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Abstract

We analyze trip-timing decisions of public transit users who trade o� crowding costs and disutility from

traveling early or late. Considering �xed and then endogenous demand, we derive the equilibrium distribution of

users across trains for three fare regimes: no fare, an optimal uniform fare, and an optimal train-dependent fare

that supports the social optimum. We also derive the optimal number of trains and train capacity, and compare

them across fare regimes. Finally we calibrate the model to a segment of the Paris RER A mass transit system

and estimate the potential welfare gains from train-dependent fares.
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1 Introduction

Since the pioneering work of Pigou (1920) and Knight (1924), economists have made major strides in studying road

tra�c congestion and devising cost-e�ective ways to alleviate it. By comparison, they have devoted relatively little

attention to congestion in public transportation. Yet the costs of travel delays and crowding on transit systems are

growing in cities around the world. A roundtable report by the International Transport Forum identi�es crowding

as a major source of inconvenience that increases the cost of travel (OECD, 2014).

Transit crowding imposes disutility on riders in several ways.1 It increases waiting time and in-vehicle travel

time, and reduces travel time reliability. Psychological studies �nd that crowding causes stress and feelings of

exhaustion (Mohd Mahudin, Cox and Gri�ths, 2012). A number of studies document how disutility from in-vehicle

time increases with the number of users (Wardman and Whelan, 2011; Haywood and Koning, 2015). In a meta-

analysis, Wardman and Whelan (2011) �nd that the monetary valuation of the disutility from public transport

travel time is, on average, multiplied by a factor of 2.32 if a rider has to stand. Discomfort also occurs while

entering and exiting transit vehicles, accessing stations on walkways and escalators, and so on. By discouraging

travelers from taking transit, crowding also contributes indirectly to tra�c congestion on roads.

Several recent studies have documented the aggregate cost of crowding. For example, Prud'homme et al. (2012)

estimate that the eight percent increase in densities in the Paris subway between 2002 and 2007 imposed a welfare

loss in 2007 of at least e75 million.2 Veitch, Partridge and Walker (2013) estimate the annual cost of crowding in

Melbourne metropolitan trains in 2011 at e208 million.

The costs of crowding are likely to grow as usage of public transit grows faster than capacity. Ongoing urban-

ization in both developed and developing countries is raising the number of city residents who rely on transit for

mobility. Younger people are obtaining a driver's license at a later age or not at all, and choosing to live in high-

density areas where transit service can provide most of their travel needs. Though the automobile still dominates

in the US and Canada, public transit ridership is rising there too.3 Cities, meanwhile, struggle to obtain adequate

funding for capacity expansion and operations. Shortage of money is especially severe in countries such as Canada

that lack long-term, dedicated transit funding mechanisms.

City planners are now recognizing that crowding should be considered in cost-bene�t analysis of transit projects

as well as travel-demand management policies (Parry and Small, 2009). For example, bus service was improved

in London prior to introduction of the Congestion Charge in 2003. Similarly, bus, metro, and rail service were

expanded in Stockholm before the Congestion Tax trial in 2006. Nevertheless, crowding and other dimensions of

public transit quality are still often undervalued in project evaluation relative to more easily measured metrics such
1See Tirachini, Hensher and Rose (2013) for a review.
2Measured in passengers per square meter aboard trains.
3Transit ridership in the US has been growing since 1995 (http://www.apta.com/mediacenter/pressreleases/2015/Pages/150309_

Ridership.aspx.) In all ten of the largest Canadian cities share of morning commutes by public transit increased from 2006 to 2011
(http://www12.statcan.gc.ca/nhs-enm/2011/as-sa/99-012-x/2011003/tbl/tbl1b-eng.cfm; http://www12.statcan.gc.ca/nhs-enm/
2011/as-sa/99-012-x/2011003/tbl/tbl1a-eng.cfm). Allen and Levinson (2014) document the rapid growth in usage of commuter rail
services in both countries.
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as in-vehicle speed (OECD, 2014).

Expanding capacity is an obvious way to alleviate transit crowding, but it is expensive and time-consuming and

it is often opposed by residents and businesses located near transit routes. An alternative is to use transit fares as

a rationing mechanism. Vickrey (1963) was one of the �rst to advocate peak-load fares, and to note the common

economic principles underlying congestion pricing of transit systems and congestion pricing of roads.

A number of transit agencies do practice some degree of time-of-day di�erentiation.4 However, �at fares are

still common in many large urban areas including Paris, Hong Kong, and Toronto. Opinions di�er as to whether

peak-period pricing is cost-e�ective.5 One argument against it is that travelers such as morning commuters lack the

�exibility to change their trip times. However, only a fraction of users need to shift in order to obtain congestion

relief. Several surveys (e.g., of London and Melbourne) have found that an appreciable fraction of travelers are

willing to shift travel time by 15 minutes, and in some cases more, if they are compensated in some way (e.g., by

fare reductions, faster trains, or less crowding). O�-peak discounts have been implemented in some cities, and they

are popular with travelers.

This paper has three goals. The �rst is to develop a general model of trip-timing decisions on crowded public

transport systems and analyze equilibrium usage patterns. The second is to derive optimal time-of-day (TOD)

varying fares and examine how TOD fares a�ect the timing of trips and the extent to which the costs of crowding

can be alleviated relative to a �at (i.e., time-independent) fare scheme. The third is to derive optimal transit

capacity for both �at and TOD fare regimes to assess how the e�ciency of the pricing scheme a�ects the bene�ts

of capacity investments. More speci�cally, we address two questions. First, how does the welfare gain from optimal

TOD fares depend on the severity of crowding? Is it the case that, as in road tra�c congestion models, the gains

from congestion pricing increase more than proportionally with the number of users? Second, is it true that as is

widely assumed congestion pricing is a substitute for investment in the sense that introducing TOD fares reduces

the urgency of building new transit capacity?

Beginning with Mohring (1972), an economics literature has developed on public transit capacity investments,

service frequency, and optimal pricing and subsidy policy. However, most studies have employed static models that

cannot account for travelers' time-of-use decisions and the large daily variations in ridership and crowding typical

of major transit systems. To model time-of-use decisions we adopt the demand side of Vickrey's (1969) classical

bottleneck model of driving in which congestion takes the form of queuing behind a bottleneck. In this model

motorists prefer to minimize the time they spend driving and to arrive at a particular time such as 8:30 a.m. to

start work. In equilibrium, queuing delay grows smoothly to a peak at the preferred arrival time and then decreases

smoothly back to zero. Individual travelers face a trade-o� between traveling at the peak and su�ering a long trip,
4These include the London subway (http://www.tfl.gov.uk/cdn/static/cms/documents/tube-dlr-lo-adult-fares.pdf), the

Long Island Rail Road (http://web.mta.info/lirr/about/TicketInfo/), and the Washington, D.C. metro (http://www.wmata.com/
fares/). In Singapore, commuting to the downtown core is free before 7:45 a.m. and a 50 cent discount applies when arriving between
7:45 a.m. and 8:00 a.m. (Singapore Land Transport Authority, 2013). Similarly, in Melbourne, weekday trips on the electri�ed train
network before 7am are free for users with the myki travel card (http://ptv.vic.gov.au/tickets/myki/myki-money/).

5Informal discussions for Washington, D.C., and Toronto are found in Walker (2010) and Yauch (2015) respectively.

3

http://www.tfl.gov.uk/cdn/static/cms/documents/tube-dlr-lo-adult-fares.pdf
http://web.mta.info/lirr/about/TicketInfo/
http://www.wmata.com/fares/
http://www.wmata.com/fares/
http://ptv.vic.gov.au/tickets/myki/myki-money/


and traveling o�-peak and incurring a schedule delay cost (i.e.; the cost of arriving earlier or later than desired).6

Since Small (1982), many empirical studies have estimated the functional form and magnitude of schedule delay

costs as well as how individuals adapt their schedules over time (e.g., Peer et al., 2015). Arnott, de Palma and

Lindsey (1993) provide an extended theoretical analysis of the basic bottleneck model. Various extensions and

applications of the model are reviewed in Small (2015).

The bottleneck model cannot be applied unchanged to public transit because of di�erences between transit

service and driving on the supply side. Drivers can start their trips whenever they want, while transit users are

constrained by the service timetable. Departure-time choices by transit are thus discrete, rather than continuous.

Road capacity is determined by the infrastructure and throughput is essentially a continuous variable that is the

same 24 hours day. By contrast, transit is supplied as a batch service and its capacity depends on the number of

transit vehicles (i.e., buses or train sets) and vehicle capacities which are both choice variables. As discussed below,

congestion also manifests on roads and transit in di�erent ways.

Kraus and Yoshida (2002) were the �rst to apply the bottleneck model to public transit. They consider a rail

service between a single origin and destination. The number of people who board a train is limited by its capacity,

and congestion takes the form of queuing delay. Service discipline is �rst-come-�rst-served, and users traveling at

the peak have to wait in line for several trains to pass before they can board. Kraus and Yoshida (2002) use their

model to analyze optimal pricing and capacity decisions and compare the results with those obtained by Mohring

(1972) using a simpler model.

Train capacity in Kraus and Yoshida's (2002) model is �hard� in the sense that it has no e�ect on users' costs

until the capacity constraint is reached, but the number of passengers who board a train cannot exceed capacity at

any cost. On most transit systems, congestion does not develop as abruptly as this, but rather increases smoothly

or incrementally with passenger loads as crowding develops on walkways, escalators, and platforms as well as in

vehicles themselves.

A few studies have taken steps towards modeling transit congestion in the form of crowding. Huang, Tian

and Gao (2005) assume that travelers board trains in random order. Everyone waiting for a train is able to get

on, but the discomfort incurred while aboard increases with the passenger load. Huang et al. (2007) and Tian,

Huang and Yang (2007) build on Huang, Tian and Gao (2005), but take an engineering and/or operational research

view of crowding and do not systematically explore the economic aspects of the problem or investigate optimal

capacity decisions. de Palma, Kilani and Proost (2015) focus on the functional form of the crowding cost function

for seated and standing passengers. They also derive an optimal timetable and pricing scheme for several stylized

settings. However, they do not investigate analytically the welfare gains from TOD pricing or solve for optimal

service capacity as measured by the number of trains and individual train capacity.
6Henderson (1974) adopted the same demand-side speci�cation as Vickrey (1969), but instead of queuing assumed that travel delay

manifests as �ow congestion. In Henderson's model, the speed at which a vehicle travels throughout its trip is determined solely by the
departure �ow of vehicles when it starts its trip. The model therefore has the unrealistic feature that vehicles departing at di�erent
times do not interfere with each other at all.
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Our paper parallels Kraus and Yoshida (2002) in considering transit service between a single origin and des-

tination. A �xed number of transit vehicles departs the origin station according to a timetable. Like Kraus and

Yoshida (2002) we assume that transit service operates on a separate right of way so that it neither a�ects or is

a�ected by tra�c �ow on roads. The model is therefore applicable to train service or buses that run on dedicated

bus lanes. We also assume that travelers do not choose between taking transit and driving so that the number of

road users is exogeneous to the model and road tra�c congestion can be ignored.

Our analysis builds on antecedent work in three ways. First, we explore in some depth the welfare gain from

transit congestion pricing and how it depends on the functional form of the crowding cost function. Second, we

derive the optimal number of trains and train capacity for three fare regimes: no-fare, optimal uniform-fare, and

optimal TOD fares, and compare service supply across regimes. Third, we compare the properties of the model

with those of the original bottleneck model and highlight some of the di�erences.

To preview results, the answers to the two questions we posed above are as follows. First, when capacity is

�xed the welfare gain from implementing optimal TOD (i.e., train-dependent) fares may not increase with the total

number of users or, therefore, the severity of crowding. Indeed, if the cost of crowding aboard a train grows at an

increasing rate with the passenger load the welfare gain decreases with the total number of users. Second, even if

the total number of users is �xed the optimal number of trains and train capacity can be higher with optimal TOD

fares than when fares are uniform for all trains. Thus, while congestion pricing can improve utilization of a given

transit service, it can actually increase the bene�ts of expanding capacity.

Section 2 describes the general model and derives the equilibrium trip-timing decisions of users for the �at-fare

and optimal TOD fare regimes. Section 3 analyzes a case with linear crowding costs. Section 4 considers the long

run in which the number of trains and train capacity are endogenous. Section 5 presents a numerical example based

on the Paris RER A line, and Section 6 concludes.

2 The general model with inelastic demand

In this section we introduce a general model of public transit crowding which we call the �PTC� model. A transit

line connects two stations without intermediate stops. The line runs on a timetable to which the operator adheres

precisely. There arem trains, indexed in order of departure. Train k leaves the origin station at time tk, k = 1, ...,m.

Travel time aboard a train is independent of both departure time and train occupancy, and without loss of generality

it is normalized to zero.

