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Bayesian Survival Model based on Moment
Characterization

Julyan Arbel, Antonio Lijoi and Bernardo Nipoti

Abstract Bayesian nonparametric marginal methods are very popular since they
lead to fairly easy implementation due to the formal marginalization of the infinite-
dimensional parameter of the model. However, the straightforwardness of these
methods also entails some limitations: they typically yield point estimates in the
form of posterior expectations, but cannot be used to estimate non-linear function-
als of the posterior distribution, such as median, mode or credible intervals. This is
particularly relevant in survival analysis where non-linear functionals such as e.g.
the median survival time, play a central role for clinicians and practitioners. The
main goal of this paper is to summarize the methodology introduced in Arbel et al
(2015) for hazard mixture models in order to draw approximate Bayesian inference
on survival functions that is not limited to the posterior mean. In addition, we pro-
pose a practical implementation of an R package called momentify designed for
moment-based density approximation, and, by means of an extensive simulation
study, we thoroughly compare the introduced methodology with standard marginal
methods and empirical estimation.
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1 Introduction

With marginal methods in Bayesian nonparametrics we refer to inferential proce-
dures which rely on the integration (or marginalization) of the infinite-dimensional
parameter of the model. This marginalization step is typically achieved by means
of the so-called Blackwell–MacQueen Pólya urn scheme. We consider the popular
example of the Dirichlet process (Ferguson, 1973) to illustrate the idea. Denote by
YYY = (Y1, . . . ,Yn) an exchangeable sequence of random variables to which we assign
as a prior distribution a Dirichlet process with mass parameter M and base measure
G0, that is

Yi|G
iid∼ G,

G∼ DP(M,G0).

The marginal distribution of YYY , once G has been integrated out, can be derived from
the set of predictive distributions for Yi, given (Y1, . . . ,Yi−1), for each i = 1, . . . ,n.
In this case, such conditional distributions are linear combinations between the base
measure G0 and the empirical distribution of the conditioning variables and are ef-
fectively described through a Pólya urn sampling scheme. Marginal methods have
played a major role in the success of Bayesian nonparametrics since the Pólya urn
generally leads to ready to use Markov chain Monte Carlo (MCMC) sampling strate-
gies which, furthermore, immediately provide Bayesian point estimators in the form
of posterior means. A popular example is offered by mixtures of the Dirichlet pro-
cess for density estimation; for the implementation, see e.g. the R package DP-
package by Jara et al (2011). However, the use of marginal methods has important
limitations that we wish to address here. Indeed, one easily notes that the posterior
estimates provided by marginal methods are not suitably endowed with measures
of uncertainty such as posterior credible intervals. Furthermore, using the posterior
mean as an estimator is equivalent to choosing a square loss function which does
not allow for other types of estimators such that median or mode of the posterior
distribution. Finally, marginal methods do not naturally lead to the estimation of
non-linear functionals of the distribution of a survival time, such as the median sur-
vival time. For a discussion of these limitations see e.g. Gelfand and Kottas (2002).

The present paper aims at proposing a new procedure that combines closed-form
analytical results arising from the application of marginal methods with an approx-
imation of the posterior distribution which makes use of posterior moments. The
whole machinery is developed for the estimation of survival functions that are mod-
eled in terms of hazard rate functions. To this end, let F denote the cumulative dis-
tribution function (CDF) associated to a probability distribution on R+. If F is ab-
solutely continuous, the corresponding survival function and cumulative hazard rate
are defined, respectively, by S(t) = 1−F(t) and H(t) =− log(S(t)). Then, the haz-
ard rate function is given by h(t) =−S′(t)/S(t). Let us recall that survival analysis
has been a very active area of application of Bayesian nonparametric methodology:
neutral to the right processes were used by Doksum (1974) as a prior for the CDF
F , and beta processes by Hjort (1990) as a prior for the cumulative hazard function
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H, both benefiting from useful conjugacy properties. Here we specify a prior on the
hazard rate h. The most popular example is the gamma process mixture, originally
proposed in Dykstra and Laud (1981). More general models have been studied in
later work by Lo and Weng (1989) and James (2005). Bayesian inference for these
models often relies on a marginal method, see, e.g., Ishwaran and James (2004).
Though quite simple to implement, marginal methods typically yield estimates of
the hazard rate, or equivalently of the survival function, only in the form of posterior
mean at a fixed time point. Working along the lines of Arbel et al (2015), we show
that a clever use of a moment-based approximation method does provide a relevant
upgrade on the type of inference one can draw via marginal sampling schemes. We
should stress that the information gathered by marginal methods is not confined to
the posterior mean but is actually much richer and, if properly exploited, can lead to
a more complete posterior inference.

