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Abstract

Bayesian nonparametric inferential procedures based on Markov chain Monte
Carlo marginal methods typically yield point estimates in the form of pos-
terior expectations. Though very useful and easy to implement in a variety
of statistical problems, these methods may suffer from some limitations if
used to estimate non-linear functionals of the posterior distribution. The
main goal is to develop a novel methodology that extends a well-established
marginal procedure designed for hazard mixture models, in order to draw
approximate inference on survival functions that is not limited to the pos-
terior mean but includes, as remarkable examples, credible intervals and
median survival time. The proposed approach relies on a characterization
of the posterior moments that, in turn, is used to approximate the pos-
terior distribution by means of a technique based on Jacobi polynomials.
The inferential performance of this methodology is analysed by means of an
extensive study of simulated data and real data consisting of leukemia remis-
sion times. Although tailored to the survival analysis context, the proposed
procedure can be adapted to a range of other models for which moments of
the posterior distribution can be estimated.
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1. Introduction

Most commonly used inferential procedures in Bayesian nonparamet-
ric practice rely on the implementation of sampling algorithms that can
be gathered under the general umbrella of Blackwell–MacQueen Pólya urn
schemes. These are characterized by the marginalization with respect to
an infinite-dimensional random element that defines the de Finetti measure
of an exchangeable sequence of observations or latent variables. Hence-
forth these will be referred to as marginal methods. Besides being useful
for the identification of the basic building blocks of ready to use Markov
chain Monte Carlo (MCMC) sampling strategies, marginal methods have
proved to be effective for an approximate evaluation of Bayesian point esti-
mators in the form of posterior means. They are typically used with models
for which the predictive distribution is available in closed form. Popular
examples are offered by mixtures of the Dirichlet process for density es-
timation (Escobar and West, 1995) and mixtures of gamma processes for
hazard rate estimation (Ishwaran and James, 2004). While becoming well-
established tools, these computational techniques are easily accessible also
to practitioners through a straightforward software implementation (see for
instance Jara et al., 2011). Though it is important to stress their relevance
both in theory and in practice, it is also worth pointing out that Blackwell–
MacQueen Pólya urn schemes suffer from some drawbacks which we wish to
address here. Indeed, one easily notes that the posterior estimates provided
by marginal methods are not suitably endowed with measures of uncertainty
such as posterior credible intervals. Furthermore, using the posterior mean
as an estimator is equivalent to choosing a square loss function whereas in
many situations of interest other choices such as absolute error or 0–1 loss
functions and, as corresponding estimators, median or mode of the poste-
rior distribution of the survival function, at any fixed time point t, would
be preferable. Finally, they do not naturally allow inference on functionals
of the distribution of survival times, such as the median survival time, to be
drawn. A nice discussion of these issues is provided by Gelfand and Kottas
(2002) where the focus is on mixtures of the Dirichlet process: the authors
suggest complementing the use of marginal methods with a sampling strat-
egy that aims at generating approximate trajectories of the Dirichlet process
from its truncated stick-breaking representation.

The aim is to propose a new procedure that combines closed-form an-
alytical results arising from the application of marginal methods with an
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approximation of the posterior distribution which makes use of posterior
moments. The whole machinery is developed for the estimation of survival
functions that are modeled in terms of hazard rate functions. To this end,
let F denote the cumulative distribution function (CDF) associated to a
probability distribution on R+. The corresponding survival and cumulative
hazard functions are denoted as

S(t) = 1− F (t) and H(t) = −
∫

[0,t]

dF (s)

F (s−)
,

for any t > 0, respectively, where F (s−) := limε↓0 F (s− ε) for any positive
s. If F is absolutely continuous, one has H(t) = − log(S(t)) and the hazard
rate function associated to F is, thus, defined as h(t) = F ′(t)/[1 − F (t−)].
It should be recalled that survival analysis has been one of the most relevant
areas of application of Bayesian nonparametric methodology soon after the
groundbreaking contribution of Ferguson (1973). A number of papers in the
’70s and the ’80s have been devoted to the proposal of new classes of priors
that accommodate for a rigorous analytical treatment of Bayesian inferential
problems with censored survival data. Among these it is worth mentioning
the neutral to the right processes proposed in Doksum (1974) and used
to define a prior for the CDF F : since they share a conjugacy property
they represent a tractable tool for drawing posterior inferences. Another
noteworthy class of priors has been proposed in Hjort (1990), where a beta
process is used as a nonparametric prior for the cumulative hazard function
H has been proposed. Also in this case, one can considerably benefit from
a useful conjugacy property.

As already mentioned, the plan consists in proposing a method for full
Bayesian analysis of survival data by specifying a prior on the hazard rate
h. The most popular example is the gamma process mixture that has been
originally proposed in Dykstra and Laud (1981) and generalized in later
work by Lo and Weng (1989) and James (2005) to include any mixing ran-
dom measure and any mixed kernel. Recently Lijoi and Nipoti (2014) have
extended such framework to the context of partially exchangeable observa-
tions. The uses of random hazard mixtures in practical applications have
been boosted by the recent developments of powerful computational tech-
niques that allow for an approximate evaluation of posterior inferences on
quantities of statistical interest. Most of these arise from a marginalization
with respect to a completely random measure that identifies the de Finetti
measure of the exchangeable sequence of observations. See, e.g., Ishwaran
and James (2004). Though they are quite simple to implement, the direct
use of their output can only yield point estimation of the hazard rates, or
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of the survival functions, at fixed time points through posterior means. The
main goal of the present paper is to show that a clever use of a moment-
based approximation method does provide a relevant upgrade on the type of
inference one can draw via marginal sampling schemes. The takeaway mes-
sage is that the information gathered by marginal methods is not confined
to the posterior mean but is actually much richer and, if properly exploited,
can lead to a more complete posterior inference. To understand this, one
can refer to a sequence of exchangeable survival times (Xi)i≥1 such that
P[X1 > t1, . . . , Xn > tn | P̃ ] =

