q p (A l ) | X n , for any l = 0, 1, . . . , n, is also straightforward. First, let us consider the problem of sampling from Z g with density function ( 14). It can be easily verified that the density function of the transformed random variable Z σ g is log-concave and, therefore, one can sample from Z σ g by means of the adaptive rejection sampling of [START_REF] Gilks | Adaptive rejection sampling for Gibbs sampling[END_REF]. Given Z g , the problem of sampling from W n-σkn,Zg boils down to the problem of generating random variates from the distribution of the exponentially tilted σ-stable random variable R σ,Zg . This can be done by resorting to an efficient rejection sampling proposed by [START_REF] Devroye | Random variate generation for exponentially and polynomially tilted stable distributions[END_REF].

Large sample asymptotics for Dn (l)

We investigate the large n asymptotic behavior of the Bayesian nonparametric estimator Dn (l), with a view towards its asymptotic relationships with smoothed Good-Turing estimators. We recall from the Introduction that, under a Gibbs-type prior, the most notable difference between the Good-Turing estimator Ďn (l) and Dn (l) can be traced back to the different use of the information contained in the sample X n . Specifically: i) Ďn ( 0) is a function of m 1,n while Dn (0) is a function of k n ; ii) Ďn (l) is a function of m l+1,n while Dn (l) is a function of m l,n , for any l = 1, . . . , n. Let a n ≃ b n mean that lim n→+∞ a n /b n = 1, namely a n and b n are asymptotically equivalent as n tends to infinity.

Hereafter we show that, as n tends to infinity, Dn (l) ≃ Ďn (l; S PD ), where S PD is the smoothing rule displayed in (7). Such a result thus generalizes Theorem 1 in [START_REF] Favaro | Rediscovery Good-Turing estimators via Bayesian nonparametrics[END_REF] to the entire class of Gibbs-type priors.

Theorem 2. Let X n be a sample from

Q h featuring K n = k n species with M n = (m 1,n , . . . , m n,n ). Then, Dn (0) = σk n n + o k n n (15) 
and

Dn (l) = (l -σ) m l,n n + o m l,n n . (16) 
The asymptotic equivalence between Dn (l) and Ďn (l; S PD ) arises by combining Theorem 2 with an interesting interplay between the large n asymptotic behaviors of K n and M l,n . Specifically, let

A n a.s.
≃ B n as n → +∞ mean that lim n→+∞ A n /B n = 1 almost surely, namely A n and B n are almost surely asymptotically equivalent as n tends to infinity. By a direct application of Proposition 13 in [START_REF] Pitman | Poisson-Kingman partitions[END_REF] and Corollary 21 in [START_REF] Gnedin | Notes on the occupancy problem with infinitely many boxes: general asymptotics and power law[END_REF] we can write

M l,n a.s. ≃ σ(1 -σ) l-1 l! K n , (17) 
as n → +∞. That is, as n tends to infinity the number of species with frequency l becomes a proportion σ(1 -σ) l-1 /l! of the number of species. By suitably combining ( 15) and ( 16) with (17), we obtain

Dn (l) ≃ (l + 1) m l+1,n n ≃ (l + 1) σ(1-σ) l (l+1)! k n n , (18) 
for any l = 0, 1, . . . , n. See the Appendix for details on (18). The first equivalence in (18) shows that, as n tends to infinity, Dn (l) is asymptotically equal to the Good-Turing estimator Ďn (l), whereas the second equivalence shows that, as n tends to infinity, the frequency counts m l,n in Ďn (l) are smoothed via S PD . We refer to Section 2 in [START_REF] Favaro | Rediscovery Good-Turing estimators via Bayesian nonparametrics[END_REF] for a relationship between the smoothing rule S PD and the Poisson smoothing in [START_REF] Good | The population frequencies of species and the estimation of population parameters[END_REF].

A peculiar feature of S PD is that it does not depend on the function h characterizing the Gibbstype prior. In other terms the smoothing rule S PD is invariant with respect to the choice of any prior of Gibbs-type; for instance, the two parameter PD prior and the normalized GG prior lead to the same smoothing rule S PD . This invariance property of S PD is clearly determined by the fact that the asymptotic equivalences in (18) arise by combining (17), which does not depend on h, with (15) and ( 16), which also do not depend of h. Intuitively, smoothing rules depending on the function h, if any exists, necessarily require to combine refinements of the asymptotic expansions ( 15) and ( 16) with corresponding refinements of the asymptotic equivalence (17). Under the assumption of the two parameter PD prior and the normalized GG prior, the next propositions provide asymptotic refinements of Theorem 2.