Let us briefly introduce Bayesian hazard mixture models. Random parameters,
such as the hazard rate and survival function, are denoted with a tilde on top, e.g.
h̃ and S̃. We endow h̃ with a prior distribution defined by the distribution of the
random hazard rate (RHR)

h̃(t) =
∫
Y

k(t;y)µ̃(dy), (1)

where µ̃ is a completely random measure (CRM) on Y=R+, and k( · ; ·) denotes a
transition kernel on R+×Y. Under suitable assumption on the CRM µ̃ , we have
limt→∞

∫ t
0 h̃(s)ds = ∞ with probability 1. Therefore we can adopt the following

model

Xi | P̃
iid∼ P̃

P̃((t,∞))
d
= S̃(t) d

= exp
(
−
∫ t

0
h̃(s)ds

) (2)

for a sequence of (possibly censored) survival data XXX = (X1, . . . ,Xn). In this set-
ting, Dykstra and Laud (1981) characterize the posterior distribution of the so-
called extended gamma process: this is obtained when µ̃ is a gamma CRM and
k(t;y) = 1(0,t](y)β (y) for some positive right-continuous function β : R+ → R+.
The same kind of result is proved in Lo and Weng (1989) for weighted gamma pro-
cesses corresponding to RHRs obtained when µ̃ is still a gamma CRM and k( · ; ·) is
an arbitrary kernel. Finally, a posterior characterization has been derived by James
(2005) for any CRM µ̃ and kernel k( · ; ·).

The rest of the paper is organized as follows. In Section 2, we provide the closed-
form expressions for the posterior moments of the survival function. We then show
in Section 3 how to exploit the expression for the moments to approximate the cor-
responding density function and sample from it. Finally, in Section 4 we study the
performance of our methodology by means of an extensive simulation study with
survival data.
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2 Moments of the posterior survival function

Closed-form expressions for the moments of any order of the posterior survival
curve S̃(t) at any t are provided in Arbel et al (2015). For a complete account,
we recall the result hereafter. We first need to introduce some notation. A useful
augmentation suggests introducing latent random variables YYY = (Y1, . . . ,Yn) such
that, building upon the posterior characterization derived by James (2005), we can
derive expressions for the posterior moments of the random variable S̃(t), where
t is fixed, conditionally on XXX and YYY . To this end, define Kx(y) =

∫ x
0 k(s;y)ds and

KXXX (y) = ∑
n
i=1 KXi(y). Also, the almost sure discreteness of µ̃ implies there might

be ties among the Yi’s with positive probability. Therefore, we denote the distinct
values among YYY by (Y ∗1 , . . . ,Y

∗
k ), where k ≤ n, and, for any j = 1, . . . ,k, we define

C j =
{

l : Yl = Y ∗j
}

and n j = #C j. We can now state the following result.

Proposition 1. Denote by ν(ds,dy) = ρ(s)dscP0(dy) the Lévy intensity of the com-
pletely random measure µ̃ . Then for every t > 0 and r > 0,

E[S̃r(t) |XXX ,YYY ] = exp
{
−
∫
R+×Y

(
1− e−rKt (y)s

)
e−KXXX (y)sν(ds,dy)

}
×

k

∏
j=1

1
B j

∫
R+

exp
{
−s
(
rKt(Y ∗j )+KXXX (Y ∗j )

)}
sn j ρ(s)ds, (3)

where B j =
∫
R+ sn j exp

{
−sKXXX (Y ∗j )

}
ρ(s)ds, for j = 1, . . . ,k.

For evaluating the posterior moments E[S̃r(t) |XXX ] by means of Proposition 1,
we use a Gibbs sampler which proceeds by alternately sampling, at each iteration
`= 1, . . . ,L, from the full conditional distributions of the latent variables YYY and the
parameters of the model, and evaluate E[S̃r(t) |XXX ,YYY ](`) at each step. For an exhaus-
tive description of the posterior sampling and the expression of the full conditional
distributions, see Arbel et al (2015). The remaining of the paper is devoted to illus-
trating how the characterization of the moments provided by Proposition 1 can be
used to approximate a density function and, in turn, to carry out Bayesian inference.