∏n
i=1 S̃(ti) where P̃ is a random probability

measure on R+ and S̃(t) = P̃ ((t,∞)) is the corresponding random survival
function. Given a suitable sequence of latent variables (Yi)i≥1, a closed-form
expression for

E[S̃r(t) |X,Y ], for any r ≥ 1, and t > 0, (1)

with X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), will be provided. Our strat-
egy consists in approximating the posterior distribution of S̃(t), at each in-
stant t, and relies on the fact that, along with the posterior mean, marginal
models allow to straightforwardly estimate posterior moments of any order
of S̃(t). Indeed, an MCMC sampler yields a sample from the posterior dis-
tribution of Y given X: this can be used to integrate out the latent variables
appearing in (1) and obtain a numerical approximate evaluation of the pos-
terior moments E[S̃r(t) |X]. These are finally used to deduce, with almost
negligible effort, an approximation of the posterior distribution of S̃(t) and,
in turn, to estimate some meaningful functionals of S̃(t).

It is to be mentioned that one could alternatively resort to a different ap-
proach that boils down to the simulation of the trajectories of the completely
random measure that defines the underlying random probability measure
from its posterior distribution. In density estimation problems, this is effec-
tively illustrated in Nieto-Barajas et al. (2004), Nieto-Barajas and Prünster
(2009) and Barrios et al. (2013). As for hazard rates mixtures estimation
problems, one can refer to James (2005), Nieto-Barajas and Walker (2004)
and Nieto-Barajas (2014). In particular, James (2005) provides a posterior
characterization that is the key for devising a Ferguson and Klass (1972)
representation of the posterior distribution of the completely random mea-
sure which enters the definition of the prior for the hazards. Some numerical
aspects related to the implementation of the algorithm can be quite tricky
since one needs to invert the Lévy intensity to simulate posterior jumps and
a set of suitable latent variables need to be introduced in order to sample
from the full conditionals of the hyperparameters. These aspects are well
described and addressed in Nieto-Barajas (2014).
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The paper is organized as follows. In Section 2 hazard mixture models
are briefly reviewed together with some of their most important properties.
Furthermore, explicit expressions characterizing the posterior moments of
any order of a random survival function are provided both for general frame-
work and for the extended gamma process case. Section 3 is dedicated to
the problem of approximating the distribution of a random variable on [0, 1],
provided that the first N moments are known. In particular, a convenient
methodology based on Jacobi polynomials is described in Section 3.1 and,
then, implemented in Section 3.2 in order to approximate random survival
functions. Its performance is tested through a thorough numerical inves-
tigation. The focus of Section 4 is the use of the introduced methodology
for carrying out Bayesian inference on survival functions. Specifically, the
algorithm is presented in Section 4.1 whereas simulated data and a real two-
sample dataset on leukemia remission times are analysed in Sections 4.2 and
4.3 respectively. For the sake of exposition simplicity, technicalities such as
expressions for the full conditional distributions involved in the algorithm
and instructions on how to take into account the presence of censored data
are postponed to the Appendix.

2. Hazard mixture models

A well-known nonparametric prior for the hazard rate function within
multiplicative intensity models used in survival analysis arises as a mixture
of completely random measures (CRMs). To this end, recall that a CRM µ̃
on a space Y is a boundedly finite random measure that, when evaluated
at any collection of pairwise disjoint sets A1, . . . , Ad, gives rise to mutually
independent random variables µ̃(A1), . . . , µ̃(Ad), for any d ≥ 1. Importantly,
CRMs are almost surely discrete measures (Kingman, 1993). A detailed
treatment on CRMs can also be found in Daley and Vere-Jones (2003).
With reference to Theorem 1 in Kingman (1967), it is assumed that µ̃ has
no fixed atoms, which in turn implies the existence of a measure ν on R+×Y
such that

∫
R+×Y min{s, 1}ν(ds, dy) <∞ and

E
[
e−

∫
Y f(y)µ̃(dy)

]
= exp

(
−
∫
R+×Y

[1− exp (−s f(y))] ν(ds, dy)

)
, (2)

for any measurable function f : Y → R such that
∫
Y |f | dµ̃ < ∞, with

probability 1. The measure ν is termed the Lévy intensity of µ̃. For our
purposes, it will be useful to rewrite ν as