Proposition 3. Let X n be a sample from Q p featuring K n = k n species with M n = (m 1,n , . . . , m n,n ). Then, Dn (0) = σk n n + θ n + o k n n and Dn (l) = (l -σ) m l,n n -(l -σ) θm l,n n 2 + o m l,n n 2 . Proposition 4. Let X n be a sample from Q g featuring K n = k n species with M n = (m 1,n , . . . , m n,n ). Then, Dn (0) = σk n n + τ nk -1/σ n n + o k n n and Dn (l) = (l -σ) m l,n n -(l -σ) τ nk -1/σ n m l,n n 2 + o m l,n n 2 .
According to Proposition 3 and Proposition 4, the large n asymptotic approximations in Theorem 2 can be interpreted as first order approximations, in the sense that they coincide with the one-term truncations of the asymptotic series expansions of Dn (0) and Dn (l), respectively. The combination of these first order approximations with (17) led to the asymptotic relationship in (18). As a direct consequence S PD takes on the interpretation of a first order smoothing rule, namely a smoothing rule independent of the function h. In Proposition 3 and Proposition 4 we introduced second order approximations of Dn (0) and Dn (l) by considering a two-term truncation of the corresponding asymptotic series expansions. Note that it is sufficient to include the second term in order to introduce the dependency on θ > -σ and τ > 0, respectively, and then obtaining approximations of Dn (0) and Dn (l) which are different between the two parameter PD prior and the normalized GG prior.

Despite the availability of the second order approximations in Proposition 3 and Proposition 4, it can be easily verified that their combination with corresponding second order refinements of ( 17) does not lead to a second order refinement of ( 18). Indeed such a combination still leads to the first order asymptotic equivalence displayed in (18). Specifically, if we let A n = O(B n ) as n → +∞ mean that lim sup n→+∞ A n /B n < +∞ almost surely, then a second order refinement of (17), arising from [START_REF] Gnedin | Notes on the occupancy problem with infinitely many boxes: general asymptotics and power law[END_REF], can be expressed as follows

M l,n = σ(1 -σ) l-1 l! K n + O K n n σ/2 . ( 19 
)
However, second order terms in Propositions 3 and Proposition 4 are absorbed by O K n /n σ/2 in (19). Furthermore, even if a finer version of ( 19) was available, its combination with Propositions 3 and Proposition 4 would produce higher order terms preventing the resulting expression from being interpreted as a Good-Turing estimator and, therefore, any smoothing rule from being elicited. In other terms, under the two parameter PD prior and the normalized GG prior, the relationship between Dn (l) and Ďn (l) only holds at the order of asymptotic equivalence.

Illustrations

We illustrate our results through the analysis of synthetic data and real data. Synthetic data are generated from the Zeta distribution, whose power law behavior is common in a variety of applications. See [START_REF] Sampson | Empirical linguistics[END_REF] and references therein for applications of the Zeta distribution in empirical linguistics. Recall that a Zeta random variable Z is such that P[Z = z] = z -s /C(s), for z = {1, 2, . . .} and s > 1, where C(s) = i≥1 i -s . We consider a Zeta distribution with parameter s = 1.1 and s = 1.5. For each one of these values we draw 500 samples of size n = 1000 from Z, we order them according to the number of observed species k n , and we split them in 5 groups: for i = 1, 2, . . . , 5, the i-th group of samples will be composed by 100 samples featuring a total number of observed species k n that stays between the quantiles of order (i -1)/5 and i/5 of the empirical distribution of k n .

Then we pick at random one sample for each group and label it with the corresponding index i. This procedure leads to five sample for each one of the two values of the parameter s, namely s = 1.1 and s = 1.5. With regards to the analysis of real data, we consider ESTs data generated by sequencing two Naegleria gruberi complementary DNA libraries; these are prepared from cells grown under different culture conditions, namely aerobic and anaerobic conditions. The rate of gene discovery depends on the degree of redundancy of the library from which such sequences are obtained. Correctly estimating the relative redundancy of such libraries, as well as other quantities such as the probability of sampling a new or a rarely observed gene, is of great importance since it allows one to optimize the use of expensive experimental sampling techniques. The Naegleria gruberi aerobic library consists of n = 959 ESTs with k n = 473 distinct genes and m l,959 = 346, 57, 19, 12, 9, 5, 4, 2, 4, 5, 4, 1, 1, 1, 1, 1, 1, for l = {1, 2, . . . , 12} ∪ {16, 17, 18} ∪ {27} ∪ {55}. The Naegleria gruberi anaerobic library consists of n = 969 ESTs with k n = 631 distinct genes and m l,969 = 491, 72, 30, 9, 13, 5, 3, 1, 2, 0, 1, 0, 1, for l ∈ {1, 2, . . . , 13}. We refer to [START_REF] Susko | Estimating and comparing the rates of gene discovery and expressed sequence tag (EST) frequencies in EST surveys[END_REF] for a detailed account on the Naegleria gruberi libraries.