3 Moment-based density approximation

The aim is to recover the posterior distribution of the random variable S̃(t) for any
fixed t, based on the knowledge of its moments E[S̃r(t) |XXX ] obtained from Propo-
sition 1. In order to simplify the notation, let us consider a generic continuous
random variable S on [0,1], and denote by f its density, and its raw moments by
γr = E

[
Sr
]
, with r ∈N. Recovering f from the explicit knowledge of its moments

γr is a classical problem in probability and statistics that has received great atten-
tion in the literature. See e.g. Provost (2005) and references and motivating appli-
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cations therein. A very general approach relies on the basis of Jacobi polynomials
(Gi(s) = ∑

i
r=0 Gi,rsr)i≥1. They constitute a broad class which includes, among oth-

ers, Legendre and Chebyshev polynomials, and which is well suited for the expan-
sion of densities with compact support (see Provost, 2005). Any univariate density f
supported on [0,1] can be uniquely decomposed on such a basis and therefore there
is a unique sequence of real numbers (λi)i≥0 such that f (s) = wa,b(s)∑

∞
i=0 λiGi(s)

where wa,b(s) = sa−1(1−s)b−1 is named the weight function of the basis and is pro-
portional to a beta density in the case of Jacobi polynomials. From the evaluation
of
∫ 1

0 f (s)Gi(s)ds it follows that each λi coincides with a linear combination of the
first i moments of S, specifically λi = ∑

i
r=0 Gi,rγr. Then, the polynomial approxima-

tion method consists in truncating the representation of f in the Jacobi basis at a
given level i = N. This procedure leads to a methodology that makes use only of the
first N moments and provides the approximation

fN(s) = wa,b(s)
N

∑
i=0

(
i

∑
r=0

Gi,rµr

)
Gi(s). (4)

It is important to stress that the polynomial approximation (4) is not necessarily a
density as it might fail to be positive or to integrate to 1. In order to overcome this
problem, we consider the density π proportional to the positive part of (4) defined by
π(s) ∝ max( fN(s),0). We resort to the rejection sampler for sampling from π . This
is a method for drawing independently from a distribution proportional to a given
non-negative function, that exempts us from computing the normalizing constant
corresponding to π . More precisely, the method requires to pick a proposal distri-
bution p for which there exists a positive constant M such that π ≤Mp. A natural
choice for p is the beta distribution proportional to the weight function wa,b. Ap-
proximation (4) and the rejection sampler were implemented in R. For the purpose
of the paper, we have wrapped up the corresponding code in an R package called
momentify.1In Sections 3.1 and 3.2 we briefly describe the package implementation
and give a simple working example.

3.1 Package implementation

The major function in package momentify is called momentify and allows for
(i) approximating a density based on its moments, and (ii) sampling from this ap-
proximate distribution by using the rejection sampler. The synopsis of the function,
together with default values, are given by

momentify(moments, N_moments = length(moments),
N_sim = 1000, xgrid = seq(0, 1, length = 200))

1 The momentify package can be downloaded from the first author’s (JA) webpage
http://www.crest.fr/pagesperso.php?user=3130.

http://www.crest.fr/pagesperso.php?user=3130
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The only required argument is moments, a d-dimensional vector, with d ≥ 2, com-
posed by the values of the first d consecutive raw moments. The remaining argu-
ments are optional: N_moments corresponds to N, the number of moments to be
used (where N ≤ d), N_sim is the size of the sample obtained by the rejection
sampler, and xgrid denotes the grid on which the density is to be approximated.

The function returns a list, say res, with the following components: xgrid,
defined in argument, approx_density, the approximated density evaluated on
xgrid, and psample, the sample obtained from approx_density by the re-
ject algorithm. The class of the output list res is called momentify. For visu-
alizing the output res, two method functions can be readily applied to this class,
namely plot(res, ...) and hist(res, ...).

3.2 Simulated example

We assess now the quality of this approximation procedure on a particular example
by means of a practical implementation of the momentify package. We specify the
distribution of the random variable S by a mixture, with weights of 1/2, of beta
distributions of parameters (a,b) = (3,5) and (c,d) = (10,3). The raw moments of
any order of S can be explicitly evaluated by

γr = E[Sr] =
a(r)

(a+b)(r)
+

c(r)
(c+d)(r)

where x(r) = Γ (x + r)/Γ (x). As describe above, given a vector of N moments
(γ1, . . . ,γN), the introduced package allows us to approximately evaluate the den-
sity (4) and, in turn, to compare it with the true density. The corresponding code for
N = 2, . . . ,10 is the following:

rfun=function(n){bin=rbinom(n,1,.5)
bin*rbeta(n,3,5)+(1-bin)*rbeta(n,10,3)}

true_density=function(n){.5*dbeta(n,3,5)+
.5*dbeta(n,10,3)}

sim_data = rfun(10ˆ5)
moments = mean(sim_data)
for (i in 2:10){

moments = c(moments,mean(sim_dataˆi))
res = momentify(moments = moments)
plot(res, main = paste("N =",i))
curve(true_density(x),add=TRUE, col = "red")

}

The graphical output is given in Figure 1. We can see that four moments are needed
in order to capture the two modes of the distribution, although coarsely. From seven
moments onward, the fit is very good since the two curves are hardly distinguish-
able. Following this example as well as other investigations not reported here, we
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choose, as a rule of thumb, to work with N = 10 moments. A more elaborated nu-
merical study is presented in Arbel et al (2015) in the context of survival analysis.