ν(ds, dy) = ρy(s) ds c P0(dy),
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where P0 is a probability measure on Y, c a positive parameter, and ρy(s) is
some transition kernel on Y×R+. If ρy = ρ, for any y in Y, the CRM µ̃ is
said homogeneous. Henceforth, it is further assumed that P0 is non-atomic.
A well-known example corresponds to ρy(s) = ρ(s) = e−s/s, for any y in Y,
which identifies a so-called gamma CRM. With such a choice of the Lévy
intensity, it can be seen, from (2), that for any A such that P0(A) > 0, the
random variable µ̃(A) is gamma distributed, with shape parameter 1 and
rate parameter cP0(A). If k( · ; · ) is a transition kernel on R+ × Y, a prior
for h is the distribution of the random hazard rate (RHR)

h̃(t) =

∫
Y
k(t; y)µ̃(dy), (3)

where µ̃ is a CRM on Y. It is worth noting that, if limt→∞
∫ t

0 h̃(s)ds = ∞
with probability 1, then one can adopt the following model

Xi | P̃
iid∼ P̃

P̃ (( · ,∞))
d
= exp

(
−
∫ ·

0
h̃(s) ds

) (4)

for a sequence of (possibly censored) survival data (Xi)i≥1. This means that
h̃ in (3) defines a random survival function t 7→ S̃(t) = exp(−

∫ t
0 h̃(s)ds). In

this setting, Dykstra and Laud (1981) characterize the posterior distribution
of the so-called extended gamma process: this is obtained when µ̃ is a gamma
CRM and k(t; y) = 1(0,t](y)β(y) for some positive right-continuous function
β : R+ → R+. The same kind of result is proved in Lo and Weng (1989)
for weighted gamma processes corresponding to RHRs obtained when µ̃ is
still a gamma CRM and k( · ; · ) is an arbitrary kernel. Finally, a posterior
characterization has been derived in James (2005) for any CRM µ̃ and kernel
k( · ; · ).

We shall quickly display such a characterization since it represents the basic
result our construction relies on. For the ease of exposition we confine
ourselves to the case where all the observations are exact, the extension to
the case that includes right-censored data being straightforward and detailed
in James (2005). See also Appendix C. For an n-sample X = (X1, . . . , Xn)
of exact data, the likelihood function equals

L(µ̃;X) = e−
∫
YKX(y)µ̃(dy)

n∏
i=1

∫
Y
k(Xi; y)µ̃(dy), (5)

6



where Kt(y) =
∫ t

0 k(s; y)ds and KX(y) =
∑n

i=1KXi(y). A useful augmen-
tation suggests introducing latent random variables Y = (Y1, . . . , Yn) such
that the joint distribution of (µ̃,X,Y ) coincides with

e−
∫
YKX(y)µ̃(dy)

n∏
i=1

k(Xi;Yi)µ̃(dYi)Q(dµ̃), (6)

where Q is the probability distribution of the completely random measure
µ̃, characterized by the Laplace transform functional in (2) (see for instance
Daley and Vere-Jones, 2003). The almost sure discreteness of µ̃ implies
there might be ties among the Yi’s with positive probability. Therefore, the
distinct values among Y are denoted as (Y ∗1 , . . . , Y

∗
k ), where k ≤ n, and, for

any j = 1, . . . , k, Cj :=
{
l : Yl = Y ∗j

}
with nj = #Cj as the cardinality of

Cj . Thus, the joint distribution in (6) may be rewritten as

e−
∫
YKX(y)µ̃(dy)

k∏
j=1

µ̃(dY ∗j )nj
∏
i∈Cj

k(Xi;Y
∗
j )Q(dµ̃). (7)

We introduce, also, the density function

f(s |κ, ξ, y) ∝ sκ e−ξs ρy(s) 1R+(s) (8)

for any κ ∈ N and ξ > 0. The representation displayed in (7), combined
with results concerning disintegrations of Poisson random measures, leads
to prove the following

Proposition 1 (James, 2005) Let h̃ be a RHR as defined in (3). The
posterior distribution of h̃, given X and Y , coincides with the distribution
of the random hazard

h̃∗ +
k∑
j=1

Jjk( · ;Y ∗j ), (9)

where h̃∗( · ) =
∫
Y k( · ; y) µ̃∗(dy) and µ̃∗ is a CRM without fixed points of

discontinuity whose Lévy intensity is

ν∗(ds, dy) = e−sKX(y)ρy(s)ds cP0(dy).

The jumps J1, . . . , Jk are mutually independent and independent of µ̃∗. More-
over, for every j = 1, . . . , k, the distribution of the jump Jj has density
function f( · |nj ,KX(Y ∗j ), Y ∗j ) with f defined in (8).
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See Lijoi et al. (2008) for an alternative proof of this result. The posterior
distribution of h̃ displays a structure that is common to models based on
CRMs, since it consists of the combination of two components: one without
fixed discontinuities and the other with jumps at fixed points. In this case,
the points at which jumps occur coincide with the distinct values of the
latent variables Y ∗1 , . . . , Y

∗
k . Furthermore, the distribution of the jumps Jj

depends on the respective locations Y ∗j .

Beside allowing us to gain insight on the posterior distribution of h̃,
Proposition 1 is also very convenient for simulation purposes. See, e.g., Ish-
waran and James (2004). Indeed, (9) allows obtaining an explicit expression
for the posterior expected value of S̃(t) (or, equivalently, of h̃(t)), for any
t > 0, conditionally on the latent variables Y . One can, thus, integrate out
the vector of latent variables Y , by means of a Gibbs type algorithm, in order
to approximately evaluate the posterior mean of S̃(t) (or h̃(t)). As pointed
out in next section, a combination of Proposition 1 and of the same Gibbs
sampler we have briefly introduced actually allows moments of S̃(t), of any
order, to be estimated. We will make use of the first N of these estimated
moments to approximate, for each t > 0, the posterior distribution of S̃(t)
and therefore to have the tools for drawing meaningful Bayesian inference.
The choice of a suitable value for N will be discussed in Section 3.2.