We focus on the two parameter PD prior and the normalized GG prior. In order to apply our results, we need to specify (σ, θ) and (σ, τ ). Although one can undertake a full Bayesian approach by specifying a prior distribution for these parameters, for the sake of simplicity here we undertake an empirical Bayes approach. In other terms we choose the values of (σ, θ) and (σ, τ ) that maximize the likelihood function with respect to the sample X n featuring K n = k n and (N 1,n , . . . , N Kn,n ) = (n 1,n , . . . , n kn,n ). Formally, we set (σ, θ) = (σ, θ) and (σ, τ ) = (σ, τ ) where (σ, θ) = arg max

(σ,θ) kn-1 i=0 (θ + iσ) (θ) n kn i=1 (1 -σ) (ni,n-1) (20) 
and (σ, τ ) = arg max

(σ,τ ) e τ σ σ kn-1 Γ(n) n-1 i=0 n -1 i (-τ ) i Γ k n - i σ ; τ σ kn i=1 (1 -σ) (ni,n-1) . (21) 
Under the assumption of the two parameter PD prior, [START_REF] Favaro | Rediscovery Good-Turing estimators via Bayesian nonparametrics[END_REF] showed that for large datasets there are no relevant differences between the full Bayesian approach and the empirical Bayes approach. This is because the posterior distribution of the parameter (σ, θ) is highly concentrated around (σ, θ). It can be checked that a similar behaviour characterizes the posterior distribution of (σ, τ ). We refer to [START_REF] Favaro | Rediscovery Good-Turing estimators via Bayesian nonparametrics[END_REF] and Lijoi et al. (2007) for a detailed discussion of the empirical Bayes approach in relationship with the full Bayesian approach.

For each one of the proposed datasets, Table 1 reports the sample size n, the number of species k n , and the values of (σ, θ) and (σ, τ ) obtained by the maximizations ( 20) and ( 21), respectively. Note that the value of σ obtained under the two parameter PD prior coincides, up to a negligible error, with the value of σ obtained under the normalized GG prior. In general, we expect the same behaviour for any Gibbs-type prior. This is not surprising if we look at the likelihood function of a sample X n from a Gibbs-type random probability measure Q h , i.e.,

σ kn kn i=1 (1 -σ) (ni-1) Γ(n -σk n ) +∞ 0 h(t)t -σkn 1 0 p n-1-σkn f σ ((1 -p)t)dpdt. (22) 
Apart from σ, any other parameter is introduced in ( 22) via the function h, which does not depend on the sample size n and the number of species k n . Then, it seems reasonable to expect that for large n and k n the maximization of ( 22) with respect to σ leads to a value σ which is very close to the value that would be obtained by maximizing ( 22) with h(t) = 1. In other terms, the larger n and k n tend to be, the more the effect of the function h on σ tends to vanish. 

Credible intervals

We apply Propositions 1 and Proposition 2 in order to endow the Bayesian nonparametric estimator Dn (l) with credible intervals. With regards to the two parameter PD prior, for l = 0 we generate 5000 draws from the distribution of a beta random variable B θ+σkn,n-σkn while, for l ≥ 1 we sample 5000 draws from the distribution of a beta random variable B (l-σ)m l,n , θ+n-(l-σ)m l,n . In both cases, we compute the quantiles of order {0.025, 0.975} of the empirical distribution and obtain 95% posterior credible intervals for Dn (l). The procedure for the normalized GG case is only slightly more elaborate but still quite straightforward. By exploiting the adaptive rejection algorithm by [START_REF] Gilks | Adaptive rejection sampling for Gibbs sampling[END_REF], we sample 5000 draws from Z g with density function ( 14). In turn, we sample 5000 draws from W n-σkn,Zg . We then use the quantiles of order {0.025, 0.975} of the empirical distribution of Table 2: Simulated data with s = 1.1. We report the true value of the probability D n (l) and the Bayesian nonparametric estimates of D n (l) with 95% credible intervals. Under the two parameter PD prior and the normalized GG prior, and with respect to the synthetic data, Table 2 and Table 3 show the estimated l-discoveries, for l = 0, 1, 5, 10, and the corresponding 95% posterior credible intervals. It is apparent that the two parameter PD prior and the normalized GG prior lead to the same inferences for the l-discovery. We retain that such a behaviour is mainly Table 3: Simulated data with s = 1.5. We report the true value of the probability D n (l) and the Bayesian nonparametric estimates of D n (l) with 95% credible intervals. determined by the fact that the two parameter PD prior, for any σ ∈ (0, 1) and θ > 0, may be viewed as a mixture of normalized GG priors. Specifically, let Q p (σ, θ) be the distribution of the two parameter PD random probability measure, let Q g (σ, b) be the distribution of the normalized GG random probability measure, and let G θ/σ,1 be a Gamma random variable with parameter (θ/σ, 1).