Each morning a �xed number, N , of identical users take the line to work. They know the timetable and the

crowding level on each train, and choose which train to take. By assumption, they cannot increase their chances

of securing a good seat by arriving at the origin station early. Users choose between trains based on the expected

crowding disutility, g (n), where n is the number of users taking the same train.7 Crowding disutility is assumed
7Function g (n) is an average over possible states: securing a good seat, getting a bad seat, having to stand in the middle of the
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to be zero on an empty train (i.e., g (0) = 0), strictly increasing with n (i.e., g′ (.) > 0), and twice continuously

di�erentiable. Several properties of the model derived later depend on the curvature of g (n) which will be described

by the elasticity of g′ (n) with respect to n: ε (n) ≡ g′′ (n)n/g′ (n).8

Because trains are costly to procure and operate, it is natural to assume that all m trains are used. Letting nk

denote the number of users on train k we thus assume that for all k = 1...m, nk > 0 which implies that g (nk) > 0:

users incur a crowding disutility on every train.

Since travel time is normalized to zero, an individual is either at home or at work. Following Vickrey (1969) and

Small (1982), time at home yields an instantaneous time-varying utility uh (t), and time at work an instantaneous

time-varying utility uw (t). Let (tB , tE) denote the time interval during which all travel takes place. It is assumed

that during this interval, uh (t) is weakly decreasing and uw (t) is weakly increasing. The functions intersect at

time t∗ which is the desired arrival time (i.e., uh (t∗) = uw (t∗)). A user taking train k gains a total utility of

U (tk) =
´ tk
tB
uh (t) dt+

´ tE
tk
uw (t) dt− g (nk). If a train with unlimited capacity left at t∗, the user could travel from

home to work at t∗ without su�ering crowding disutility. As a consequence, his utility would be maximal and equal

to Umax =
´ t∗
tB
uh (t) dt+

´ tE
t∗
uw (t) dt. We de�ne the user travel cost, ck, as the di�erence between this hypothetical

maximal utility and the actual utility of taking train k: c (tk) ≡ Umax −U (tk) = g (nk) + δ (tk), where δ (tk) is the

schedule delay cost such that

δ (tk) =


´ t∗
tk

(uh (t)− uw (t)) dt if tk < t∗

´ tk
t∗

(uw (t)− uh (t)) dt if tk ≥ t∗
.

Note that maximizing U (tk) is equivalent to minimizing c (tk). The schedule delay cost is the disutility accumulated

while an individual is not where his utility is greatest. When the individual arrives at work before t∗, disutility is

incurred because utility from being at home before t∗ is higher than utility at work. Similarly, utility is foregone

when arriving at work after t∗ because time is more valuable at work than at home. Function δ (t) is weakly

decreasing for t < t∗ and weakly increasing for t > t∗. Trains that arrive close to t∗ have small values of δ (t), and

will sometimes be called timely trains. As shown in the next subsection, timely trains are more heavily used than

other trains.

In Section 3, it is assumed that δ (t) has a piecewise linear form: δ (tk) = β (t∗ − tk) if tk < t∗, and δ (tk) =

γ (tk − t∗) if tk ≥ t∗, where β and γ are respectively marginal disutilites from arriving early and late.9 This

speci�cation, called �step preferences�, is used in most studies of road tra�c congestion and public transit crowding.

In the general case, a user taking train k with nk users incurs a combined schedule delay and crowding disutility

c (tk) = δ (tk) + g (nk) , k = 1, ...,m. To economize on writing, henceforth δ (tk) is written δk and c (tk) is written

ck unless time dependence is required for clarity.

corridor, standing close to the door, etc..
8The elasticity is respectively positive, zero, or negative as g (n) is convex, linear, or concave.
9This piecewise linear form arises when the utility �ows from being at home and at work satisfy uh (t) − uw (t) = β if tk <

t∗, and uh (t)− uw (t) = −γ if tk ≥ t∗. This property is discussed by Tseng and Verhoef (2008).
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Figure 1: Schedule delay δ (tk), crowding cost g (nk) and equilibrium cost ce for seven trains, t5 = t∗

2.1 User equilibrium

In this subsection we characterize user equilibrium when there is no fare. With N �xed, a fare would not a�ect

either the division of users between trains or crowding costs. A uniform fare (i.e., independent of k) is introduced

at the end of the subsection for the analysis of user equilibrium with elastic demand in Section 3.3.

Let superscript �e� denote the no-fare or user equilibrium (UE), and ce the equilibrium trip cost which is to be

determined. In UE, users distribute themselves between trains so that the user cost on every train is ce. Hence,

δk+g (nek) = ce, k = 1, ...,m. Given g′ (.) > 0, the inverse function g−1 (.) exists, with g−1 (0) = 0 and
(
g−1

)′
(.) > 0.

The UE can therefore be solved for the nek as a function of ce:

nek = g−1 (ce − δk) , k = 1, ...,m. (1)

Since every user has to take some train,
∑m
k=1 n

e
k = N , or

∑m
k=1 g

−1 (ce − δk) − N = 0. This equation implicitly

determines a unique value of ce. Figure 1 depicts a UE for seven trains (m = 7). Train k = 5 arrives on time and

carries the most users.

Comparative statics properties of UE with respect to N are easily derived10

Proposition 1. In equilibrium, user cost is an increasing function of N . It is convex, linear, or concave if g (.) is

respectively convex, linear, or concave.

Similar to the the bottleneck model, user cost in the PTC model is an increasing function of total patronage,

but the curvature of ce (N) di�ers. In the bottleneck model the curvature of ce (N) matches that of the schedule

10Equilibrium cost increases with the total number of passengers: ∂ce/∂N = 1/
∑m

k=1 (g′ (uk))−1 > 0, where uk ≡ g−1 (ce (N)− δk).
The second derivative, ∂2ce/∂N2, has the same sign as

∑m
k=1 g

′′ (uk) (g′ (uk))−3 which depends on whether g(.) is convex or concave.
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delay cost function. With step preferences, the schedule delay cost function is linear and ce (N) is also linear. If

the schedule delay cost function is convex (resp. concave), then ce (N) is convex (resp. concave).

By contrast, in the PTC model the curvature of ce (N) depends on the crowding cost function rather than the

schedule delay cost function. This is because the train timetable is �xed in the short run, and users cannot travel

earlier or later in response to growing demand. Furthermore, since each train's arrival time is �xed, the schedule

delay cost incurred when taking a given train does not depend on N . The only way the service can accommodate

additional demand is for trains to carry more passengers. Equilibrium user cost therefore increases at an increasing

(resp. decreasing) rate with N if the marginal cost of crowding aboard a train increases (resp. decreases) with

ridership.

User equilibrium in the PTC model is ine�cient because users impose an external crowding cost on each other.

The marginal social cost of a trip, MSC, is determined by di�erentiating the equilibrium total cost function,

TCe = ce ×N , with respect to N : MSCe ≡ ∂TCe/∂N = ce + (∂ce/∂N)N . The average marginal external cost of

a trip is therefore MECe ≡MSCe− ce = (∂ce/∂N)N . With elastic demand (Section 3.3), transit is overused with

a zero fare.11 If the fare system is restricted to uniform fares, the fare should be set equal to the average external

cost:

τu =
∂ce

∂N
N , (2)

where superscript �u� denotes the optimal uniform fare. Total revenue from this fare is Ru = τuN . The optimal

uniform fare does not support the social optimum because the marginal external cost of crowding varies with train

occupancy and it is larger on timely trains. As explained below, the social optimum can be achieved by levying

train-speci�c fares.

2.2 Social Optimum

The social optimum (SO) di�ers from the UE because users are distributed between trains to equalize the

marginal social costs of trips rather than their private costs. The marginal social cost of using train k is

MSCk = ∂ (cknk) /∂nk = δk + v (nk) , k = 1, ...,m, where v (nk) ≡ g (nk) + g′ (nk)nk is the marginal social

crowding cost on train k. Let superscript �o� denote the SO. Total costs in the SO are TCo =
∑m
k=1 cknk, and the

marginal social cost of a trip is MSCo = ∂TCo/∂N . At the optimum, users are distributed across trains so that

MSCk = MSCo for every train:

δk + v (nok) = MSCo, k = 1, ...,m. (3)

Since g′ (.) > 0 for n > 0, the marginal social crowding cost is always positive. In practice, it may not increase

monotonically at all levels of ridership.12 To facilitate analysis, however, we assume that v′(.) > 0. This is equivalent

11This might not be the case if transit is an alternative to driving and tra�c congestion is severe.
12For example, v(.) may drop when all seats are occupied and additional riders have to stand; see de Palma, Kilani and Proost

(2015).
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to assuming that ε (n) > −2.

Assumption 1. The elasticity of g′ (n) with respect to n exceeds −2: ε (n) > −2.

Assumption 1 is satis�ed for all convex g (.) functions and for all power function g (n) ∝ nr, r > 0. Given

Assumption 1, the inverse function v−1 (.) exists and it is increasing. Eq. (3) yields

nok = v−1 (MSCo − δk) . (4)

Since all users must take some train in the SO,
∑m
k=1 n

o
k = N . Given Eq. (4),

∑m
k=1 v

−1 (MSCo − δk) − N = 0,

which implicitly determines a unique value of MSCo. A counterpart to Prop. 1 then follows:

Proposition 2. In the social optimum, the marginal social cost of a trip is an increasing function of N . It is

convex, linear, or concave if v (.) is respectively convex, linear, or concave.

Comparing Prop. 2 with Prop. 1 it is clear that v(.) plays the same role in shaping the SO as g (.) does for the

UE.13 Prop. 2 contrasts again with the corresponding properties of the SO in the bottleneck model. For example,

with linear schedule delay costs the marginal social cost of a trip in the bottleneck model is a linear function of N .

In the PTC model it instead depends on the crowding cost function.

We now consider the distribution of ridership over trains. Intuition suggests that passenger loads are spread

more evenly in the SO than the UE because smoother loads should reduce the total costs of crowding as discussed

in de Palma, Kilani and Proost (2015). In fact, this is not invariably true but depends on how the marginal external

crowding cost varies with usage. For any train, the marginal external crowding cost is

d (g′ (n)n)

dn
= g′ (n) (1 + ε (n)) .

The marginal external crowding cost increases with usage if ε (n) > −1, and decreases with usage if ε (n) < −1.

The load patterns in the SO and UE are compared in14

Proposition 3. If ε (n) > −1 (ε (n) < −1, respectively) the social optimum distribution of users across trains is a

mean-preserving spread (respectively contraction) of the user equilibrium distribution of users across trains.

The SO load pattern is a mean-preserving spread of the UE load pattern if the SO load pattern has more

weight in the tails than the UE load pattern.15 If the marginal external crowding cost increases monotonically with

passenger load then ε (n) > −1.16 If so, the marginal social costs of trips on two trains with unequal loads di�er by

more than their user costs. Consequently, the SO balance between crowding costs and schedule delay costs calls for
13Note that v′′ (n) = 3g′′ (n) + ng′′′ (n). The marginal social cost of a trip can therefore be a convex function of N even if the user

cost function is concave in N , and vice versa.
14Proofs of Prop. 3 and other results not established in the text are provided in the appendix.
15The relevant de�nition of MPS for discrete distributions is found in Rothschild and Stiglitz (1970), Subsection II.2, p. 229.
16Similar to Assumption 1, which is weaker, ε (n) > −1 is satis�ed for all convex crowding cost functions, and crowding cost functions

that belong to the class of power functions: g (n) ∝ nr, r > 0.
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a smaller range of train loads than in the UE. Conversely, if ε (n) < −1, which is possible only if g(.) is su�ciently

concave,17 then passenger loads are more peaked in the SO than the UE.

In summary, the di�erence between the SO and UE train loads depends on the curvature of the crowding cost

function. According to most empirical studies, g(.) is linear or convex (Wardman and Whelan, 2011; Haywood and

Koning, 2015). If so, ε (n) ≥ 0 and ridership in the UE is too concentrated on timely trains and should be spread

out.

Regardless of whether the SO is more or less peaked than the UE, the SO usage pattern can be decentralized by

charging a fare on train k equal to the marginal external cost of usage.18 We will call the fare pattern the SO-fare.

Given MSCk − ck = g′ (nk)nk, the SO-fare is:

τok = g′ (nok)nok, k = 1, ...,m. (5)

With this fare structure in place, users of train k incur a private cost equal to the social cost of a trip: pok =

cok + τok = MSCo, k = 1, ...,m. The SO is more e�cient than the UE because users are better distributed between

trains. However, inclusive of the SO-fare users incur a higher private cost in the SO. To see this, note that at least

one train is more crowded in the SO than the UE. Compared to the UE, in the SO a rider of that train incurs the

same schedule delay cost but a higher crowding cost and a positive fare. Since all users incur the same private cost

in the UE, and all users incur the same private cost in the SO, private costs are higher in the SO.19

Unless fare revenues are used to improve service in some way, charging fares to price crowding costs in the

PTC model leaves users worse o�.20 By contrast, in the bottleneck model congestion pricing leaves private costs

unchanged because the travel period is not a�ected. The bottleneck model therefore di�ers in the incidence of

tolling costs.