As pointed out in the Introduction, one can, in line of principle, combine
Proposition 1 with the Ferguson and Klass representation to undertake an
alternative approach that aims at simulating the trajectories from the poste-
rior distribution of the survival function. This can be achieved by means of
a Gibbs type algorithm that involves sampling µ̃∗ and Y ∗j , for j = 1, . . . , k,
from the corresponding full conditional distributions. Starting from the sim-
ulated trajectories one could then approximately evaluate all the posterior
quantities of interest. The latter is an important feature of the method based
on the Ferguson and Klass representation, that is shared only in part by our
proposal. Indeed, extending the moment-based procedure to estimate func-
tionals of S̃(t), although achievable in many cases of interest, is not always
straightforward. For instance, in order to carry out inference based on the
posterior distribution of the random hazard rate h̃(t), one should start with
the estimation of the posterior moments of h̃(t) and adapt accordingly the
methodology which throughout the paper is developed for S̃(t). An illustra-
tion, with an application to survival analysis, is provided in Nieto-Barajas
(2014) and it appears that the approach, though achievable, may be diffi-
cult to implement. The main non-trivial issues one has to deal with are the
inversion of the Lévy measure, needed to sample the jumps, and the sam-
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pling from the full conditionals of the hyperparameters. The latter has been
addressed by Nieto-Barajas (2014) through a clever augmentation scheme
that relies on a suitable collection of latent variables. The approach based
on the simulation of trajectories is an example of non-marginal, or condi-
tional, method since it does not rely on the marginalization with respect to
the mixing CRM µ̃.

In the next sections, attention will be mainly devoted to marginal meth-
ods with the aim of showing that they allow for a full Bayesian inference,
beyond the usual evaluation of posterior means. The required additional ef-
fort to accomplish this task is minimal and boils down to computing a finite
number of posterior moments of S̃(t), at a given t. An approximate evalu-
ation of these moments can be determined by resorting to (9) which yields
closed-form expressions for the posterior moments of the random variable
S̃(t), conditionally on both the data X and the latent variables Y .

Proposition 2 For every t > 0 and r > 0,

E[S̃r(t) |X,Y ] = exp

{
−c
∫
R+×Y

(
1− e−rKt(y)s

)
e−KX(y)sρ(s)dsP0(dy)

}
×

k∏
j=1

1

Bj

∫
R+

exp
{
−s
(
rKt(Y

∗
j ) +KX(Y ∗j )

)}
snjρ(s)ds,

where Bj =
∫
R+ s

nj exp
{
−sKX(Y ∗j )

}
ρ(s)ds, for j = 1, . . . , k.

Although the techniques that will be described hold true for any specifica-
tion of µ̃ and kernel k( · ; · ), the proposed illustration will focus on on the
extended gamma process case (Dykstra and Laud, 1981). More specifically,
we consider a kernel k(t; y) = 1(0,t](y)β, with β > 0. This choice of ker-
nel is known to be suitable for modeling monotone increasing hazard rates
and to give rise to a class of random hazard functions with nice asymptotic
properties (De Blasi et al., 2009). Moreover, without loss of generality, it is
assumed that X1 > X2 > . . . > Xn. For notational convenience, one further
sets X0 ≡ ∞, Xn+1 ≡ 0, ξl ≡

∑l
i=1Xi, for any l ≥ 1, and ξ0 ≡ 0. The next

Corollary displays an expression for the conditional moments corresponding
to this prior specification.

Corollary 1 For every t > 0 and r > 0,
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E[S̃r(t) |X,Y ] =
n∏
i=0

exp

{
−c
∫ Xi∧t

Xi+1∧t
log

(
1 + r

t− y
ξi − iy + 1/β

)
P0(dy)

}

×
k∏
j=1

(
1 + r

(t− Y ∗j )1[Y ∗j ,∞)(t)∑n
i=1(Xi − Y ∗j )1[Y ∗j ,∞)(Xi) + 1/β

)−nj
. (10)

By integrating out the vector of latent variables Y in (10) one obtains an
estimate of the posterior moments of S̃(t). To this end one can resort to a
Gibbs type algorithm whose steps will be described in Section 4.1.

3. Approximated inference via moments

3.1. Moment-based density approximation and sampling

Recovering a probability distribution from the explicit knowledge of its
moments is a classical problem in probability and statistics that has received
great attention in the literature. See, e.g., Provost (2005), references and
motivating applications therein. Our specific interest in the problem is mo-
tivated by the goal of determining an approximation of the density function
of a distribution supported on [0, 1] that equals the posterior distribution of
a random survival function evaluated at some instant t. This is a convenient
case since, as the support is a bounded interval, all the moments exist and
uniquely characterize the distribution, see Rao (1965). Moment-based meth-
ods for density functions’ approximation can be essentially divided into two
classes, namely methods that exploit orthogonal polynomial series (Provost,
2005) and maximum entropy methods (Csiszár, 1975; Mead and Papanico-
laou, 1984). Both these procedures rely on systems of equations that relate
the moments of the distribution with the coefficients involved in the approx-
imation. For our purposes the use of orthogonal polynomial series turns out
to be more convenient since it ensures faster computations as it involves
uniquely linear equations. This property is particularly important in our
setting since the same approximation procedure needs to be implemented a
large number of times in order to approximate the posterior distribution of
a random survival function. Moreover, as discussed in Epifani et al. (2009),
maximum entropy techniques can lead to numerical instability.