Then, according to Proposition 21 in [START_REF] Pitman | The two parameter Poisson-Dirichlet distribution derived from a stable subordinator[END_REF], we can write

Q p (σ, θ) = Q g (σ, G 1/σ θ/σ,1
). In other terms, assuming a two parameter PD prior is equivalent to assuming a normalized GG prior with an Gamma hyper prior over the parameter τ 1/σ . As we pointed out before, for large datasets the distribution of G 1/σ θ/σ,1 | X n tends to be highly concentrated around τ . Therefore, the larger the sample size n and the number of species k n tend to be, the more the two parameter PD prior and the normalized GG prior lead to the same inferences for the l-discovery.

Our study is completed by comparing the Bayesian nonparametric estimator Dn (l) with the Good-Turing estimator Ďn (l). As expected, Good-Turing estimates are not reliable as soon as l is not very small compared to n. See, e.g., the cases l = 5 and l = 10. Of course, as pointed out in the Introduction, these estimates may be improved by introducing a suitable smoothing rule for the frequency counts m l,n 's. We are not aware of a non-asymptotic approach for devising confidence intervals for Ďn (l); furthermore, we found that different procedures are used according to the choice of l = 0 and l ≥ 1. We relied on the asymptotic confidence interval by [START_REF] Mao | Predicting the conditional probability of discovering a new class[END_REF] for l = 0 and on the confidence interval described by [START_REF] Church | A comparison of the enhanced Good-Turing and delated estimation methods for estimating probabilities of english bigrams[END_REF] for l ≥ 1. See also [START_REF] Baayen | Word frequency distributions[END_REF] for details. We observe that the confidence intervals for Ďn (l) are wider than the corresponding credible intervals for Dn (l) when l = 0, and narrower if l ≥ 1. Differently from the credible intervals for Dn (l), the confidence intervals for Ďn (l) are symmetric about Ďn (l); such a behaviour is determined by the Gaussian approximation used by [START_REF] Mao | Predicting the conditional probability of discovering a new class[END_REF] and [START_REF] Church | A comparison of the enhanced Good-Turing and delated estimation methods for estimating probabilities of english bigrams[END_REF] to derive confidence intervals.

Table 4: Naegleria gruberi aerobic and anaerobic libraries. For each sample and for l = 0, 1, 5, 10, we report the Bayesian nonparametric estimates of D n (l) with 95% credible intervals. 

Large sample approximations

We conclude our illustration by analyzing the accuracy of the large n approximations of Dn (l) introduced in Theorem 2, Proposition 3 and Proposition 4. To this end we consider the simulated datasets described above. Under the assumption of the two parameter PD prior and the normalized GG prior, and for l = 0, 1, 5, 10, we compare the true discovery probabilities D n (l) with the Bayesian nonparametric estimates of D n (l) and with their first order and second order approximations. Note that Theorem 2 shows that the first order approximation of Dn (l) is invariant within the whole class of Gibbs-type priors and involves only the parameter σ. As displayed in Table 1, the empirical Bayes estimates for the parameter σ can be slightly different under the two parameter PD and the normalized GG prior. Nonetheless, given that this difference is almost negligible, in this illustration we considered only the first oder approximation of Dn (l) with the parameter σ = σ set as indicated in (20).

Results of this comparative study are reported in Table 5. We also include, as an overall measure of the performance of the exact and approximate estimators, the sum of squared errors (SSE), defined, for a generic estimator Dn (l) of the l-discovery, as SSE( Dn (l)) = 0≤l≤n ( Dn (l) -d n (l)) 2 , with d n (l)

being the true value of D n (l). It is interesting to notice that, for all the considered samples, there are not substantial differences between the SSEs of the exact Bayesian nonparametric estimates and the SSEs of the first and second order approximate Bayesian nonparametric estimates. Arguably, given the sample size of the datasets we are considering, the first order approximation is already pretty accurate and, thus, the approximation error does not contribute significantly to increase the SSE. Finally, as expected, the order of magnitude of the SSE referring to the not-smoothed Good-Turing estimator is much larger than the one corresponding to the Bayesian nonparametric estimators.