Another property of the bottleneck model is that congestion toll revenue increases with N . This is because the

average congestion externality increases with N , and hence so does the average toll. To determine how fare revenue

in the PTC model varies with N , let Ro denote total revenue from the SO-fare. Now Ro =
∑m
k=1 τ

o
kn

o
k, with n

o
k

given in Eq. (4) and τok in Eq. (5). Revenue from the optimal uniform fare is Ru = τuN . We have

Proposition 4. Let i = u, o index the pricing regime. Then,

∂Ri

∂N
=
∂MSCi

∂N
N.

17For example, inequality ε (n) < −1 holds for the function g (n) = c0 + c1 ln (n)− kn for c0 > k and over the range n ∈ [1, c1/k) .
18The fare is set according to Pigouvian principles. Revenue generation or other goals are ruled out.
19The di�erence in private cost is, however, smaller than the average fare paid because the social (i.e., resource) costs of travel are

lower in the SO.
20This is also true of pricing road tra�c congestion in Henderson's (1974) model although the physical e�ects of tolling di�er. In his

model, tolling causes the departure period to spread out, and the �rst and last users incur higher schedule delay costs than in the UE.
Because the �rst and last users incur no congestion delay in either the UE or the SO, their costs are higher in the SO. Since all users
incur the same private costs in the UE and SO, equilibrium private user costs are increased by tolling.
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Prop. 4 reveals that in each fare regime fare revenue increases if the marginal social cost of a trip increases with

total usage. This will be the case unless the crowding cost function is su�ciently concave.

Next, we examine how the welfare gain from implementing the SO-fare varies with usage. Let Geo ≡ TCe−TCo

denote the welfare gain in shifting from the UE to the SO. Intuition suggests that Geo increases with N : �rst

because crowding becomes more onerous for each user, and second because more users su�er the increased cost.

However, we have shown that the rate at which the cost of crowding increases with load depends on the curvature of

the crowding cost function. It turns out that properties of the crowding cost function also govern how Geo depends

on N .

Consider the following assumptions:

Assumption 2. The marginal external cost of crowding increases with load: ε (n) > −1.

Assumption 3a. The marginal social cost of crowding is a strictly convex function of load (i.e., v′′ (n) > 0), and

ε (n) is a nonincreasing function of load (i.e., dε(n)
dn ≤ 0).

Assumption 3b. The marginal social cost of crowding is a strictly concave function of load (i.e., v′′ (n) < 0), and

ε (n) is a nondecreasing function of load (i.e., dε(n)
dn ≥ 0).

Assumption 3a holds if g (n) ∝ nr, r ≥ 1, and Assumption 3b holds if g (n) ∝ nr, 0 < r < 1. The e�ect of total

ridership on the welfare gain from the SO-fare is described in

Proposition 5. Let Assumption 2 hold. The welfare gain from the SO-fare, Geo, decreases with N , increases with

N , or is independent of N if Assumption 3a holds, Assumption 3b holds, or if g (·) is linear, respectively.

Proposition 5 identi�es conditions under which Geo increases, decreases, or is independent of total ridership.

Since the conditions are not collectively exhaustive, Prop. 5 does not establish the direction of change for all cases.

Nevertheless, the conditions span a broad set of functions.

As noted earlier, most empirical studies �nd that g(.) is linear or convex. According to Prop. 5, Geo is then

either constant or (if dε (n) /dn ≤ 0) a decreasing function of N . This is a surprise since it goes against the intuition

described above. To understand why, note that the welfare gain derives from reallocating users between trains as

in Prop. 3. If g (.) is convex, users are reallocated more evenly. Since the di�erence in crowding costs between

two trains equals the di�erence in schedule delay costs, the marginal bene�t from starting to reallocate users is

independent of N . However, as N increases the marginal crowding cost on each train becomes higher and the UE

and SO train loads become more similar. Consequently, the amount of user reallocation decreases, and the total

welfare gain therefore falls as well. The argument runs in reverse if g (.) is concave since the optimal amount of

reallocation then increases with N .21

21Another way to view Prop. 5 is in terms of the marginal social cost of usage, which is MSCe in the UE and MSCo in the
SO. If MSCo < MSCe, an additional user causes total costs to rise by less in the SO than the UE, and Geo rises. Conversely, if
MSCo > MSCe, total costs rise more in the SO and Geo falls. Thus, if g(.) is convex an additional user is, paradoxically, more costly
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Several empirical studies have found that schedule delay and crowding costs are close to linear (see Wardman

et al., 2012, for scheduling cost, and Wardman and Whelan, 2011; Haywood and Koning, 2015, for crowding cost).

Taking advantage of this evidence, for most of the balance of the paper we focus on a particular instance of the

model in which the crowding cost function is linear. In Sections 4 and 5 we assume that the schedule delay cost

function is linear as well. With linearity, the model can be readily extended to allow elastic demand and the optimal

number of trains and train capacity can be characterized as well. Linearity also facilitates comparisons with the

bottleneck model.

3 Linear crowding costs

Assume that g (n) = λn/s, where s > 0 is a measure of train capacity, and λ > 0. The marginal social crowding

cost function is then v (n) = 2λn/s: twice the private crowding cost. The cost of taking train k is therefore

ck = δk + λnk/s, k = 1, ...,m.

3.1 User equilibrium

De�ne δ ≡ 1
m

∑m
k=1 δk as the unweighted average scheduling cost for trains. Eq. (1) and linear crowding costs lead

to

Proposition 6. In the uniform-fare equilibrium with linear crowding costs, train k carries a load nek = N/m +

s
(
δ − δk

)
/λ, and user cost is ce = δ + λN/ (ms).

For given values of m and s, equilibrium trip cost is a linear increasing function of ridership, N , as in the

bottleneck model. This is a consequence of the assumptions here that the train timetable is �xed and crowding

costs are linear.

As in the general model, timely trains carry more users than other trains. The di�erence in loads between two

successive trains is proportional to parameter s, and inversely proportional to λ. Because the �rst (or last) train

carries the fewest passengers, the solution satis�es all the non-negativity constraints nek > 0 if ne1 > 0 and nem > 0:

N >
ms

λ

(
max [δ1, δm]− δ

)
. (6)

Since service is costly to provide, condition (6) is satis�ed when m and s are chosen optimally as in Section 4.

Aggregate travel costs are described in

to accommodate in the SO than in the UE even though users are distributed optimally between trains in the SO. If g(.) is linear,
MSCo = MSCe and the di�erence in total costs between UE and SO is independent of N . In e�ect, the bene�ts of internalizing
the crowding cost externality are exhausted once total usage is large enough for all trains to be used. We will illustrate this case
diagrammatically in Section 3.
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Proposition 7. In the uniform-fare equilibrium with linear crowding costs, total schedule delay costs, SDC, total

crowding costs, TCC, and total travel costs net of the fare, TC, are given by

SDCe = δN − 4RV o,TCCe =
λN2

ms
+ 4RV o, TCe = δN +

λN2

ms
,

where RV o ≡ s
4λ

(∑m
k=1 δ

2
k − [

∑m
k=1 δk]

2
/m
)
.

As shown below, RV o is the variable revenue from the SO-fare. Note that RV o > 0 by the Cauchy-Schwarz

inequality. Crowding costs are analogous to travel time costs (TTC) in tra�c congestion models. In the bottleneck

model equilibrium, SDCe = TTCe for all values of N . In the PTC model the behavior of SDCe and TCCe is

more complicated. Total schedule delay costs are lower than if users were equally distributed across trains (in which

case SDCe = δN), and total crowding costs are higher by the same amount. This is because users crowd onto

timely trains that arrive closer to t∗. For small values of N , only one train is used. Schedule delay costs are zero (if

t1 = t∗) while crowding costs are proportional to N2. For a given value of m, m > 1, SDCe is a linear increasing

function of N with a negative intercept, while TCCe increases with N2 and has a positive intercept.

3.2 Social Optimum

The social optimum is readily derived using results for the general model in subsection 2.2. Given v (n) = 2λn/s,

v−1 (x) = sx/ (2λ). Eqs. (4) and (5) give

Proposition 8. In the social optimum with linear crowding costs, train k caries a load of nok = N/m +

s
(
δ − δk

)
/ (2λ). The optimum can be decentralized by charging a fare for train k of τok = λnok/s. The marginal

social costs of trips are the same for all trains and equal to δ + 2λN/ (ms).

According to Prop. 8, the marginal social cost of a trip is a linear increasing function of N . Assumption 2

holds for the linear crowding cost function. Hence, by Prop. 3 train loads are more evenly distributed in the social

optimum than the uniform-fare equilibrium. The di�erence in loads between successive trains is only half as large.

The non-negativity constraint on usage of all trains is satis�ed if N > ms
(
max [δ1, δm]− δ

)
/ (2λ). This condition

is satis�ed if condition (6) is satis�ed for the no-fare equilibrium. Compared to the uniform fare in Eq. (2),22 the

SO-fare is lower on the earliest and latest trains with δk > δ, and higher on timely trains with δk < δ.

Given Eqs. (4) and (5), total revenue from the SO-fare is Ro = λN2/ (ms) +RV o, where

RV o ≡ s

4λ

(
m∑
k=1

δ2
k −mδ

2

)
. (7)

The �rst term in Ro matches revenue from an optimal uniform fare, Ru. The second term, RV o, is extra revenue

(when m > 1) due to variation of the fare. As noted in subsection 3.1 this is called variable revenue. A notable

22With linear crowding costs, τu = λN/ (ms), and Ru = λN2/ (ms).
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feature of (7) is that variable revenue is independent of N . This property is discussed below in connection with the

welfare gain from imposing the SO-fare. Aggregate costs in the SO are described in

Proposition 9. In the decentralized social optimum with linear crowding costs, total schedule delay costs, SDC,

total crowding costs, TCC, and total travel costs net of the fare, TC, are given by

SDCo = SDCe + 2RV o, TTCo = TTCe − 3RV o, TCo = TCe −RV o.

Total schedule delay costs are higher in the social optimum than the no-fare equilibrium, but crowding costs are

smaller and total costs are lower by an amount equal to variable fare revenue. With linear crowding costs, the welfare

gain from imposing the SO-fare is therefore equal to variable revenue: Geo = RV o. Prop. 9 can be compared with

the corresponding formulas in the bottleneck model, denoted with a subscript Bn: SDCoBn = SDCeBn, TTC
o
Bn = 0,

RV oBn = TTCeBn, and TC
o
BnTC

e
Bn −RV oBn.

Tolling in the bottleneck model eliminates queuing (the counterpart to crowding in the PTC model) without

increasing total schedule delay costs. Variable revenue matches total queuing costs in the UE, and total costs are

reduced by variable revenue. Thus, in both models variable revenue measures the welfare gain from tolling, but

tolling is more e�ective in the bottleneck model because it eliminates the external cost of congestion without causing

schedule delay costs to increase.

The numerical example in Section 5 features linear schedule delay costs and a constant headway, h, between

trains. Given Geo = RV o, it is straightforward to show that for large values of m,

Geo ' s

48λ

(
βγ

β + γ

)2

h2m
(
m2 − 1

)
. (8)

Eq. (8) reveals how the welfare gain from the SO-fare varies with parameters. First, as noted in discussing Prop. 5

above, Geo is independent of total usage, N . To see why, consider a simple case with two trains.23 The cost of using

train k is ck = δk + gnk where g ≡ λ/s measures the rate at which crowding costs increase with train load. Figure

2 depicts the UE and SO using a diagram with two vertical axes separated by N .24 Usage of train 1 is measured to

the right from the left-hand axis, and usage of train 2 to the left from the right-hand axis. By assumption, δ2 > δ1

so that train 1 is overused in the UE. The welfare gained in shifting users from train 1 to train 2 is shown by the

triangular shaded area. The height of the triangle is δ2 − δ1, and the width of the triangle is (δ2 − δ1) / (2g). The

area of the triangle is therefore (δ2 − δ1)
2
/ (4g). It does not depend on N because neither dimension of the triangle

depends on N . The height of the triangle equals the di�erence in marginal external costs of using the two trains in

the UE. This is determined by the di�erence in their attractiveness, δ2− δ1, not N . The width of the triangle is the

optimal number of users to redistribute between trains which is proportional to δ2 − δ1, and inversely proportional
23This part of the discussion does not depend on Eq. (8), which is accurate only for large values of m.
24Figure 2 is analogous to Figure 3 in Arnott, de Palma and Lindsey (1990) which depicts a setting in which drivers choose between

two routes that di�er in free-�ow travel time costs.
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Figure 2: User equilibrium (UE), social optimum (SO) and welfare gain (Geo) with two trains

to g. This, too, is independent of N .

For large values of m, Eq. (8) reveals that Geo varies with the square of β and γ together. This is consistent

with the quadratic dependence of Geo on the schedule delay costs, δ1 and δ2, in the example with m = 2. Geo varies

with the square of the headway, h, for the same reason. Geo varies inversely with the ratio g = λ/s because the

scope to alleviate crowding by redistributing riders between trains decreases if trains become crowded more quickly.

Finally, Geo varies approximately with the cube of the number of trains. This highly nonlinear dependence is

due to two multiplicative factors. First, the average schedule delay cost of trains is proportional to m. The average

di�erence in schedule delay costs is therefore proportional to m, and the welfare gain from redistributing passengers

between two trains varies with m2. Second, the number of trains between which passenger loads can gainfully be

redistributed is approximately proportional to m. Hence, the overall welfare gain varies approximately with m3.