Specifically, we work with Jacobi polynomials, a broad class which in-
cludes, among others, Legendre and Chebyshev polynomials. They are well
suited for the expansion of densities with compact support contrary to other
polynomials like Laguerre and Hermite which can be preferred for densities
with infinite of semi-infinite support (see Provost, 2005). While the clas-
sical Jacobi polynomials are defined on [−1, 1], a suitable transformation
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of such polynomials is considered so that their support coincides with [0, 1]
and therefore matches the support of the density we aim at approximating.
That is, we consider a sequence of polynomials (Gi)i≥0 such that, for every
i ∈ N, Gi is a polynomial of order i defined by Gi(s) =

∑i
r=0Gi,rs

r, with
s ∈ [0, 1]. The coefficients Gi,r can be defined by a recurrence relation (see
for example Szegő, 1967). Such polynomials are orthogonal with respect to
the L2-product

〈F,G〉 =

∫ 1

0
F (s)G(s)wa,b(s)ds,

where
wa,b(s) = sa−1(1− s)b−1

is named weight function of the basis. Moreover, without loss of generality,
the Gi’s can be assumed to be normalized and, therefore, 〈Gi, Gj〉 = δij for
every i, j ∈ N, where δij is the Kronecker symbol. Any univariate density f
supported on [0, 1] can be uniquely decomposed on such a basis and therefore
there is a unique sequence of real numbers (λi)i≥0 such that

f(s) = wa,b(s)
∞∑
i=0

λiGi(s). (11)

Let us now consider a random variable S whose density f has support on
[0, 1]. Its raw moments will be denoted by µr = E

[
Sr
]
, with r ∈ N. From

the evaluation of
∫ 1

0 f(s)Gi(s) ds it follows that each λi coincides with a

linear combination of the first i moments, specifically λi =
∑i

r=0Gi,rµr.
Then, the polynomial approximation method consists in truncating the sum
in (11) at a given level i = N . This procedure leads to a methodology that
makes use only of the first N moments and provides the approximation

fN (s) = wa,b(s)

N∑
i=0

(
i∑

r=0

Gi,rµr

)
Gi(s). (12)

It is important to stress that the polynomial expansion approximation (12) is
not necessarily a density as it might fail to be positive or to integrate to 1. In
order to overcome this problem, the density πN proportional to the positive
part of fN , i.e. πN (s) ∝ max(fN (s), 0), will be considered. An importance
sampling algorithm (see, e.g., Robert and Casella, 2004) will be used to sam-
ple from πN . This is a method for drawing independent weighted samples
($`, S`) from a distribution proportional to a given non-negative function,
that exempts us from computing the normalizing constant. More precisely,
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the method requires to pick a proposal distribution p whose support con-
tains the support of πN . A natural choice for p is the Beta distribution
proportional to the weight function wa,b. The weights are then defined by
$` ∝ max(fN (S`), 0)/p(S`) such that they add up to 1.

An important issue related to any approximating method refers to the
quantification of the approximating error. As for the described polynomial
approach, the error can be assessed for large N by applying the asymptotic
results in Alexits and Földes (1961). Specifically, the convergence fN (s)→
f(s) for N →∞, for all s ∈ (0, 1), implies πN (s)→ f(s) for N →∞. Thus,
if SN denotes a random variable with distribution πN , then the following
convergence in distribution to the target random variable S holds:

SN
D−→ S as N →∞.

However, here the interest is in evaluating whether few moments allow for a
good approximation of the posterior distribution of S̃(t). This question will
be addressed by means of an extensive numerical study in the next section.
See Epifani et al. (2003) and Epifani et al. (2009) for a similar treatment
referring to functionals of neutral-to-the-right priors and Dirichlet processes
respectively.

3.2. Numerical study

In this section the quality of the approximation procedure described
above is assessed by means of a simulation study. The rationale of the
analysis consists in considering random survival functions for which moments
of any order can be explicitly evaluated at any instant t, and then compare
the true distribution with the approximation obtained by exploiting the
knowledge of the first N moments. This in turn will provide an insight on
the impact of N on the approximation error. To this end three examples of
random survival functions will be considered, namely S̃j with j = 1, 2, 3. For
the illustrative purposes of this Section, it suffices to specify the distribution
of the random variable that coincides with S̃j evaluated in t, for every t > 0.
Specifically, we consider a Beta, a mixture of Beta, and a normal distribution
truncated to [0, 1], that is

S̃1(t) ∼ Be

(
S0(t)

a1
,
1− S0(t)

a1

)
,

S̃2(t) ∼ 1

2
Be

(
S0(t)

a2
,
1− S0(t)

a2

)
+

1

2
Be

(
S0(t)

a3
,
1− S0(t)

a3

)
,

S̃3(t) ∼ tN[0,1]