N = 2

0

1

2
N = 3 N = 4

N = 5

0

1

2
N = 6 N = 7

N = 8

0 1

0

1

2
N = 9

0 1

N = 10

0 1

Fig. 1 Output of momentify R package. True density f of S (in red) and approximated density fN
(in black) involving an increasing number of moments, from N = 2 (top left) to N = 10 (bottom
right).
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4 Bayesian inference

4.1 Estimation of functionals of S̃

Given a sample of survival times XXX = {X1, . . . ,Xn}, we estimate the first N mo-
ments of the posterior distribution of S̃(t), for t on a grid of q equally-spaced points
{t1, . . . , tq} in an interval [0,M] by using the Gibbs sampler succinctly described in
Section 2. We then exploit the estimated moments to sample from an approximation
of the posterior distribution of S̃(ti) for i = 1, . . . ,q according to the methodology set
forth in Section 3. This allows us to carry out Bayesian inference, with a focus on
the estimation of the median survival time and, for any given t in the grid, of credible
intervals for S̃(t). The same approach can be easily used to estimate the posterior
median and mode of S̃(t) at any given t, and, in line of principle, any functional of
interest. Let us first consider the median survival time that we denote by m. The iden-
tity for the cumulative distribution function of m, P(m≤ t|XXX) = P

(
S̃(t)≤ 1/2|XXX

)
,

allows us to evaluate the CDF of m at each time point ti as ci = P
(
S̃(ti) ≤ 1/2|XXX

)
.

Then, we can estimate the median survival time m by means of the following ap-
proximation:

m̂ = EXXX [m] =
∫

∞

0
P[m > t|XXX ]dt ≈ M

q−1

q

∑
i=1

(1− ci) (5)

where the subscript XXX in EXXX [m] indicates that the integral is with respect to the
distribution of S̃(·) conditional to XXX . Moreover, the sequence (ci)

q
i=1 can be used

to devise credible intervals for the median survival time. Similarly, the posterior
samples generated by the rejection sampler can be easily used to devise, t-by-t,
credible intervals for S̃(t) or to estimate other functionals that convey meaningful
information such as the posterior mode and median. In Section 4.2, we apply this
methodology in a study involving simulated survival data where we compare the
performance of the moment-based methodology with standard marginal methods.

4.2 Applications

For the purpose of illustration, we complete the model specification by assuming
a Dykstra and Laud type of kernel k(t;y) = 1(0,t](y)β , for some constant β > 0, a
gamma CRM µ̃ and an exponential base measure P0 with rate parameter 3. More-
over, for the hyperparameters c and β we choose independent gamma prior dis-
tributions with shape parameter 1 and rate parameter 1/3. We then consider three
samples XXX = (X1, . . . ,Xn) of size n = 20,100,500 from a Weibull distribution of pa-
rameters (2,2) whose survival function is S0(t) = exp(−t2/4). We set M = 6 (the
largest observation in the samples is 5.20) and q = 50 for the analysis of each sam-
ple. We approximately evaluate, t-by-t, the posterior distribution of S̃(t) together
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with the posterior distribution of the median survival time m. By inspecting the bot-
tom row of Figure 2, we can appreciate that the estimated credible intervals for S̃(t)
contain the true survival function. Moreover, the posterior distribution of the median
survival time m (blue curve) is nicely concentrated around the true value m0. When
relying on marginal methods, the most natural choice for quantifying the uncertainty
of posterior estimates consists in considering the quantile intervals corresponding to
the output of the Gibbs sampler, that we refer to as marginal intervals. This leads to
consider, for any fixed t, the interval whose lower and upper extremes are the quan-
tiles of order e.g. 0.025 and 0.975, respectively, of the sample of posterior means(
E[S̃(t) |XXX ,YYY ](`)