In the introduction to the paper we noted that the distribution of passengers between trains is governed by

the trade-o� users face between scheduling costs and crowding costs. It is therefore surprising that the parameters

measuring the strength of these two costs have contrasting e�ects on the welfare gain from congestion pricing.

According to Eq. (8), doubling the unit costs of schedule delay, β and γ, increases the welfare gain four-fold. By

contrast, doubling the crowding cost parameter, λ, reduces the gain by half. In assessing the potential bene�ts

from implementing congestion pricing, it is therefore important to predict how the parameter values will evolve over

time. If parameters β, γ and λ all grow at a rate r, Geo will grow at rate r too. By contrast, if work hours become

more �exible in the future, β and γ could stagnate while λ continues to rise. Other things equal, Geo would then

decline.
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3.3 Elastic demand

So far it has been assumed that transit ridership, N , is exogenous. In practice, travelers can often use other

transport modes and they may choose to forego travel if it is too costly. To admit these possibilities we now assume

that demand for public transport trips is a smooth and decreasing function of the private cost:

N = N (p) ,
∂N

∂p
< 0. (9)

Consumers' surplus from trips is CS (p) =
´∞
p
N (u) du, and social surplus (gross of capacity costs) is the sum of

consumers' surplus and fare revenue: SS (p, τ) = CS (p) +R.

The analysis parallels the comparisons in Arnott et al. (1993) for the bottleneck model. Let superscript n

denote the no-fare regime and a hat (^) denote an equilibrium value with elastic demand. The equilibrium values

in the no-fare, uniform-fare, and SO-fare regimes are compared in

Proposition 10. For given values of m and s, linear crowding costs, and elastic demand, equilibrium private costs

are the same in the SO-fare and optimal uniform-fare regimes, and lower in the no-fare regime: p̂o = p̂u > p̂n.

Equilibrium usage is the same in the SO-fare and optimal uniform-fare regimes, and higher in the no-fare regime:

N̂o = N̂u < N̂n.

Consumers' surplus is the same in the SO-fare and optimal uniform-fare regimes, and higher in the no-fare

regime: ĈS
o

= ĈS
u
< ĈS

n
.

Social surplus is highest in the SO-fare regime, intermediate in the optimal uniform-fare regime, and lowest in

the no-fare regime: ŜS
o
> ŜS

u
> ŜS

n
. Consequently, Ĝno > Ĝnu > 0, and Ĝno > Ĝuo > 0.

The results in Prop. 10 di�er from those in the bottleneck model (Arnott et al., 1993). In the bottleneck model,

the equilibrium price of a trip for a given N is the same in the social optimum and no-toll user equilibrium, and

higher in the uniform-toll equilibrium. Consequently, p̂uBn > p̂oBn = p̂nBn which contrasts with p̂u = p̂o > p̂n in

Prop. 10. The rankings of usage and consumers' surplus also di�er, and only the rankings of social surplus and the

welfare gain from pricing are the same.

4 Optimal transit service

We now turn attention to the long run when the transit authority can choose m, s, and the timetable for the m

trains. For tractability, we assume that schedule delay costs are linear. We also assumed that the headway between

trains is a given constant, h, which is reasonable if the headway is set to the shortest technologically feasible interval

consistent with safe operations. First we derive the optimal timetable for given values of m and s, and then the

derive properties of the optimal m and s for a general capacity cost function. Finally, we adopt a speci�c capacity

function and derive analytical formulas for the optimal m and s while treating m as a continuous variable.
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4.1 Optimal timetable

The optimal timetable is derived by minimizing users' total costs. In general, the optimal timetable for given m

and s is not the same for the UE and the SO because their load patterns di�er. However, the timetables are equal

given linear schedule delay costs and a uniform headway.

Since the timetable consists of m successive trains with a constant headway h, the timetable is fully described

by the arrival time of the last train, tm. Let 1x be the indicator function with 1x = 1 if x is true, and 1x = 0

otherwise.The optimal value of tm is described in

Proposition 11. With the optimal timetable the last train leaves at time tom = t∗+h
(
m− ϕm − 1 γm

β+γ>ϕm

)
where

ϕm ≡
⌊
γm
β+γ + 1

2

⌋
. Train k, with k = ϕm + 1 γm

β+γ>ϕm
arrives on time at t∗. The unweighted average schedule delay

cost is δ ' βγ
β+γ

mh
2 .

According to Prop. 11, the higher is the unit cost of late arrival (γ) relative to early arrival (β) the earlier train

service begins. The fraction of trains that arrive before t∗ is approximately γ/ (β + γ). This formula is approximate

because the number of trains is integer-valued. For the same reason, the formula for average schedule delay cost, δ,

is approximate too.

4.2 General capacity function

Let K (m, s) denote the cost of providing service including capital, operations, and maintenance.25 To facilitate

analysis, for the remainder of this section we treat m as a continuous variable. (The formula for δ in Prop. 11 is

then exact.) Function K (m, s) is assumed to be a strictly increasing and di�erentiable function of m and s. As in

Section 3.3, we �rst consider the uniform-fare regimes and then the social optimum.

Uniform-fare regimes.- Let superscript e denote a generic uniform-fare regime which includes the no-fare and

optimal uniform-fare regimes as special cases. Let p (N) denote the inverse demand curve corresponding to demand

function (9). With a uniform fare, social surplus net of capacity costs is

SSe =

ˆ N

n=0

p (n) dn−
(
δ̄N +

λN2

ms
+K (m, s)

)
.

The transit authority chooses m, s, and the toll, τ , to maximize SSe. For generality we allow the toll to depend

on N , m, and s in an arbitrary way. To economize on notation, let Km and Ks denote the derivatives of K (m, s)

with respect to m and s respectively. In addition, de�ne the composite variables

De ≡
pNN − τ − dτ

dNN

pNN − λN
ms −

dτ
dNN

, Aes ≡
(
τ − λN

ms

)
dτ
dsN

pNN − λN
ms −

dτ
dNN

, and Aem ≡
(
τ − λN

ms

)
dτ
dmN

pNN − λN
ms −

dτ
dNN

.

25System costs are assumed to be independent of usage. Adding N as an argument of the service cost function would not a�ect
results of interest.
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First-order conditions for a maximum of SSe are

For s :
λN2

ms2
·De +Aes = Ks, (10a)

For m :
(
λN

m2s
− ∂δ̄

∂m

)
N ·De +Aem = Km. (10b)

The right-hand side of (10a) is the marginal cost of expanding train capacity, and the left-hand side is the marginal

bene�t. The �rst term of the product on the left-hand side is the marginal bene�t from expanding train capacity if

usage remained �xed. The cost of crowding would decrease by λN/
(
ms2

)
for each of the N users. If τ < λN/ (ms)

and pN < ∞, De < 1 and the actual reduction in crowding cost is smaller than this because the improved service

quality attracts new users who value trips less than their marginal social cost. This is the induced or latent demand

e�ect familiar in the context of road tra�c congestion (e.g., Duranton and Turner, 2011). The other term on the

left-hand side of (10a), Aes, describes the e�ect of a change in toll. If τ < λN/ (ms), and expanding train capacity

induces a reduction in the toll (i.e., dτ/ds < 0), then Aes < 0. Lowering the toll exacerbates the e�ect of latent

demand, and the marginal bene�t from expanding train is reduced further.

Equation (10b) has a similar interpretation to Eq. (10a). The right-hand side of (10b) is the marginal cost of

adding a train, and the left-hand side is the marginal bene�t.26 The �rst term inside the brackets on the left-hand

side is the marginal bene�t per user from less crowding. The second term inside the brackets is the marginal

disbene�t due to greater average schedule delay costs. The derivative ∂δ/∂m given in Prop. 11 is constant. This

net bene�t is diluted by the same factor, De, as in Eq. (10a). Term Aem again describes the e�ect of a change in

toll. If τ < λN/ (ms), and expanding the number of trains induces a reduction in the toll (i.e., dτ/dm < 0), then

Aem < 0.

In the no-fare regime, τ = 0, De = pNN
pNN−λNms

< 1, Aes = 0, and Aem = 0. Eqs. (10a) and (10b) lead to

Proposition 12. In the no-fare regime, optimal train capacity, s, and number of trains, m, are de�ned by

λN2

ms2
· pNN

pNN − λN
ms

= Ks, (11a)(
λN

m2s
− ∂δ̄

∂m

)
N · pNN

pNN − λN
ms

= Km. (11b)

With no toll, expanding capacity has no secondary e�ect in reducing the toll but latent demand acts in full

force. Indeed, in the limit of perfectly elastic demand (i.e., pN → 0), the potential bene�t from expanding s or m

is completely dissipated.

With the optimal uniform fare, τ = λN/ (ms), De = 1, Aes = 0, and Aem = 0. Eqs. (10a) and (10b) give

26SinceKm > 0, the RHS of Eq. (10b) is positive. Provided (τ − λN/ (ms)) dτ/dm > 0, this guarantees that λN/
(
m2s

)
−∂δ̄/∂m > 0,

or N > ∂δ̄/∂m × sm2/λ. It is not clear that this condition is su�cient to guarantee condition (6), ne
k ≥ 0, for all k. However, m is

treated in this section as a continuous variable. If m is restricted to integer values, the optimal number of trains is derived by increasing
m in steps of one until the incremental net bene�t becomes negative. With such a procedure, condition (6) is satis�ed at the optimum.
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Proposition 13. In the optimal uniform-fare regime, optimal train capacity, s, and number of trains, m, are

de�ned by the conditions

λN2

ms2
= Ks,(

λN

m2s
− ∂δ̄

∂m

)
N = Km.

In contrast to Prop. 12, in Prop. 13 the marginal bene�ts from expanding train capacity and the number of

trains are not diluted by additional usage because usage is priced e�ciently. This might suggest that the optimal

values of s and m, su∗ and mu
∗ , are larger than their counterparts with a zero fare, sn∗ and mn

∗ . However, at least

for given values of s and m, usage is higher in the no-fare regime as per Prop. 10. This leaves the rankings of su∗

and sn∗ , and m
u
∗ and mn

∗ , ambiguous in general. Moreover, unlike in the bottleneck model it is not possible as in

Arnott et al. (1993) to derive simple rankings in terms of the elasticity of demand. This is because capacity has

two dimensions (m and s) rather than one, and also because the user cost in Prop. 6 has a �xed component that

is independent of usage.

Social optimum.- With the SO-fare, social surplus net of capacity costs is given by

SSo =

ˆ N

n=0

p (N)−
(
δ̄N +

λN2

ms
+K (m, s)

)
+RV o (m, s) .

SSo is the same as SSe except for the last term, RV o, which is a function of m and s, but does not depend on

usage. In e�ect, net �nancial system costs in the social optimum are K (m, s)− RV o (m, s). Since usage is priced

e�ciently in both the SO-fare and optimal uniform-fare regimes, the �rst-order conditions for so∗ and m
o
∗ are the

same as in Prop. 13 for su∗ and mu
∗ , with the derivatives of K (m, s) − RV o (m, s) in place of the derivatives of

K (m, s). We have

Proposition 14. In the SO-fare regime, optimal train capacity, s, and number of trains, m, are de�ned by the

conditions

λN2

ms2
= Ks −RV os , (12a)(

λN

m2s
− ∂δ̄

∂m

)
N = Km −RV om, (12b)

where RV os and RV om denote the derivatives of RV o (m, s) with respect to s and m respectively.

The right-hand sides of Eqs. (12a) and (12b) are smaller than their counterparts for the optimal uniform fare

displayed in Prop. 13. The generation of variable revenue from the SO-fare e�ectively reduces the marginal �nancial

cost of expanding either s or m. In the case of Eq. (12a) this implies that optimal train capacity conditional on

the values of m and N is larger in the social optimum: so∗ (m,N) > su∗ (m,N). Similarly, Eq. (12b) implies
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that the optimal number of trains conditional on the values of s and N is also larger in the social optimum:

mo
∗ (s,N) > mu

∗ (s,N).

These rankings may seem surprising given that total system costs are lower in the social optimum than the

uniform-fare regime. Inequality mo
∗ (s,N) > mu

∗ (s,N) is explained by the fact that ridership is distributed more

evenly across trains in the social optimum. More users take the earliest and latest trains in the social optimum

which makes adding extra trains more bene�cial. To understand the inequality so∗ (m,N) > su∗ (m,N), recall from

Eq. (8) that in the uniform-fare regime the deadweight loss from imbalanced ridership between trains increases

with s. Expanding capacity is therefore more valuable in the social optimum.

Despite the inequalities mo
∗ (s,N) > mu

∗ (s,N) and so∗ (m,N) > su∗ (m,N), there is no guarantee that the

unconditionally optimal values (so∗,m
o
∗) in the social optimum are both larger than their counterparts (su∗ ,m

u
∗).