(
S0(t),

S0(t)(1− S0(t))

a4

)
,
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where S0(t) = e−t and we have set a1 = 20, (a2, a3) = (10, 30) and a4 = 2.
Observe that, for every t > 0, E[S̃1(t)] = E[S̃2(t)] = S0(t) but the same does
not hold true for S̃3(t).
For each j = 1, 2, 3, the first 10 moments of S̃j(t) were computed on a
grid {t1, . . . , t50} of 50 equidistant values of t in the range [0, 2.5]. The
choice of working with 10 moments will be motivated at the end of the
section. The importance sampler described in Section 3.1 was then used
to obtain samples of size 10 000 from the distribution of S̃j(ti), for each
j = 1, 2, 3 and i = 1, . . . , 50. In Figure 1, for each S̃j , we plot the true
mean as well as the 95% highest density intervals for the true distribution
and for the approximated distribution obtained by exploiting 10 moments.
Notice that the focus is not on approximating the mean since moments
of any order are the starting point of our procedure. Interestingly, the
approximated intervals show a very good fit to the true ones in all the
three examples. As for the Beta case, the fit is exact since the Beta-shaped
weight function allows the true density to be recovered with the first two
moments. As for the mixture of Beta, exact and approximated intervals
can hardly be distinguished. Finally, the fit is pretty good also for the
intervals in the truncated normal example. Similarly, in Figure 2 the true
and the approximated densities of each S̃j(t) are compared for fixed t in
{0.1, 0.5, 2.5}. Again, all the three examples show a very good pointwise fit.

0 0.5 1 1.5 2 2.5

0

0.5

1

0 0.5 1 1.5 2 2.5

0

0.5

1

0 0.5 1 1.5 2 2.5

0

0.5

1

Figure 1: Mean of S̃j(t) (dashed black) and 95% highest density intervals for the true
distribution (solid black) and the approximated distribution (dashed red) for the Beta
(j = 1), mixture of Beta (j = 2) and truncated normal (j = 3) examples (left, middle and
right, respectively).
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Figure 2: True density (solid black) and approximated one (dashed red) at time values
t = 0.1 (left column), t = 0.5 (middle column) and t = 2.5 (right column), for the Beta
(j = 1, top row), mixture of Beta (j = 2, middle row) and truncated normal (j = 3,
bottom row) examples.

This section is concluded by assessing how the choice of N affects the
approximation error. To this end, for each instant t on the grid, the true
and approximated distributions of S̃j(t) are compared by computing the
integrated squared error (L2 error) between the two. Thus the average of
these values is considered as a measure of the overall error of approximation.
The results are illustrated in Figure 3. As expected, the approximation is
exact in the Beta example. In the two other cases, it can be observed that
the higher is the number of exploited moments, the lower is the average
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approximation error. Nonetheless, it is apparent that the incremental gain
of using more moments is more substantial when N is small whereas it is less
impactful as N increases: for example in the mixture of Beta case, the L2

error is 2.11, 0.97, 0.38 and 0.33 with N equal to 2, 4, 10 and 20 respectively.
Moreover, when using a large number of moments, e.g. N > 20, some
numerical instability can occur. These observations suggest that working
with N = 10 moments in (12) strikes a good balance between accuracy of
approximation and numerical stability.

Number of moments

L
2  e

rr
or

2 4 6 8 10 12 14 16

0

0.1

0.2

0.3

0.4

●

●

●
●

● ● ● ● ● ● ● ● ● ● ●

Figure 3: Average across t of the L2 error between the true and the approximated den-
sities of S̃j(t), in the Beta example (blue triangles), the mixture of Beta (red dots) and
the truncated normal example (black squares). The approximation is exact in the Beta
example.

4. Bayesian inference

In this section the characterization of the posterior moments of S̃(t)
provided in Proposition 2 is combined with the approximation procedure
described in Section 3.1. The model specification (4) is completed by as-
suming an extended gamma prior for h̃(t), with exponential base measure
P0(dy) = λ exp(−λy)dy, and considering the hyperparameters c and β ran-
dom. This leads to the expression (A.1) for the posterior characterization
of the moments. Finally we choose for both c and β independent gamma
prior distributions with shape parameter 1 and rate parameter 1/3 (so to
ensure large prior variance) and set λ = 1. Given a sample of survival times
X = {X1, . . . , Xn}, the first N moments of the posterior distribution of
S̃(t) are estimated for t on a grid of q equally-spaced points {t1, . . . , tq} in
an interval [0,M ]. Such estimates are then exploited to approximate the
posterior distribution of S̃(ti) for i = 1, . . . , q. This allows us to devise an
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algorithm for carrying out full Bayesian inference on survival data. In the
illustrations the focus will be on the estimation of the median survival time
and, at any given t in the grid, of the posterior mean, posterior median,
posterior mode and credibility intervals for S̃(t). The same approach can
be, in principle, used to estimate other functionals of interest.

4.1. Algorithm

The two main steps needed in order to draw samples from the posterior
distribution of S̃(t), for any t ∈ {t1, . . . , tq}, are summarized in Algorithm 1.
First a Gibbs sampler is performed to marginalize the latent variables Y and
the hyperparameters (c, β) out of (A.1) and therefore, for every i = 1, . . . , q,
an estimate for the posterior moments E[S̃r(ti)|X], with r = 1, . . . , N , is
obtained. The algorithm was run for lmax = 100 000 iterations, with a
burn-in period of lmin = 10 000. Visual investigation of the traceplots of the
parameters, in the illustrations of Sections 4.2 and 4.3, did not reveal any
convergence issue. The second part consists in sampling from the posterior
distribution of S̃(ti), for every i = 1, . . . , q, by means of the importance
sampler described in Section 3.1. Specifically `max = 10 000 values were
sampled for each ti on the grid.