Table 5: Simulated data with s = 1.1. We report the true value of the probability D n (l), the Good-Turing estimates of D n (l) and the exact and approximate Bayesian nonparametric estimates of D n (l). 

A Appendix

This appendix contains: i) the proofs of Theorems 1, Proposition 1, Proposition 2, Theorem 2, Proposition 3 and Proposition 4; ii) details on the derivation of the asymptotic equivalence between Dn (l) and Ďn (l; S PD ).

Let X n = (X 1 , . . . , X n ) be a sample from a Gibbs-type RPM Q h . Recall that, due to the discreteness of Q h , the sample X n features K n = k n species, labelled by X * 1 , . . . , X * Kn , with corresponding frequencies (N 1,n , . . . , N Kn,n ) = (n 1,n , . . . , n kn,n ). Furthermore, let M l,n = m l,n be the number of species with frequency l, namely M l,n = 1≤i≤Kn 1 {Ni,n=l} such that 1≤i≤n M i,n = K n and 1≤i≤n iM i,n = n. For any σ ∈ (0, 1) let f σ be the density function of a positive σ-stable random variable. According to Proposition 13 in [START_REF] Pitman | Poisson-Kingman partitions[END_REF], as n → +∞

K n n σ a.s. -→ S σ,h (23) 
and

M l,n n σ a.s. -→ σ(1 -σ) l-1 l! S σ,h , (24) 
where S σ,h is a random variable with density function f S σ,h (s) = σ -1 s -1/σ-1 h(s -1/σ )f σ (s -1/σ ). Note that by the fluctuation limits displayed in ( 23) and ( 24), as n tends to infinity the number of species with frequency l in a sample of size n from Q h becomes, almost surely, a proportion σ(1 -σ) l-1 /l! of the total number of species in the sample. All the random variables introduced in this Appendix are meant to be assigned on a common probability space (Ω, F , P).

A.1 Proofs

Proof of Theorem 1. We proceed by induction. Note that the result holds for r = 1, and obviously for any sample size n ≥ 1. Let us assume that it holds for a given r ≥ 1, and also for any sample size n ≥ 1. Then, the (r + 1)-th moment of Q h (A) | X n can be written as follows

E[Q r h (A) | X n ] = A • • • A P[X n+r+1 ∈ A | X n , X n+1 = x n+1 , . . . , X n+r = x n+r ] × P[X n+r ∈ dx n+r | X n , X n+1 = x n+1 , . . . , X n+r-1 = x n+r-1 ] × • • • × P[X n+2 ∈ dx n+2 | X n , X n+1 = x n+1 ]P[X n+1 ∈ dx n+1 | X n ] = A E[Q r h (A) | X n , X n+1 = x n+1 ] × V h,(n+1,kn+1) V h,(n,kn) ν 0 (dx n+1 ) + V h,(n+1,kn) V h,(n,kn) kn i=1 (n i -σ)δ X * i (dx n+1 ) .
Further, by the assumption on the r-th moment and by dividing A

into (A \ X n ) ∪ (A ∩ X n ), one obtains E[Q r+1 h (A) | X n ]
{X * i : N i,n = l}, for any l = 1, . . . , n. The two parameter PD prior is a Gibbs-type prior with h(t) = g(t; σ, τ ) := exp{τ σ -τ t}, for any τ > 0. By a direct application of Theorem 1 we can write

E[Q r g (A 0 ) | X n ] (25) = σΓ(n) C σ,τ,n,kn Γ(n -σk n ) 1 0 w r (1 -w) n-1-σkn +∞ 0 t -σkn e -τ t f σ (wt)dtdw, where C σ,τ,n,kn := σΓ(n) Γ(n -σk n ) +∞ 0 t -σkn e -τ t 1 0 (1 -w) n-1-σkn f σ (wt)dwdt = n-1 i=0 n -1 i (-τ ) i Γ(k -i/σ; τ σ ).
Hereafter we show that ( 25) coincides with the r-th moment of the random variable W n-σkn,Zg . Given Z g = z it is easy to find that the distribution of W n-σkn,z has the following density function

f W n-σkn ,z (w) = exp{z σ } zΓ(n -k n σ) (1 -w) n-knσ-1 +∞ 0 u n-knσ e -u f σ uw z du.
By randomizing over z with respect to the distribution of Z g provides the distribution of W n-σkn,Zg .