One reason is that su∗ (m,N) is a decreasing function of m, and mu
∗ (s,N) is a decreasing function of s, and one

function can shift much more than the other. The other reason is that usage generally di�ers in the two regimes;

i.e. No
∗ 6= Nu

∗ . To proceed further, we now adopt a speci�c capacity function.

4.3 A speci�c capacity function

Kraus and Yoshida (2002) distinguish in their model between the number of train runs and the number of train

sets (a train set can make more than one run). They also account for the time required for a train set to make a

round trip. These variables are absent from our model, and we adopt a simpler service cost function for transit of

the form:

K (m, s) = (ν0 + ν1s)m+ ν2s, (13)

where ν0, ν1, and ν2 are all non-negative parameters. The term ν0 + ν1s in (13) is the incremental capital and

operating costs of running an additional train. It is a linear increasing function of train capacity. If ν0 > 0, there

are scale economies with respect to train size. The second term in (13), ν2s, accounts for costs that depend on

train capacity but not the number of trains. Kraus and Yoshida (2002) interpret this term as capital costs for

terminals.27 In this subsection we focus on the optimal uniform fare and SO-fare because in these regimes the slope

of the demand function does not a�ect the optimal values of m or s, and properties of the solution can be derived

while treating N parametrically.

Optimal uniform fare.- With the optimal uniform fare, the �rst-order conditions for s and m are given by Prop.

13. Given the service cost function (13), these equations become

λN2

ms2
= ν1m+ ν2, (14a)(

λN

m2s
− ∂δ̄

∂m

)
N = ν0 + ν1s. (14b)

27They note that the linear speci�cation is applicable if terminal cost is proportional to terminal area, and terminal area is proportional
to train capacity.
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Before solving (14a) and (14b) simultaneously, it is instructive to consider each equation by itself. Eq. (14b)

can be solved for the conditionally-optimal number of trains considered in the previous subsection: mu
∗ (s,N) =√

λ/
[
s
(
N∂δ̄/∂m+ ν0 + ν1s

)]
N . This expression is of practical interest if the transit authority cannot adjust train

capacity - perhaps because train platforms cannot be lengthened.28 As expected, the optimal number of trains

decreases with train capacity. The number of trains increases with demand at a rate faster than
√
N , but slower

than N . Service quality degrades because both the duration of the travel period and average train occupancy

increase.

First-order condition (14a) can be solved to obtain a formula for conditionally-optimal train capacity:

su∗ (m,N) =
√
λ/ (ν1m2 + ν2m)N . Optimal train capacity decreases with m at a rate faster than m−1/2. It

also varies proportionally with N . Thus, if the transit authority cannot add trains but can introduce bigger trains,

it adds su�cient capacity to maintain a given level of crowding on each train. Service quality remains constant.

In this sense, users fare better if the transit authority can only expand train capacity than if it can only add more

trains.29

Eqs. (14a) and (14b) can be solved jointly to obtain quartic equations for the unconditionally optimal values,

su∗ and su∗ .
30 The characteristics of the solution depend on the relative magnitudes of parameters ν0 and ν1.31 If

ν1 = 0, the cost of a train is independent of its capacity:

su∗ (N) =

(
∂δ̄

∂m

λ

ν2
2

N3 +
λν0

ν2
2

N2

)1/3

,

mu
∗ (N) =

λ

ν2 × su2
∗ (N)

N2.

According to Mohring's (1972) square-root rule, both optimal service frequency and the number of passengers

carried per train (or bus) increase with
√
N . In the PTC model, service frequency is constant because headway is

�xed. su∗ rises with N at a rate faster than N2/3,32 and mu
∗ grows at a rate slower than N2/3, but since it does

increase with N the duration of the travel period increases. As N becomes very large, mu
∗ approaches a constant

value and su∗ increases approximately linearly with N .33, 34 With ν1 = 0, it is possible to show that equilibrium

user cost is a U-shaped function of N with a minimum at N = ν0

(
∂δ̄/∂m

)−1
. However, both the equilibrium price,

p, and the average system cost, cu (mu
∗ , s

u
∗) +K (mu

∗ , s
u
∗) /N , decline monotonically with N . This is attributable to

the fact that, with ν1 = 0, the service cost function has constant returns to scale while the user cost function has
28Train platforms may also have to be adjusted to accommodate wider trains: a problem that the French rail network, SNCF, has

overlooked (Willsher, 2014).
29This might not be true if the headway between trains can be reduced.
30The equations are ν1(su∗ )4 + Z(su∗ )3 − λZ2N2/ν22 = 0, and ν1(mu

∗ )4 + ν2(mu
∗ )3 − λν22N2/Z2 = 0, where Z ≡ N∂δ̄/∂m+ ν0.

31If ν2 = 0, there would be no �xed costs of expanding train capacity such as train station infrastructure. Costs would be minimized
by reducing m toward zero while increasing s proportionally to maintain ms constant. This would imply operating one train large
enough to accommodate all passengers and setting the timetable so that everyone arrives on time which is implausible.

32In Kraus and Yoshida's (2002) model the e�ect of N on s is ambiguous. Neverthless, they remark (p.178) that �with realistic
parameters� s is likely to increase with N .

33Eventually a physical limit to train capacity would be reached due to constraints on platform size or tractive power.
34If ν0 = 0 as well as ν1 = 0, m∗u is independent of N , and s∗u rises proportionally with N for all values of N . This is a highly

unrealistic case since it means that procuring and operating trains is costless.
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increasing returns.

The limiting case ν0 = 0 applies if there are no scale economies with respect to train size:

ν1 +
∂δ̄

∂m

N

su∗
− λ

ν2
2

(
∂δ̄

∂m

)2(
N

su∗

)4

= 0,

ν1 (mu
∗)

4
+ ν2 (mu

∗)
3 − λν2

2

(
∂δ̄

∂m

)−2

= 0.

The �rst equation in the system solves for a unique value of N/su∗ which implies that train capacity is chosen

proportional to ridership. The second equation solves for a unique value of mu
∗ which implies that the number of

trains is independent of ridership. These properties imply that equilibrium user cost, cu, price, pu, and average

system cost are all constant. Hence, unlike in Mohring's model (in which ν1 = ν2 = 0, ν0 > 0) there are no scale

economies with respect to tra�c density. However, the case ν0 = 0 is similar to the bottleneck model in which

optimal capacity is proportional to usage, and equilibrium user cost, price, and average system cost are constants

(see Arnott et al, 1993).

The degree of cost recovery from fare revenue is easily derived. Fare revenue is Ru = λN2/ (musu). Given

�rst-order condition (14a) this implies Ru∗ = (ν1m
u
∗ + ν2) su∗ . The cost recovery ratio, ρ, is therefore

ρ =
Ru∗

K (mu
∗ , s

u
∗)

=
(ν1m

u
∗ + ν2) su∗

ν0mu
∗ + (ν1mu

∗ + ν2) su∗
≤ 1.

If there are no scale economies with respect to train size (i.e., ν0 = 0), fare revenue fully covers capacity costs.

Otherwise, costs are only partially recovered and the service runs a de�cit.

Social optimum.- For the social optimum, the �rst-order conditions for s and m are given in Eqs. (12a) and

(12b). With the service cost function (13), the equations reduce to

λN2

ms2
= ν1m+ ν2 −RV os , (15a)(

λN

m2s
− ∂δ̄

∂m

)
N = ν0 + ν1s−RV om. (15b)

Unlike Eqs. (14a) and (14b), (15a) and (15b) cannot be solved to obtain useful expressions for so∗ and m
o
∗. As noted

above, there is no guarantee in general that service quality is better in the social optimum than the uniform-fare

regime in the sense that so∗ (N) > su∗ (N) and mo
∗ (N) > mu

∗ (N). Indeed, in the numerical example of Section 5 it

turns out that so∗ (N) < su∗ (N). However, with capacity function (13), mo
∗ (N) > mu

∗ (N):

Proposition 15. For a given usage level, the optimal number of trains is greater in the social optimum than in the

optimal uniform-fare regime.

Unlike for the optimal uniform-fare regime, there is no simple formula for the degree of cost recovery from

SO-fare revenue. To derive further insights, and to rank m, s, and N for the three fare regimes, we now consider a
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Table 1: Comparison of no-fare, optimal uniform fare, and SO-fare (i.e., social optimum) regimes: base-case
parameter values

Fare regime

No-fare (n) Optimal uniform fare (u) Social optimum (o)
m 25.26 24 26.70
s 1, 762 1, 733 1, 710
N 37, 173 32, 600 32, 907
p 6.40 9.48 9.22

Rev/user 0 3.45 3.39
TCC 161, 558 133, 499 111, 520
SDC 76, 210 63, 244 80, 376
TC 237, 768 196, 743 191, 896
K 138, 270 134, 889 136, 528
R 0 112, 407 111, 520
ρ 0 0.833 0.817
CS 1, 873, 288 1, 766, 213 1, 774, 816
SS 1, 735, 018 1, 743, 732 1, 749, 807

Total gain 8, 714 14, 789
Gain/user 0.27 0.45
Rel.eff 0 0.59 1

numerical example.

5 A numerical example

The numerical example draws on recent empirical estimates of crowding costs, and it is calibrated to describe

service on the Paris RER A line during the morning peak.35 Base-case parameter values are: β = 7.4 [e/(hr·user)],

γ = 17.2 [e/(hr·user)], λ = 4.4 [e/user], and h = 2.5 [min/train]. The demand function (9) is assumed to have a

constant-elasticity form N = N0p
η with η = −1/3.36 Parameter N0 and parameters ν0, ν1, and ν2 of the capacity

cost function are chosen to yield equilibrium values for the optimal uniform-fare equilibrium of Nu = 32, 600,

mu
∗ = 24, su∗ = 1, 733, and a cost recovery rate of 5/6. The resulting values are: N0 = 69, 003 [users], ν0 = 936.7

[e/train], ν1 = 0.1344 [e/user], and ν2 = 61.63 [e·train/user]. Results for the three fare regimes are reported in

Table 1.37

5.1 No fare

With no fare, the equilibrium private cost (which equals the equilibrium user cost) is e6.40. There are Nn = 37, 173

users who are accommodated in mn
∗ = 25.26 trains with nominal capacities of sn∗ = 1, 762. Total crowding costs

(TCCn) are more than double total schedule delay costs (SDCn). Capital costs (Kn) are about 58 percent as large

35Parameter values are explained in online Appendix H.
36An elasticity of −1/3 is in the mid-range of empirical estimates (Oum, Waters II and Fu, 2008, p.249). Consumers' surplus is

in�nite with η > −1. To enable comparisons of consumers' surplus between regimes, the area to the left of the demand curve is computed
only for p ≤ e100.

37Throughout the numerical example m is treated as a continuous variable. The results change very little if m is restricted to integer
values (see online Appendix I).
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as total user costs (TCn). Given no fare, the degree of cost recovery is zero.

5.2 Optimal uniform fare

The optimal uniform fare works out to τu =e3.45. It boosts the equilibrium private cost to pu = e9.48 which is

e3.08 above the no-fare equilibrium price. Ridership drops to Nu = 32, 600: about 12 percent below the no-fare

level. Both the number of trains and train capacity are lower than with no fare although capacity costs are reduced

by only 2.4 percent. Total crowding costs and total schedule delay costs are also lower than with no fare. By design,

fare revenue of Ru = 112, 407 covers a fraction ρu = 0.833 of capacity costs. Consumers' surplus is lower than

with no fare, but social surplus is higher by e8, 714 or about e0.27 per rider in the uniform-fare equilibrium. The

relative e�ciency of the optimal uniform fare can be measured by taking the no-fare and social optimum regimes

as polar benchmarks and using the index

Effu =
ŜS

u
− ŜS

n

ŜS
o
− ŜS

n .

With the base-case parameter values, Effu ' 0.59 so that the optimal uniform fare yields nearly 3/5 of the e�ciency

gain from the SO-fare.

5.3 Social optimum

The social optimum calls for more trains than either the no-fare or the uniform-fare regime. This is consistent

with the result mo
∗ (N) > mu

∗ (N) established for �xed demand in Prop. 15. However, train capacity is slightly

lower than in the other two regimes. Ridership and consumers' surplus are slightly higher than with a uniform

fare. Price, revenue per user, and cost recovery are slightly lower. Crowding costs are signi�cantly lower than in

the other regimes, but schedule delay costs are higher because the SO-fare spreads usage more evenly over trains.

Capacity costs are intermediate between the other regimes. Social surplus is higher than with no fare by about

e0.45 per rider.

5.4 Short-run versus long-run welfare gain from pricing

In Table 1, capacity is chosen optimally for each fare regime. Because rail transit capacity can take years to adjust,

it is of interest to compare fare regimes in the �short run� when capacity is �xed. If pricing is assumed to become

more e�cient over time, there are three cases to consider: regime u with capacity �xed at (mn
∗ , s

n
∗ ), regime o

with capacity �xed at (mn
∗ , s

n
∗ ), and regime o with capacity �xed at (mu

∗ , s
u
∗). Let G

xy
x denote the welfare gain in

shifting from regime x to regime y when capacity remains �xed at its optimal level for regime x. With the base-case

parameters one obtains Gnun = e8, 336, Guou = e5, 273 and Gnon = e14, 589. By comparison, from Table 1 the

long-run welfare gains when capacity is adjusted optimally are Gnu = e8, 714, Guo = e6, 076 and Gno = e14, 788.