)
`=1,...,L obtained, conditional on YYY , by the Gibbs sampler described

in Section 2. In the middle row of Figure 2 we have compared the estimated 95%
credible intervals for S̃(t) (black) and the marginal intervals corresponding to the
output of the Gibbs sampler (dashed blue). In this example, the credible intervals
in general contain the true survival function S0(t), while this does not hold for the
marginal intervals. This fact suggests that the marginal method tends to underesti-
mate the uncertainty associated to the posterior estimates, and can be explained by
observing that, since the underlying CRM is marginalized out, the intervals arising
from the Gibbs sampler output capture only the variability of the posterior mean that
can be traced back to the latent variables YYY and the parameters (c,β ). As a result,
especially for a small sample size, the uncertainty detected by the marginal method
leads to marginal intervals that can be significantly narrower than the actual pos-
terior credible intervals that we approximate through the moment-based approach.
The Kaplan–Meier estimates of S̃(t) are plotted on the top row of Figure 2.

Table 1 Comparison of the median survival time estimated by means of the moment-based
method, m̂, by means of the marginal method, m̂m, and the empirical median survival time m̂e, for
different sample sizes n. For the moment-based estimation we show m̂, the absolute error |m̂−m0|
and 95% credible interval (CI); for the marginal method we show m̂m, the absolute error |m̂m−m0|
and the 95% marginal interval (CIm); last two columns show the empirical estimate m̂e and the
corresponding absolute error |m̂e−m0|. The true median survival time is m0 = 2

√
log2≈ 1.665.

moment-based method Marginal Empirical
n m̂ |m̂−m0| CI m̂m |m̂m−m0| CIm m̂e |m̂e−m0|
20 1.26 0.40 0.88 - 1.80 1.24 0.43 1.09 - 1.57 0.95 0.71
100 1.52 0.14 1.33 - 1.76 1.51 0.16 1.45 - 1.66 1.55 0.12
500 1.66 0.01 1.57 - 1.77 1.66 0.01 1.63 - 1.75 1.69 0.03

As described in Section 4.1, the moment-based approach enables us to approxi-
mate the posterior distribution of the median survival time m (in blue in the bottom
row of Figure 2). This, in turn, can be used to derive sensible credible intervals for
m. On the other side, when relying on marginal methods, the posterior of the me-
dian survival time is not available per se. However, in the same way as we defined
marginal intervals in place of credible intervals for the survival function S̃(t), for
every ti the Gibbs sample

(
E[S̃(ti) |XXX ,YYY ](`)

)
`=1,...,L can be used as a proxy of a pos-

terior sample for S̃(ti) in order to provide the following approximation of the CDF
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Fig. 2 The true survival function S0(t) is the red line in all plots. Bottom row: estimated posterior
mean (black solid line) with 95% credible intervals for S̃(t) (black thin lines); in blue the posterior
distribution of the median survival time m. Middle row: comparison of the 95% credible interval
(black line) with the marginal interval (dashed blue line). Top row: Kaplan–Meier estimate (green
line). Sample size n = 20 (left column), n = 100 (middle column), n = 500 (right column).
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Fig. 3 Comparison of credible intervals for the median survival time m obtained with the moment-
based approach (black line, below for each n) and marginal intervals (blue line, above for each
n), for varying sample size n. The dots indicate the estimators (m̂ in black, m̂m in blue and m̂e in
green). The true median m0 = 2

√
log2≈ 1.665 is indicated by the vertical red dashed line.

of m:
P(m≤ t|XXX)≈ 1

L
#{` : E[S̃(t) |XXX ,YYY ](`) ≤ 1/2}. (6)

As in (5), an estimator for the median survival time can be obtained as the mean of
the distribution whose CDF is given in (6). We call such estimator m̂m to denote the
fact that it is obtained by means of a marginal method. Similarly, from (6), marginal
intervals for m̂m can be derived as described in Section 4.1. Finally, we denote by m̂e
the empirical estimator of m and by m0 = 2

√
log2≈ 1.665 the true median survival

time. We summarize the estimates we obtained for the median survival time m in
Figure 3 and in Table 1. For all the sample sizes considered, the credible intervals for
m̂ contain the true value. Moreover, as expected, when n grows they shrink around
m0: for instance the length of the interval reduces from 0.92 to 0.20 when the sample
size n increases from 20 to 500. As observed for the marginal intervals S̃(t) at a given
t, the marginal intervals for m̂m obtained with the marginal method and described
in Equation (6) are in general narrower than the credible intervals obtained by the
moment-based approach. Moreover, in this example, they contain the true m0 only
for n= 500. This observation suggests that the use of intervals produced by marginal
methods as proxies for posterior credible intervals should be avoided, especially for
small sample sizes.
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