Specifically, x (l-σ)m l,n +r-1 (1 -x) 1≤i =l≤n imi,n-σ 1≤i =l≤n mi,n-1 × +∞ 0 t -σkn exp{-τ t} x (l-σ)m l,n -1 (1 -x) 1≤i =l≤n imi,n-σ 1≤i =l≤n mi,n-1 × σΓ(n) Γ(n-σkn) +∞ 0 t -σkn exp{-τ t} 1 0 x r (1 -z) r (1 -z) n-1-σkn f σ (zt)dtdz σ kn Γ(n-σkn) +∞ 0 t -σkn exp{-τ t} 1 0 (1 -z) n-1-σkn f σ (zt)dtdz dx, which is the r-th moment of the scale mixture B (l-σ)m l,n ,n-σkn-(l-σ)m l,n (1 -W n-σkn,Zg ), where W n-σkn,Zg is the random variable characterized above, and where the Beta random variable B (l-σ)m l,n ,n-σkn-(l-σ)m l,n is independent of the random variable (1 -W n-σkn,Zg ). The proof is completed.

f W n-σkn ,Zg (w) = σ C σ,τ,n,kn Γ(n -σk n ) (1 -w) n-σkn -1 × ∞ τ z -n+σkn-1 (z -τ ) n-1 ∞ 0 u n-
Proof of Theorem 2. According to the fluctuation limit (23) there exists a nonnegative and finite random variable S σ,h such that n -σ K n a.s.

-→ S σ,h as n → +∞. Let Ω 0 := {ω ∈ Ω : lim n→+∞ n -σ K n (w) = S σ,h (ω)}. Furthermore, let us define g 0,h (n, k n ) = V h,(n+1,kn+1) /V h,(n,kn) , where V h,(n,kn) = σ kn-1 Γ(k n )E[h(S σ,kn /B σkn,n-σkn )]/Γ(n). Then we can write the following expression (26)

We have to show that the ratio of the expectations in (26) converges to 1 as n → +∞. For this, it is sufficient to show that, as n → +∞, the random variable T σ,n,kn = S σ,kn /B σkn,n-σkn converges almost surely to a random variable T σ,h . This is shown by computing the moment of order r of T σ,n,kn , i.e., E(T r σ,n,kn ) = Γ(n) Γ(n -r)

Γ(k n -r/σ) Γ(k n ) ≃ n r k r/σ n .
For any ω ∈ Ω 0 the ratio n/K converges to E[T r σ (ω)] = t r for any ω ∈ Ω 0 . Since P[Ω 0 ] = 1, the almost sure limit, as n tends to infinity, of the random variable T σ,n,Kn is identified with the nonnegative random variable T σ,h , which has density function f T σ,h (t) = h(t)f σ (t). The proof is completed.

Proof of Proposition 3. Let h(t) = p(t; σ, θ) := σΓ(θ)t -θ /Γ(θ/σ), for any σ ∈ (0, 1) and θ > -σ. Furthermore, let us define g 0,p (n, k n ) = V p,(n+1,kn+1) /V p,(n,kn) and g 1,p (n, k n ) = 1 -V p,(n+1,kn+1) /V p,(n,kn) , so that we have g 0 (n, k n ) = (θ + σk n )/(θ + n) and g 1 (n, k n ) = 1/(θ + n). The same calculation holds for x * N . According to the fluctuation limit (23) there exists a nonnegative and finite random variable S σ,g such that n -σ K n a.s.

-→ S σ,g as n → +∞. Let Ω 0 := {ω ∈ Ω : lim n→+∞ n -σ K n (w) = S σ,h (ω)}, and let S σ,g (ω) = s σ for any ω ∈ Ω 0 . Then, we have

x * N n ≃ x * D n ≃ s 1/σ σ . (30) 
In order to make use of ( 29 (31) 

  suggested to smooth (m l,n ) l≥1 into a more regular series (m ′ l,n ) l≥1 , where m ′ l,n = p l k n with S = (p l ) l≥1 being nonnegative weights such that l≥0 (l + 1)m ′ l+1,n /n = 1. The resulting smoothed estimator is Ďn (l; S ) = (l + 1)

W

  n-σkn,Zg to obtain 95% posterior credible intervals for Dn (0). Similarly, if l ≥ 1, we sample 5000 draws from the distribution of a beta random variable B (l-σ)m l,n ,n-σkn-(l-σ)m l,n and use the quantiles of the empirical distribution of B (l-σ)m l,n ,n-σkn-(l-σ)m l,n (1-W n-σkn,Zg ) as extremes of the posterior credible interval for Dn (l).