The long-run gains are higher by 4.5 percent, 15.2 percent and 1.4 percent respectively. The di�erence between
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Table 2: E�ects of increasing parameters β and γ (or parameter h) by 10 percent

Fare regime

No-fare (n) Opt. unif. fare (u) Soc. opt. (o)
m −4.98% −4.98% −4.44%
s +1.69% +1.70% +1.64%
N −1.07% −0.99% −0.96%

Welf. gain +0.7% +6.3%

Table 3: E�ects of increasing parameter λ by 10 percent

Fare regime

No-fare (n) Opt. unif. fare (u) Soc. opt. (o)
m +3.02% +3.02% +2.92%
s +2.14% +2.14% +2.15%
N −1.06% −1.08% −1.08%

Welf. gain +2.4% +1.4%

short-run and long-run gains is appreciable only for Guo. This is mainly because regimes u and o di�er the most in

terms of optimal number of trains38

In all three fare regimes the equilibrium price is an increasing function of parameters β, γ, λ and h. Equilibrium

usage thus decreases if these parameters increase in value. Because capacity is endogenous in this section, varying

parameters β, γ, λ or h induces changes in s and m, and to determine the size of the e�ects it is necessary to solve

for the new equilibria.

As a �rst experiment, parameters β and γ were both increased by 10 percent. The results are shown in Table 2.

In each fare regime the number of trains drops by nearly 5 percent because users incur higher costs from schedule

delay, which reduces demand for travel. Partly to compensate, train capacity increases by about 1.7 percent.

Equilibrium prices rise, and usage drops slightly. Welfare gain Gnu increases by 0.7 percent, and welfare gain Guo

increases by 6.3 percent. An increase in headway, h, has exactly the same e�ect as an equal percentage increase in

β and γ. Thus, the consequences of a 10 percent increase in h are as shown in Table 2.

As a second experiment, parameter λ was increased by 10 percent. The results are shown in Table 3. In all fare

regimes the number of trains rises by about 3 percent while train capacity increases by just over 2 percent. Usage

drops by about 1 percent. Welfare gains Gnu and Guo both increase slightly.

Tables 2 and 3 depict long-run e�ects of changes in parameter values. These e�ects can di�er signi�cantly from

the short-run e�ects when capacity is given. Consider, for example, welfare gain Guo. In the short run with s and

m �xed, Guo is given by Eq. (8). With a 10 percent increase in β and γ, Guo rises by a factor of (1.1)
2, or 21

percent. This is more than triple the 6.3 percent long-run increase shown in Table 2. A 10 percent increase in λ

causes Guo to fall in the short run by a factor (1.1)
−1 or about 9 percent. Yet Table 3 shows that the long-run gain

actually rises by 1.4 percent.
38Note that by Prop. 10, usage with the SO-fare and capacity �xed at (mu

∗ , s
u
∗ ) is the same as usage with the optimal uniform fare.

Thus, in the short run regimes u and o di�er only in how passengers are distributed between trains.
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The large di�erences between the short-run and long-run e�ects highlight the importance of the time horizon

that is adopted for planning. For example, recent empirical research has led to improved estimates of the costs of

public transport crowding (OECD, 2014). A rise in the estimated unit cost of crowding (i.e., parameter λ) might

dissuade a planner with a short-run perspective from implementing train-dependent fares. By contrast, a planner

with a long-run perspective could be spurred to go ahead. This illustrates the well-known lesson that pricing and

capacity investment decisions are interdependent, and should be considered jointly (Lindsey, 2012).

6 Conclusion

In this article we have analyzed the time pattern of usage and crowding on a commuter rail line using a model

(the PTC model) of trip-timing preferences. Users face a trade-o� between riding a crowded train that arrives at a

convenient time, and riding a less crowded train that arrives earlier or later than desired. We solve user equilibrium

for three fare regimes: no fare, an optimal uniform fare that controls the total number of users, and an optimal

train-dependent fare that controls the distribution of users between trains as well. We also solve for the optimal

long-run number and capacities of trains for the three fare regimes.

In all fare regimes timely trains are more popular and correspondingly more crowded. Under plausible assump-

tions, passenger loads are distributed more evenly across trains in the social optimum than in the user equilibrium.

Arrivals at the destination therefore occur at a more even rate, whereas in the bottleneck model the arrival rate

is constant (and equal to bottleneck capacity) throughout the arrival period. Because crowding is assumed to

occur at all levels of train occupancy, it is impossible to eliminate crowding costs even if fares can be varied freely.

Consequently, imposing Pigouvian fares makes users worse o� � at least before accounting for how the revenue is

used.

Perhaps the most striking result is that if the crowding cost function is convex, the short-run welfare gain from

introducing optimal train-dependent fares decreases with total ridership. The marginal social cost of accommodating

an additional passenger is actually higher in the social optimum than with a uniform fare even though passengers are

distributed optimally across trains in the social optimum. This �nding constrasts with both conventional wisdom

and models of road tra�c �ow including the bottleneck model.

Solving for optimal transit supply in the PTC model is complicated by the fact that capacity has two dimensions:

the number of trains and the capacity of each train. We treat a special case with linear crowding and schedule

delay cost functions, and a uniform headway between trains. The ranking of optimal capacity in the no-fare and

optimal uniform-fare regimes is ambiguous in general. More users take transit in the no-fare regime, but the bene�t

from expanding capacity is diluted by latent demand. Expanding capacity is more valuable in the social optimum

than the optimal uniform-fare regime because capacity is used more e�ciently. The optimal number of trains is

unambiguously higher in the social optimum because more users take additional trains. Optimal train capacity is
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also higher in the social optimum if the number of trains is equal, but the ranking of capacity is ambiguous when

the number of trains is optimized as well. The result that capacity investments tend to yield higher bene�ts in

the social optimum again constrasts with conventional wisdom that e�cient pricing and capacity investments are

substitutes for relieving congestion. Since the result holds when demand is �xed, this property of the PTC model

also di�ers from road tra�c congestion models including the bottleneck model (compare Arnott et al., 1993, Section

III).

For illustration we calibrate the model to describe the Paris RER A line during morning-peak conditions. With

the base-case parameter values the welfare gain from implementing e�cient pricing is e0.27 per user for the optimal

uniform fare, and e0.45 for the optimal train-dependent fare. While these amounts may seem modest, the system-

wide gain could be large. The RER A line carries more than 300 million users per year, and on average more

than 1.5 million individuals used public transport in the Île-de-France region during the morning peak (7am-9am)

in 2010.39 Given 250 working days per year, a welfare gain of about e0.50 per trip, and doubling the number of

trips to account (roughly) for evening travel, the annual total welfare gain from optimal pricing amounts to nearly

e400 million per year. This �gure is comparable to the social saving from a road tra�c cordon congestion pricing

scheme. Treating the Île-de-France region, and applying the bottleneck model to the road network, De Lara et al.

(2013) estimated an annual social saving of e606 million from a cordon toll.

The analysis in this paper could be extended in various directions. One is to allow travelers to di�er in their

trip-timing preferences and disutility from crowding. Doing so would allow consideration of the equity implications

of alternative fare regimes and service investment policies. Another extension is to consider rewards as a means of

redistributing passengers across trains. An alternative to penalizing peak-period users with high fares is to reduce

o�-peak users with low, or possibly even negative, fares. As noted in the introduction, cities such as Singapore

and Melbourne have implemented such schemes.40 Pricing usage below marginal social cost is ine�cient when it

induces excessive travel, but the induced deadweight loss may be an acceptable price to pay if discounting fares helps

overcome opposition to time-of-day pricing. The relative merits of alternative fare-reward pricing schemes depend

on the extent to which lowering transit fares can alleviate road tra�c congestion. If peak-period tra�c congestion

is severe and road usage is underpriced, second-best peak-period fares could actually be lower than o�-peak fares.

However, since cross-price elasticities of demand between driving transit are generally found to be small (Hensher,

1998; Litman, 2004) it is widely believed that manipulating transit fares (or other dimensions of service quality) is

likely to have little e�ect on driving.41

A third extension is to combine crowding costs with queuing delay as in Kraus and Yosida (2002). Both forms

of congestion are often manifest in transit systems. If a distinction is also made between seated and standing
39See p.11 in http://www.lvmt.fr/IMG/pdf/RAPA_Chaire_Stif_2013-2014_v1.pdf
40The Spitsmijden experiment in the Netherlands indicates that rewarding motorists for driving o�-peak can also be succesful

(Knockaert et al., 2012).
41An exception is Anderson (2014) who uses data from a 2003 transit strike in Los Angeles and �nds that cessation of transit service

has a large e�ect on tra�c speeds on heavily congested roads.
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passengers, as in de Palma, Kilani and Proost (2015), passengers can experience congestion in a number of ways:

delays when accessing stations and waiting on the platform, delays when trains are too full to board, delays while

boarding, discomfort while seated, greater discomfort and possibly fatigue while standing, and delays while alighting

at the destination and exiting stations. The analysis of such a system is likely to be insightful but challenging.
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Appendix

A Proof of Proposition 3

Let j index trains in order of decreasing schedule delay cost so that δ1 > δ2 > ... > δm. (Because trains arrive

early and late, the index does not correspond to the temporal sequence in which trains are run.) Since in the UE

nej = g−1 [ce − δj ] and g′ (.) > 0, nej increases with j: n
e
1 < ne2 < ... < nem.

We show that nej ≶ noj ⇐⇒ nejg
′ (nej) ≶MSCo − ce. Given noj = v−1[MSCo − δ (tj)], it follows that

nej ≶ noj

⇐⇒ g−1 [ce − δj ] ≶ v−1 [MSCo − δj ]

⇐⇒ v
{
g−1 [ce − δj ]

}
≶ MSCo − δj

⇐⇒ ce − δj + g−1 [ce − δj ]× g′
{
g−1 [ce − δj ]

}
≶ MSCo − δj

⇐⇒ g−1 [ce − δj ]× g′
{
g−1 [ce − δj ]

}
≶ MSCo − ce

⇐⇒ nejg
′ (nej) ≶ MSCo − ce.

Variables nej and n
o
j have the same ranking as nejg

′ (nej), the marginal external cost of crowding in the UE, and

MSCo − ce, which is constant. Because total patronage, N , is �xed, some trains are more more heavily loaded in

the UE, and the others are more heavily loaded in the SO. Consequently, if ng′ (n) is a strictly increasing function

of n (i.e., ε (n) > −1), there exists a unique train ̂ such that nej < noj when j < ̂, ne̂ ≥ no̂ , and n
e
j > noj when

j > ̂ . Conversely, if ng′ (n) is a strictly decreasing function of n (i.e., ε (n) < −1), there exists a unique train ̂

such that nej > noj when j < ̂, ne̂ ≤ no̂ , and nej < noj when j > ̂ .

B Proof of Proposition 4

Total fare revenue from the optimal uniform fare is Ru = τuN . Hence ∂Ru

∂N = τu + ∂τu

∂N N . Now

MSCu =
∂TCu

∂N
=
∂ (cuN)

∂N
= cu +

∂cu

∂N
N = cu + τu.

Thus
∂MSCu

∂N
N =

(
∂cu

∂N
+
∂τu

∂N

)
N = τu +

∂τu

∂N
N =

∂Ru

∂N
.

Total fare revenue from the SO-fare is Ro =
∑m
k=1 τ

o
kn

o
k. Hence

∂Ro

∂N
=

m∑
k=1

(
τok +

∂τok
∂nok

nok

)
∂nok
∂N

.
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The marginal social cost of a trip is the same for all trains that are used: MSCo = cok + τok . Hence:

∂MSCo

∂N
=

(
∂cok
∂nok

+
∂τok
∂nok

)
∂nok
∂N

,

∂MSCo

∂N
nok =

(
∂cok
∂nok

nok +
∂τok
∂nok

nok

)
∂nok
∂N

=

(
τok +

∂τok
∂nok

nok

)
∂nok
∂N

,

∂MSCo

∂N
N =

m∑
k=1

∂MSCo

∂N
nok =

m∑
k=1

(
τok +

∂τok
∂nok

nok

)
∂nok
∂N

=
∂Ro

∂N
.

C Proof of Proposition 5

We prove the case for which the welfare gain Geo decreases with N . The proof for the case in which Geo decreases

follows the same steps, and is omitted. As mentioned in the text, Geo decreases if the marginal social cost of an

additional user is higher in the SO than the UE. Thus, it su�ces to show that MSCo > MSCe.