The drawn samples allow us to approximately evaluate the posterior
distribution of S̃(ti), for every i = 1, . . . , q. This, in turn, can be exploited
to carry out meaningful Bayesian inference (Algorithm 2). As a remarkable
example, we consider the median survival time, denoted by m. The identity
for the cumulative distribution function of m

P (m ≤ t|X) = P
(
S̃(t) ≤ 1/2|X

)
allows us to evaluate the CDF of m at each time point ti as ci = P

(
S̃(ti) ≤

1/2|X
)
. Then, the median survival time m can be estimated by means of

the following approximation:

m̂ = EX [m] =

∫ ∞
0
P[m > t|X] dt ≈ M

q − 1

q∑
i=1

(1− ci) (14)

where the subscript X in EX [m] indicates that the integral is with respect
to the distribution of S̃(·) conditional to X. Equivalently,

m̂ ≈
q∑
i=1

ti(ci+1 − ci), (15)
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Algorithm 1 Posterior sampling

Part 1. Gibbs sampler
1: set l = 0 and admissible values for latent variables and hyperparameters,

i.e. {Y1 = Y
(0)

1 , . . . , Yn = Y
(0)
n }, c = c(0) and β = β(0)

2: while l < lmax, set l = l + 1, and

• update Yj = Y
(l)
j by means of (B.1), for every j = 1, . . . , n

• update c = c(l) and β = β(l) by means of (B.2) and (B.3)

• if l > lmin, compute

µ
(l)
r,t = E[S̃r(t) |X,Y (l), c(l), β(l)] (13)

by means of (A.1) for each r = 1, . . . , N and for each t in the grid

3: for each r = 1, . . . , N and each t define µ̂r,t = 1
lmax−lmin

∑lmax
l=lmin+1 µ

(l)
r,t

Part 2. Importance sampler

1: for each t, use (12) and define the approximate posterior density of S̃(t)

by fN,t( · ) = wa,b( · )
∑N

i=0

(∑i
r=0Gi,rµ̂r,t

)
Gi( · ), where µ̂0,t ≡ 1

2: draw a weighted posterior sample ($`,t, S`,t)`=1,...,`max of S̃(t), of size
`max, from πN,t( · ) ∝ max

(
fN,t( · ), 0

)
by means of the important sam-

pler described in Section 3.1

with the proviso that cq+1 ≡ 1. Moreover, the sequence (ci)
q
i=1 can be

used to devise credible intervals for the median survival time, cf. Part
1 of Algorithm 2. Note that both in (14) and in (15) the integrals on
the left-hand-side are approximated by means of simple Riemann sums and
the quality of such an approximation clearly depends on the choice of q
and on M . Nonetheless, our investigations suggest that if q is sufficiently
large the estimates we obtain are pretty stable and that the choice of M is
not crucial since, for ti sufficiently large, the term 1 − ci involved in (14)
is approximately equal to 0. Finally, the posterior samples generated by
Algorithm 1 can be used to obtain a t-by-t estimation of other functionals
that convey meaningful information such as the posterior mode and median
(together with the posterior mean), cf. Part 2 of Algorithm 2.
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Algorithm 2 Bayesian inference

Part 1. Median survival time
1: use the weighted sample ($`,ti , S`,ti)`=1,...,`max to estimate, for each i =

1, . . . , q, ci = P(S̃(ti) ≤ 1/2|X)

2: plug the ci’s in (15) to obtain m̂

3: use the sequence (ci)
q
i=1 as a proxy for the posterior distribution of m

so to devise credible intervals for m̂.

Part 2. t-by-t functionals

1: use the weighted sample ($`,ti , S`,ti)`=1,...,`max to estimate, for each i =
1, . . . , q, ai = infx∈[0,1]{P(S̃(ti) ≤ x|X) ≥ 1/2} and bi = mode{S̃(ti)|X}

2: use the sequences (ai)
q
i=1 and (bi)

q
i=1 to approximately evaluate, t-by-t,

posterior median and mode respectively

3: use the weighted sample ($`,ti , S`,ti)`=1,...,`max to devise t-by-t credible
intervals

The rest of this section is divided in two parts in which Algorithms 1 and
2 are applied to analyse simulated and real survival data. In Section 4.2 the
focus is on the estimation of the median survival time for simulated samples
of varying size. In Section 4.3 we analyse a real two-sample dataset and
we estimate posterior median and mode, together with credible intervals, of
S̃(t). In both illustrations our approximations are based on the first N = 10
moments.

4.2. Application to simulated survival data

Consider four samples of size n = 25, 50, 100, 200, from a mixture f of
Weibull distributions, defined by

f =
1

2
Wbl(2, 2) +

1

2
Wbl(2, 1/2).

After observing that the largest observation in the samples is 4.21, we set
M = 5 and q = 100 for the analysis of each sample. By applying Algo-
rithms 1 and 2 we approximately evaluate, t-by-t, the posterior distribution
of S̃(t) together with the posterior distribution of the median survival time
m. In Figure 4 the focus is on the sample corresponding to n = 100. On the
left panel, true survival function and Kaplan–Meier estimate are plotted.
By investigating the right panel it can be appreciated that the estimated
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HPD credible regions for S̃(t) contain the true survival function. Moreover,
the posterior distribution of m is nicely concentrated around the true value
m0 = 0.724.