  σkn e -u f σ uw z dudz = σ C σ,τ,n,kn Γ(n -σk)(1 -w) n-σkn-1 σkn e -tz f σ (wt) dtdz= σΓ(n) C σ,τ,n,kn Γ(n -σk n ) (1 -w) n-σkn -1 ∞ 0 t -σkn e -τ t f σ (wt) dt. e -τ t f σ (wt) dtdwwhich coincides with[START_REF] Sampson | Empirical linguistics[END_REF]. We complete the proof by determining the distribution of the random variable Q g (A l ) | X n , for any l > 1. Again, by a direct application of Theorem 1 we can writeE[Q r g (A l ) | X n ] = ((l -σ)m l,n ) r σ kn Γ(n-σkn+r) σ kn Γ(n-σkn) +∞ 0 t -σkn exp{-τ t} 1 0 (1 -z) n+r-1-σkn f σ (zt)dtdz +∞ 0 t -σkn exp{-τ t} 1 0 (1 -z) n-1-σkn f σ (zt)dtdz = Γ(n -σk n ) Γ ((l -σ)m l,n ) Γ( 1≤i =l≤n im i,n -σ 1≤i =l≤n m i,n )
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  (1 -z) n+r-1-σkn f σ (zt)dtdz +∞ 0 t -σkn exp{-τ t} 1 0 (1 -z) n-1-σkn f σ (zt)dtdz dx = Γ(n -σk n ) Γ ((l -σ)m l,n ) Γ( 1≤i =l≤n im i,n -σ 1≤i =l≤n m i,n )

  g 0,h (n, k n ) = σk n n E h S σ,kn +1 B σkn +1,n+1-σ(kn +1) E h S σ,kn B σkn ,n-σkn.

  (ω) = T σ,h (ω) = t. Accordingly, n r /k r/σ n

  Then,g 0,p (n, k n ) =σk n involving τ are negligible in the following renormalization of G(x * D )

  ), we also need an asymptotic equivalence for x * D -x * N . Note that G(x * D ) = 0 and G(x * N ) = -x * N allow us to resort to a first order Taylor bound on G at x * N and shows that x * D -x * N has a lower bound equivalent to s (1-σ)/σ σ n 1-σ /σ 2 . The same argument applied to G(x) + x at x * D provides an upper bound with the same asymptotic equivalence, thus

Table 1 :

 1 Simulated data and Naegleria gruberi libraries. For each sample we report the sample size n, the number of species k n and the maximum likelihood values (σ, θ) and (σ, τ ).

						PD		GG
		sample	n	kn	σ	θ	σ	τ
		1	1000 642 0.914	2.086	0.913	2.517
		2	1000 650 0.905	3.812	0.905	4.924
	Simulated data: s = 1.1	3	1000 656 0.910	3.236	0.910	4.060
		4	1000 663 0.916	2.597	0.916	3.156
		5	1000 688 0.920	3.438	0.920	4.225
		1	1000 128 0.624	1.207	0.622	3.106
		2	1000 135 0.675	0.565	0.673	0.957
	Simulated data: s = 1.5	3	1000 138 0.684	0.487	0.682	0.795
		4	1000 146 0.656	1.072	0.655	2.302
		5	1000 149 0.706	0.377	0.704	0.592
	Naegleria	Aerobic Anaerobic	959 969	473 0.669 631 0.656 155.408 0.656 4151.075 46.241 0.684 334.334
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 (n,kn)[ν 0 (A)] r+1-i R r,i (µ n,kn (A) + 1 -σ) (n,kn) [ν 0 (A)] r+1-i µ n,kn (A)R r,i-1 (µ n,kn (A) + 1),

where we defined R r,i (µ) := 0≤j1≤•••≤ji≤r-i 1≤l≤i (µ + j l (1 -σ) + l -1). The proof is completed by noting that, by means of simple algebraic manipulations, R r+1,i (µ) = R r,i (µ + 1 -σ) + µR r,i-1 (µ + 1).

Note that when ν 0 (A) = 0 and i = r, the convention ν 0 (A) r-i = 0 0 = 1 is adopted.