As in Appendix A, let k index trains in order of decreasing schedule delay cost so that in the no-fare equilibrium,

ne1 < ne2 < ... < nem. Equilibrium cost with no fare, ce, is determined implicitly by Eq. (1):

m∑
k=1

g−1 [ce − δk]−N = 0. (C.1)

This equation can be written
m∑
k=1

f [g (nek) + g′ (nek)nek] = N, (C.2)

where f (n) ≡ v−1 (n). Since f (v (n)) = n,

f ′ (n) =
1

v′ (n)
=

1

2g′ (n) + g′′ (n)n
. (C.3)

The marginal social cost of a trip in the no-fare equilibrium is MSCe = ∂(ceN)
∂N = ce + ∂ce

∂NN . Using Eq. (C.1)

to derive ∂ce

∂N one obtains

MSCe = ce +
N∑m

k=1
1

g′(nek)

. (C.4)

The marginal social cost of a trip in the social optimum is de�ned implicitly by:

m∑
k=1

f [MSCo − δk] = N. (C.5)

By Assumption 1, the left-hand side of Eq. (C.5) is a strictly increasing function of MSCo. Suppose we

substitute eqn. (C.4) for MSCe in place of MSCo in Eq. (C.5). If the resulting left-hand side is less than N , then

MSCo > MSCe and the proof is complete. To economize on notation, let gk denote g (nek), g′k denote g′ (nek), and
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marginal social cost

ridership

f (.)

•

c1

n1

c̃1

ñ1

•

cm

nm

c̃m

ñm

Figure 3: Ridership and marginal social cost

nk denote nek. After a few substitutions one can write

m∑
k=1

f [MSCe − δk] =

m∑
k=1

f

[
gk +

N

m

m∑m
k=1

1
g′k

]
.

De�ne

meck ≡ gk + g′knk, (C.6)

and

m̃eck ≡ gk +
m∑m
k=1

1
g′k

N

m
. (C.7)

Given Eq. (C.2), we need to prove that the following expression is negative:

∆F ≡
m∑
k=1

f

[
gk +

m∑m
k=1

1
g′k

N

m

]
︸ ︷︷ ︸

ñk

−
m∑
k=1

f [meck]︸ ︷︷ ︸
nk

.

Given Assumption 1, ñk > nk for small k, and ñk < nk for large k. The rankings of ñk and nk, and of c̃k and

ck, are shown in Figure 3.

Function f () is concave by Assumption 3a. Clearly, for all trains ñk − nk < (c̃k − ck) f ′ [ck] , k = 1...m. Using

Eqs. (C.6), (C.7) and (C.3) this implies

∆F =

m∑
k=1

ñk −
m∑
k=1

nk <

m∑
k=1

(c̃k − ck) f ′ [ck]

=

m∑
k=1

(
m∑m
k=1

1
g′k

N

m
− g′knk

)
1

2g′k + g′′knk
.
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Now,
∑m
k=1

1
g′k

=
∑m
j=1

∏
i6=jg

′
i∏

k
i=1g

′
i

. Hence

∆F =

m∑
k=1

(
N

∏m
i=1 g

′
i∑m

j=1

∏
i 6=jg′i

− g′knk

)
1

2g′k + nkg′′k

=

m∑
k=1

(
N

∏
i 6=kg

′
i∑m

j=1

∏
i 6=jg′i

− nk

)
g′k

2g′k + nkg′′k

=

m∑
k=1


(∑

l 6=k nl

)∏
i 6=kg

′
i∑m

j=1

∏
i 6=jg′i

+

( ∏
i 6=kg

′
i∑m

j=1

∏
i 6=jg′i

− 1

)
nk

 g′k
2g′k + nkg′′k

=

m∑
k=1


∑
l 6=k

nl


︸ ︷︷ ︸

(1)

∏
i 6=kg

′
i∑m

j=1

∏
i 6=jg′i︸ ︷︷ ︸

(2)

−
∑
j 6=k

∏
i 6=jg

′
i∑m

j=1

∏
i 6=jg′i︸ ︷︷ ︸

(3)

nk︸︷︷︸
(4)


g′k

2g′k + nkg′′k
(C.8)

In the second line of eqn. (C.8),

m∑
k=1

(
N

∏
i 6=kg

′
i∑m

j=1

∏
i 6=jg′k

− nk

)

= N

m∑
k=1

( ∏
i 6=kg

′
i∑m

j=1

∏
i6=jg′i

)
−

m∑
k=1

nk

= N −N = 0.

Terms (1) and (2) in the last line of Eq. (C.8) are decreasing functions of k. Terms (3) and (4) are increasing

functions of k. Hence Eq. (C.8) is negative if g′k
2g′k+nkg′′k

is a non-decreasing function of k, or equivalently if

ε (n) =
g′′knk
g′k

is a non-increasing function of k which is guaranteed by Assumption 3a.

D Proof of Proposition 10

We �rst consider uniform fares (which include no fare and the optimal uniform fare as special cases), and then the

SO-fare. The goal of this section is to rank equilibrium prices and numbers of trips in the pricing regimes.

D.1 Uniform-fare regimes

With a uniform fare, the equilibrium private cost of a trip, pe, equals the user cost plus the fare:

pe = δ̄ +
λN

ms
+ τ . (D.1)
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Eq. (D.1) serves as a supply function for trips. Solving (D.1) and the demand function (9) yields the equilibrium

private cost and number of trips, p̂e and N̂e. If the fare is zero, the equilibrium price is

p̂n = δ̄ +
λN̂n

ms
. (D.2)

Social surplus equals consumers' surplus: ŜS
n

= ĈS
n

=
´∞
p̂n
N (u) du. The optimal uniform fare is given by Eq.

(2): τ̂u = λN̂u

ms , and fare revenue is R̂u = τuN̂u =
λ(N̂u)

2

ms . The e�cient price of a trip equals marginal social cost:

p̂u = M̂SC
n

= ĉu + τ̂u = δ̄ +
2λN̂u

ms
. (D.3)

Social surplus is equal to ŜS
u

=
´∞
p̂u
N (u) du + τuN̂u. Finally, the welfare gain in switching from no fare to the

optimal uniform fare is Geu = ŜS
u
− ŜS

n
.

D.2 Social optimum

The social optimum can be supported by imposing train-speci�c fares as described in Prop. 8. Total travel costs

are derived by substituting Eq. (7) into the expression for TCo given in Prop. 9: T̂C
o

= δ̄N̂o +
λ(N̂o)

2

ms − RV o.

Since variable revenue in Eq. (7) does not depend on the number of trips, the marginal social cost of a trip is

M̂SC
o

= δ̄ + 2λN̂o

ms . Similar to the optimal uniform-fare regime, the e�cient price of a trip equals marginal social

cost:

p̂o = M̂SC
o (
N̂o
)

= δ̄ +
2λN̂o

ms
. (D.4)

Eqs. (D.3) and (D.4) reveal that the optimal price is the same function of usage in regimes u and o. This is

consistent with the observation that, if the crowding cost function is linear, the marginal social cost of trips is the

same in the SO and UE. Social surplus is equal to

ŜS
o

=

ˆ ∞
p̂o

N (u) du+Ro
(
N̂o
)

=

ˆ ∞
p̂o

N (u) du+
λ
(
N̂o
)2

ms
+RV o.

The welfare gain in switching from no fare to the SO-fare is Gno = ŜS
o
− ŜS

n
, and the welfare gain in switching

from the optimal uniform fare to the SO-fare is Guo = ŜS
o
− ŜS

u
.

D.3 Comparison of the regimes

Private costs in regimes n, u and o are given by Eqs. (D.2), (D.3), and (D.4) respectively. For given values of m, s,

and N , it is clear that private costs are the same in regimes u and o, and lower in regime n. With elastic demand

this implies that equilibrium usage is the same in regimes u and o, and higher in regime n. Correspondingly, the

equilibrium private cost and consumers' surplus are the same in regimes u and o, and higher in regime n. Social
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surplus is highest in regime o, lowest in regime n, and intermediate in regime u.

E Proof of Proposition 11

We �rst derive the optimal timetable for the UE, and then show that this timetable is also optimal for the SO.

E.1 Optimal timetable for user equilibrium

The optimal timetable is chosen to minimize total user costs. For the UE, total costs are given by Prop. 7:

TCe = δN + λN2

ms . The timetable should therefore be chosen to minimize average schedule delay cost, δ. The

timetable can be de�ned by the arrival time of the last train, tm. It is clearly not optimal to set tm < t∗,

and have all trains arrive early, since δ could be reduced by setting tm = t∗. Similarly, it is not optimal to set

tm > t∗ + (m− 1)h, and have all trains arrive late, since δ could be reduced by setting tm = t∗ + (m− 1)h. Thus,

one train must arrive during the interval (t∗ − h, t∗]. Call it train k̂. Train k̂ is the last train to arrive at or before

t∗. Average schedule delay cost is

δ =
1

m

(
k̂∑
k=1

β (t∗ − tk) +

m∑
k=k̂+1

γ (tk − t∗)

)

=
1

m

(
k̂∑
k=1

β
(
t∗ − tk̂ + h

(
k̂ − k

))
+

m∑
k=k̂+1

γ
(
tk̂ − t

∗ + h
(
k − k̂

)))

=
1

m

((
t∗ − tk̂

) [
(β + γ) k̂ − γm

]
+ (β + γ)h

k̂
(
k̂ − 1

)
2

+γh
m
(
m+ 1− 2k̂

)
2

)
. (E.1)

The �rst component of the right-hand side of Eq. (E.1),
(
t∗ − tk̂

)
, is the time between the arrival time of train k̂

and t∗. If tk̂ < t∗ we can di�erentiate Eq. (E.1):

∂δ

∂
(
t∗ − tk̂

) =
(β + γ) k̂

m
− γ.

If k̂ > γm/ (β + γ), then ∂δ/∂
(
t∗ − tk̂

)
> 0 and δ is minimized by setting t∗−tk̂ to its minimal value, i.e t∗−tk̂ = 0.

Conversely, if k̂ < γm/ (β + γ), then ∂δ/∂
(
t∗ − tk̂

)
< 0 and δ is minimized by setting t∗ − tk̂ = h. Hence it is

optimal to schedule one train at t∗. Call it train k∗. Replacing k̂ in Eq. (E.1) with k∗ one obtains

δ = (β + γ)h
k∗ (k∗ − 1)

2m
+ γh

m+ 1− 2k∗

2
.
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Treating k∗ as a continuous variable for the moment, the �rst-order condition for minimizing δ with respect to k∗

is k∗o = γm
β+γ + 1

2 . Since k
∗ is an integer, we have to compare δ when k∗ = bk∗oc and when k∗ = bk∗oc+ 1. We �nd

δk∗=bk∗oc − δk∗=bk∗oc+1 ≶ 0⇐⇒ γm

β + γ
≶

⌊
γm

β + γ
+

1

2

⌋
.

Hence,

k∗ =

⌊
γm

β + γ
+

1

2

⌋
+ 1× 1 γm

β+γ>b γmβ+γ+ 1
2c

tm = t∗ + h

(
m−

⌊
γm

β + γ
+

1

2

⌋
− 1× 1 γm

β+γ>b γmβ+γ+ 1
2c

)

In summary, if γm/ (β + γ) > bγm/ (β + γ) + 1/2c, then

k∗ = bγm/ (β + γ) + 1/2c+ 1, and

tm = t∗ + h(m− 1− bγm/ (β + γ) + 1/2c).

Conversely, if γm/ (β + γ) <
⌊
γm
β+γ + 1

2

⌋
, then

k∗ = bγm/ (β + γ) + 1/2c , and

tm = t∗ + h (m− bγm/ (β + γ) + 1/2c) .

E.2 Optimal timetable for social optimum

Total costs in the social optimum are given by Prop. 9

TCo = δN +
λN2

ms
− s

4λ

(
∆−mδ2

)
.

TCo di�ers from TCe in including the third term on the right-hand side. Recall that

∆−mδ2
=

m∑
k=1

δ2
k −

1

m

[
m∑
k=1

δk

]2

, (E.2)

where

δk = β [t∗ − tm + h (m− k)]
+

+ γ [tm − t∗ − h (m− k)]
+
. (E.3)

As above, let k̂ be the last train to arrive at or before t∗. Di�erentiating (E.2) with respect to tm, and using (E.3),
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it is possible to show after considerable algebra that

∂
(

∆−mδ2
)

∂tm
=

γ

β + γ
m+ 1− k̂.

The term ∆−mδ2
therefore reaches an extreme point for the same k̂ as does δ. Hence TCo reaches a minimum

for the same timetable as TCe.

F Derivatives of SSe with respect to m and s

First-order conditions for a maximum of SSe are42

∂SSe

∂s
= p (N)

∂N

∂s
−
(
−λN

2

ms2
+

(
δ̄ +

2λN

ms

)
∂N

∂s
+Ks

)
= 0, (F.1)

∂SSe

∂m
= p (N)

∂N

∂m
−
(
∂δ̄

∂m
N − λN2

m2s
+

(
δ̄ +

2λN

ms

)
∂N

∂m
+Km

)
= 0. (F.2)

The private cost of usage is given by Eq. (D.1) which can be written

p (N)−
(
δ̄ +

2λN

ms

)
= τ − λN

ms
. (F.3)

The fare, τ , depends on the pricing regime. To maintain generality we assume for the moment that τ can depend

on N , m, and s. Substituting (F.3) into (F.1) and (F.2) yields:

λN2

ms2
+

(
τ − λN

ms

)
∂N

∂s
−Ks = 0, (F.4)

λN2

m2s
− ∂δ̄

∂m
N +

(
τ − λN

ms

)
∂N

∂m
−Km = 0. (F.5)

The demand derivatives are obtained by totally di�erentiating (D.1):

∂N

∂s
=

− λN
ms2 + dτ

ds

pN − λ
ms −

dτ
dN

> 0, (F.6)

∂N

∂m
=

∂δ̄
∂m −

λN
m2s + dτ

dm

pN − λ
ms −

dτ
dN

> 0. (F.7)

Substituting (F.6) and (F.7) into (F.4) and (F.5), the �rst-order conditions become

λN2

ms2
·
pNN − τ − dτ

dNN

pNN − λN
ms −

dτ
dNN

+

(
τ − λN

ms

)
dτ
dsN

pNN − λN
ms −

dτ
dNN

= Ks,(
λN

m2s
− ∂δ̄

∂m

)
N ·

pNN − τ − dτ
dNN

pNN − λN
ms −

dτ
dNN

+

(
τ − λN

ms

)
dτ
dmN

pNN − λN
ms −

dτ
dNN

= Km.

42Given δ̄ = βγ/ (β + γ)hm/2 as per Prop. (11), ∂δ̄/∂m = βγ/ (β + γ)h/2 which is a constant.
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G Proof of Proposition 15

Conditional on m and N , su∗ is given by su∗ (m,N) =
√

λ
ν1m2+ν2m

N . First-order condition (15a) can be rearranged

to obtain an analogous equation for so∗. Recall from Eq. (7) that RV o = s
4λ

(
∆−mδ2

)
where ∆ =

∑m
k=1 δ

2
k.

De�ne

Yj ≡
√√√√ λ

m
[
ν1m+ ν2 −Xj

(
∆−mδ2

)] ,
where Xu = 0 and Xo = 1

4λ > 0. The two equations for su∗ and s
o
∗ can be written together as

sj∗ (m,N) = YjN, (G.1)

Substituting (G.1) into the �rst-order conditions for mu
∗ and m

o
∗ respectively, one obtains

ν0 + ν1YjN +
∂δ

∂m
N − λN

m2
Y −1
j −XjYjN

∂
(

∆−mδ2
)

∂m
= 0. (G.2)

Function (G.2) is negative for small values of m, and over the relevant range it is increasing in m. Hence, if

(G.2) is decreasing in X, mo
∗ > mu

∗ . Retaining only terms in (G.2) that depend on X, and multiplying through by

m2Y −1
j /N , one obtains

ν1m
2 −m

[
ν1m+ ν2 −X

(
∆−mδ2

)]
−Xm2

∂
(

∆−mδ2
)

∂m

= −mν2 −Xm

m∂
(

∆−mδ2
)

∂m
−
(

∆−mδ2
) . (G.3)

This expression is decreasing in X if ∆−mδ̄2 is a convex function of m. Setting k∗ = γ
β+γm, we �nd

∆−mδ2
=

βγmh2

12

[
βγm2

(β + γ)
2 + 2

]
;

∂
(
∆−mδ

)
∂m

=
βγh2

12

[
3
βγm2

(β + γ)
2 + 2

]
> 0;

∂2
(
∆−mδ

)
∂m2

=
βγh2

12

[
6

βγm

(β + γ)
2

]
> 0.

Hence ∆−mδ̄2 is a convex function of m, Eq. (G.3) is decreasing in X, and mo
∗ > mu

∗ .
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H Parameter values for numerical example

The numerical example requires base-case parameter values for β, γ, λ and h, and target values for N , m and s.

The operating period was set to one hour, and target values were chosen for the optimal uniform-fare regime. This

regime is intermediate in e�ciency between the no-fare and SO-fare regimes, and it is arguably the most descriptive

of public transit service in Paris where fares are positive and constant throughout the day.

Consider �rst the supply-side parameters m, h and s. According to the document �Schéma Directeur du RER

A� written in June 2012 by the STIF (Syndicat des Transport d'Ã�le-de-France), 30 trains per hour are supposed

to operate during the morning peak in the East-West direction on the RER A line. However, the frequency actually

achieved over the 4-year period February 2008 to February 2012 was only 24.4 trains per hour.43 The target value

for number of trains was thus set to m = 24, and the headway was set to h = 60
24 = 2.5 mins.

Two types of bi-level train sets are operated during the morning peak:44

• MI2N train sets with 904 seats and standing room for 1,636 users (4 users/mÂ2) for a total capacity of 2,540

• MI09 train sets with 948 seats and standing room for 1,683 users (4 users/mÂ2) for a total capacity of 2,614

users

This suggests a value for capacity of about s = 2, 600. However, in the model users are assumed to travel from a

single origin to a single destination whereas the RER A line serves many stations. La Défense is the most popular

destination, but a substantial fraction of users pass through it. Only part of train capacity is thus e�ectively devoted

to users who exit at La Défense. After experimentation with alternative values of s, and other parameters described

below, we settled on a capacity equal to two-thirds of nominal train capacity so that s = 2
3 · 2, 600 = 1, 733.

Consider now the demand-side parameters. According to a January 2011 document �Étude La Défense Anal-

yse des Tra�cs� prepared by the DRIEA (Direction Régionale et Interdépartementale de l'Équipement et de

l'Aménagement), in 2009, 32,600 users arrived at La Défense by RER A between 8:25am and 9:25am.45 This

count includes users traveling in both East-West and West-East directions, but it excludes users who are passing

through. Including travel in both directions results in overestimation of tra�c in one direction, whereas excluding

users who pass through La Défense results in underestimation this tra�c. Lacking an indication as to which bias

dominates, we set N = 32, 600.

Wardman et al. (2012) conduct a meta-analysis of estimates of β, γ and the value of travel time; call it α. They

report point estimates of β = 0.74 · α and γ = 1.72 · α (see Table 19, p.25). For commuters in France, α =e15/hr

(see Table 15, p.21) which is consistent with the government-recommended value. This suggests setting β = 0.74 ·15

= e11.1/hr, and γ = 1.72 · 15 = e25.8/hr. However, in the model it is assumed that users have the same desired

43See p.36 in http://www.stif.org/IMG/pdf/Deliberation_no2012-0163_relative_au_schema_directeur_du_RER_A.pdf.
44See p.54 in http://www.stif.org/IMG/pdf/Deliberation_no2012-0163_relative_au_schema_directeur_du_RER_A.pdf.
45See Figure 2 on page 8 in http://cpdp.debatpublic.fr/cpdp-grandparis/site/DEBATPUBLIC_GRANDPARIS_ORG/_SCRIPT/NTSP_

DOCUMENT_FILE_DOWNLOADCB59.PDF.
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arrival time, t∗. In reality, trip-timing preferences vary. The assumption of a common t∗ leads to overestimation of

schedule delay costs. In addition, with β = e11.1/hr and γ = e25.8/hr., condition (6) that all trains are used was

violated given plausible values for other parameters. After experimentation with alternative values of β, γ and s

(noted above) we scaled down β and γ by one-third to β = e7.4/hr and γ = e17.2/hr.

Empirical studies of public transit crowding often report crowding costs as time multipliers. This is consistent

with evidence that disutility from crowding is proportional to amount of time spent in crowded conditions. The

crowding cost parameter can then be written

λ = α · tt · (tm− 1) , (H.1)

where tt is travel time and tm is the time multiplier.

According to the survey �Étude mobilité transports à la Défense - Pro�ls, usages et modes de déplacements des

salariés et habitants du quartier d'a�aires� by the EPAD (Établissement Public de la Région Pour l'Aménagement

de la Défense), in 2006, the average travel time incurred by public transport riders who used only one transport

mode to reach La Défense was 40 mins.46 This is consistent with a study by the EnquÃate Global Transport in

2010 which found an average travel time for commuters of 41 mins.47 We thus set tt = 40 mins or 2/3 hrs.

Haywood and Koning (2015) have estimated time multipliers for Paris. They obtain a linear approximation of

the time multiplier (see Eq. (10), p.194) of tm = 1 + 0.11 · d, where d is the density of passengers per square metre.

Substituting the estimates of α, tt and tm into Eq. (H.1) one obtains λ = 15 · 2/3 · 0.11 · d. With a density of 4

users/mÂ2 for standing room on the train sets used on the RER A line (see above), this yields λ = 4.4.

I Sensitivity analysis

I.1 Integer-valued number of trains

The number of trains, m, has been treated as a continuous variable although it is discrete in reality. An integer

constraint can be imposed by �xing m, and then choosing s using �rst-order conditions given in Prop. 12, 13 and

14 for regimes n, u and o respectively. To assess how the integer constraint a�ects results, m was �rst set to the

largest integer smaller than the real-valued solution and then the next integer larger. Thus, for the no-fare regime

m was �rst set to bmn
∗ c and then bmn

∗ c+ 1. Since mu
∗ was calibrated to be an integer value, this was unnecessary

for regime u. The integer value yielding the higher social surplus was then selected. The results changed very little,

and social surplus was virtually unchanged. Integer constraints also had little e�ect for a range of other parameter

values.
46See p.11 in http://www.ladefense-seine-arche.fr/fileadmin/site_internet/user_upload/8-ENLIEN/etudes/etude-mobilite-

transports.pdf.
47See p.3 in http://www.driea.ile-de-france.developpement-durable.gouv.fr/IMG/pdf/Fiche_Actifs__cle0cecb9.pdf
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Table 4: Comparison of no-fare, optimal uniform fare, and SO-fare (i.e., social optimum) regimes: η = −2/3

Fare regime

No-fare (n) Optimal uniform fare (u) Social optimum (o)
m 26.34 24 26.75
s 1, 764 1, 733 1, 725
N 41, 006 32, 600 33, 220
p 6.72 9.48 9.22

Rev/user 0 3.45 3.39
TCC 187, 604 133, 499 112, 503
SDC 88, 044 63, 244 81, 248
TC 275, 648 196, 743 193, 751
K 139, 632 134, 889 137, 558
R 0 112, 407 112, 503
ρ 0 0.833 0.818
CS 1, 206, 851 1, 106, 343 1, 115, 033
SS 1, 067, 219 1, 083, 862 1, 089, 978

Totalgain 16, 643 22, 759
Gain/user 0 0.51 0.70
Rel.eff 0 0.73 1

I.2 Demand elasticity

If the price elasticity of demand is reduced to η = 0, ridership is the same in the three fare regimes. With

pN = −∞, the �rst-order conditions (10a) and (10b) for s and m are the same for regimes n and u so that su∗ = sn∗ ,

and mu
∗ = mn

∗ . Imposing the uniform fare yields no welfare gain at all, and merely transfers money from users to

the transit authority. The SO-fare does yield a welfare gain although (with ridership �xed at 32, 600) it is only

e0.185 compared to e0.45 in the base case.

To examine the e�ects of a higher price elasticity, η was doubled in magnitude to−2/3.48 To maintain equilibrium

ridership at 32, 600 in the optimal uniform-fare regime, parameter N0 was increased to 146, 056. The results are

shown in Table 4. With the higher price elasticity, consumers' surplus and social surplus in each regime are lower

than with the base-case parameters. Regime u is otherwise una�ected. However, the welfare gain per rider nearly

doubles from e0.27 to e0.51. The welfare gain per rider in the social optimum increases from e0.45 to e0.70, but

by a smaller percentage so that the relative e�ciency of regime u increases.

J Glossary

J.1 Latin characters

c : user cost of a trip [e/user]

CS : total consumers' surplus [e]

e : superscript for uniform-fare regime
48Few transit services are likely to face such a high elasticity � especially during peak travel times.
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g (n) : expected crowding cost function [e/user]

Gxy : welfare gain in shifting from pricing regime x to y

h : time interval between successive trains [hr/train]

k : index of train

K : capacity cost function [e]

m : number of trains used [trains]

MEC : marginal external cost of a trip [e/user]

MSC : marginal social cost of a trip [e/user]

n : superscript for no-fare regime

n : number of users on a train [users]

nk : number of users taking train k [users/train]

N : total number of users [users]

o : subscript for socially-optimal fare regime

p : private trip cost including fare [e/user]

R : total fare revenue [e]

RV : variable fare revenue from socially optimal fare schedule [e]

s : measure of train capacity [users/train]

SDC : total schedule delay costs [e]

SS : social surplus [e]

t : departure time from origin station [clock time]

t∗ : desired arrival time at destination [clock time]

TC : total user costs [e]

TCC : total crowding costs [e]

u : superscript for optimal uniform-fare regime

v (n) : marginal social crowding cost function [e/user]

J.2 Greek characters

β : cost per minute of arriving early [e/(hr·user)]

γ : cost per minute of arriving late [e/(hr·user)]

δ : schedule delay cost function [e/user]

ε : elasticity of g′ (n)

η : elasticity of demand

λ : crowding cost parameter [e/user]
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τ : fare [e/user]

ν0 : Capacity cost function coe�cient on m [e/train]

ν1 : Capacity cost function coe�cient on m · s [e/user]

ν2 : Capacity cost function coe�cient on s [e·train/user]
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