Proof of Proposition 1. Let us consider the Borel sets A 0 := X \ {X * 1 , . . . , X * Kn } and A l := {X * i : N i,n = l}, for any l = 1, . . . , n. The two parameter PD prior is a Gibbs-type prior with h(t) = p(t; σ, θ) := σΓ(θ)t -θ /Γ(θ/σ), for any σ ∈ (0, 1) and θ > -σ. Therefore one has

0≤i≤kn-1 (θ + iσ). By a direct application of Theorem 1 we can write

which is r-th moment of a Beta random variable with parameter (θ + σk, n -σk). Let us define the random variable Y = Z p R σ,Zp . Then, it can be easily verified that Y has density function

where, by Equation 60in [START_REF] Pitman | Poisson-Kingman partitions[END_REF],

Hence Y is a Gamma random variable with parameter (θ + σk n , 1). Accordingly, we have W n-σkn,Zp d = B θ+σkn,n-σkn . Similarly, by a direct application of Theorem 1, for any l > 1 we can write

, which is the r-th moment of a Beta random variable with parameter

lows from a characterization of Beta random variables in Theorem 1 in [START_REF] Jambunathan | Some Properties of Beta and Gamma Distributions[END_REF]. It can be also easily verified by using the moments of Beta random variables.

Proof of Proposition 2. Let us consider the Borel sets A 0 := X \ {X * 1 , . . . , X * Kn } and A l := and

follow by a direct application of the Taylor series expansion to g 0 (n, k n ) and g 1 (n, k n ), respectively, and then truncating the series at the second order. The proof is completed by combining ( 27) and ( 28) with the Bayesian nonparametric estimator Dn (l) under a two parameter PD prior.

Proof of Proposition 4. The proof is along lines similar to the proof of Proposition 3.2. in [START_REF] De Blasi | Are Gibbs-type priors the most natural generalization of the Dirichlet process?[END_REF], which, however, considers a different parameterization for the normalized GG prior. Let h(t) = g(t; σ, τ ) := exp{τ σ -τ t}, for any σ ∈ (0, 1) and τ > 0, and let g 0,g (n, (n,kn) , where we have

Note that, by using the triangular relation characterizing the nonnegative weight V g,(n,kn) , we can write

where

Let us denote by f (x) the integrand function of the denominator of 1 -w(n, k n ), and let f N (x) = τ f (x)/(τ + x). That is, f N (x) is the denominator of 1 -w(n, k n ). Therefore we can write

.

Since f (x) is unimodal, by means of the Laplace approximation method it can be approximated with a Gaussian kernel with mean x * = arg max x>0 x n-1 exp{-[(τ + x) σ -τ σ ]}(τ + x) σkn-n and with variance -[(log •f ) ′′ (x * )] -1 . The same holds for f N (x). Then, we obtain the approximation

, where x * N and x * D denote the modes of f N and f , respectively, and where C(x, y) denotes the normalizing constant of a Gaussian kernel with mean x and variance y. Specifically, this yields to

The mode x * D is the only positive real root of the function

D is bounded by below by a positive constant times n 1/(1+σ) , which implies By studying f and f N , as well as the second derivative of their logarithm, together with asymptotic equivalences ( 30) and ( 31), we can write

and

Expressions ( 32) and ( 33) provide second order approximations of g 0,g (n, k n ) and g 1,g (n, k n ), respectively. Recall that for any ω in Ω 0 we have n -σ k n ≃ s σ , namely we can replace s σ with n -σ k n . This is because of the fluctuation limit displayed in ( 23). The proof is completed by combining ( 32) and (33) with the Bayesian nonparametric estimator Dn (l) under a normalized GG prior.

A.2 Details on the derivation of Dn (l) ≃ Ďn (l; S PD )

Let us define c σ,l = σ(1 -σ) l-1 /l! and recall that Dn (0) = V n+1,kn+1 /V n,kn and Dn (l) = (lσ)m l,n V n+1,kn /V n,kn . The relationship between the Bayesian nonparametric estimator Dn (l) and the smoothed Good-Turing estimator Ďn (l; S PD ) follows by combining Theorem 2 with the fluctuation limits ( 23) and ( 24). For any ω ∈ Ω, a version of the predictive distributions of Q σ,h is

According to ( 23) and ( 24), lim n→+∞ c σ,l M l,n /K n = 1 almost surely. See Lemma 3.11 in [START_REF] Pitman | Combinatorial Stochastic Processes[END_REF] for additional details. By Theorem 2 we have V n+1,Kn+1 /V n,Kn a.s.

≃ σK n /n, and M 1,n a.s.

≃ σK n , as n → +∞. Then, a version of the Bayesian nonparametric estimator of the 0-discovery coincides with

as n → +∞. By Theorem 2 we have V n+1,Kn /V n,Kn a.s.

≃ 1/n, and M l,n a.s.

≃ c σ,l K n , as n → +∞. Accordingly, a version of the Bayesian nonparametric estimator of the l-discovery coincides with