Time
0 m0 2.5 5

0

0.5

S, 1

Time
0 m0 2.5 5

0

0.5

S, 1

0

10

20, m

Figure 4: (Simulated dataset, n = 100.) Left: true survival function (red line) and
Kaplan–Meier estimate (balk line). Right: true survival function (red line) and estimated
posterior mean (black solid line) with 95% HPD credible intervals for S̃(t) (black dashed
lines); the blue plot appearing in the panel on the right is the posterior distribution of the
median survival time m.

The performance of the introduced methodology is investigated as the sam-
ple size n grows. Table 1 summarizes the values obtained for m̂ and the
corresponding credible intervals. For all the sample sizes considered, cred-
ible intervals for m̂ contain the true value. Moreover, as expected, as n
grows, they shrink around m0: for example the length of the interval re-
duces from 0.526 to 0.227 when the size n changes from 25 to 200. Finally,
for all these samples, the estimated median survival time m̂ is closer to m0

than the empirical estimator m̂e.

4.3. Application to real survival data

The described methodology is now used to analyse a well known two-
sample dataset involving leukemia remission times, in weeks, for two groups
of patients, under active drug treatment and placebo respectively. The same
dataset was studied, e.g., by Cox (1972). Observed remission times for
patients under treatment (T) are

{6, 6, 6, 6∗, 7, 9∗, 10, 10∗, 11, 13, 16, 17∗, 19∗, 20∗, 22, 23, 25∗, 32∗, 32∗, 34∗, 35∗},
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Table 1: (Simulated datasets.) Comparison of the estimated median survival time (m̂)
obtained by means of our Bayesian nonparametric procedure (BNP) and the empirical
median survival time m̂e, for different sample sizes. For BNP estimation we show m̂, the
absolute error |m̂ − m0| and the 95%-credible interval (CI); last two columns show the
empirical estimate m̂e and the corresponding absolute error |m̂e −m0|. The true median
survival time m0 is 0.724.

BNP Empirical

sample size m̂ error CI m̂e error

25 0.803 0.079 (0.598, 1.124) 0.578 0.146
50 0.734 0.010 (0.577, 0.967) 0.605 0.119
100 0.750 0.026 (0.622, 0.912) 0.690 0.034
200 0.746 0.022 (0.669, 0.896) 0.701 0.023

where stars denote right-censored observations. Details on the censoring
mechanism and on how to adapt the methodology to right-censored obser-
vations are provided in Appendix C. On the other side, remission times of
patients under placebo (P) are all exact and coincide with

{1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23}.

For this illustration we set M = 2 max(X), that is M = 70, and q = 50.
For both samples posterior mean, median and mode as well as 95% credible
intervals, are estimated and compared. In the left panel of Figure 5 such es-
timates are plotted for sample T. By inspecting the plot, it is apparent that,
for large values of t, posterior mean, median and mode show significantly
different behaviors, with posterior mean being more optimistic than poste-
rior median and mode. It is worth stressing that such differences, while very
meaningful for clinicians, could not be captured by marginal methods for
which only the posterior mean would be available. A fair analysis must take
into account the fact that, up to t = 23, i.e. the value corresponding to the
largest non-censored observation, the three curves are hardly distinguish-
able. The different patterns for larger t might therefore depend on the prior
specification of the model. Nonetheless, this example is meaningful as it
shows that a more complete posterior analysis is able to capture differences,
if any, between posterior mean, median and mode.

When relying on marginal methods, the most natural choice for estimat-
ing the uncertainty of posterior estimates consists in considering the quan-
tiles intervals corresponding to the output of the Gibbs sampler, that we refer
to as marginal intervals. This leads to consider, for any fixed t, the interval
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whose lower and upper extremes are the quantiles of order 0.025 and 0.975,

respectively, of the sample of conditional moments {µ(lmin+1)
1,t , . . . , µ

(lmax)
1,t }

defined in (13). In the middle panel of Figure 5 the estimated 95% HPD
intervals for S̃(t) and the marginal intervals corresponding to the output
of the Gibbs sampler are compared. In this example, the marginal method
clearly underestimates the uncertainty associated to the posterior estimates.
This can be explained by observing that, since the underlying completely
random measure has already been marginalized out, the intervals arising
from the Gibbs sampler output, capture only the variability of the posterior
mean that can be traced back to the latent variables Y and the parame-
ters (c, β). As a result, the uncertainty detected by the marginal method
leads to credible intervals that can be significantly narrower than the actual
posterior credible intervals that we approximate through the moment-based
approach. This suggests that the use of intervals produced by marginal
methods as proxies for posterior credible intervals should be, in general,
avoided.

The analysis is concluded by observing that the availability of credible
intervals for survival functions can be of great help in comparing treatments.
In the right panel of Figure 5 posterior means as well as corresponding 95%
HPD intervals are plotted for both samples T and P. By inspecting the plot,
for example, the effectiveness of the treatment seems clearly significant as,
essentially, there is no overlap between credible intervals of the two groups.
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Figure 5: Left: comparison of posterior mean (solid line), median (dashed line) and
mode (point dashed line) in dataset T, with 95% HPD credible intervals (dashed line).
The Kaplan–Meier estimate is plotted in red. Middle: comparison of the 95% HPD
credible interval (dashed black line) with the marginal interval (dashed red line). Right:
comparison of samples T (black) and P (red), with posterior means (solid) and 95% HPD
credible intervals (dashed).
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Appendix A. Moments under exponential P0

An explicit expression for (10) is provided when P0(dy) = λ exp(−λy)dy
and the hyperparameters c and β are considered random.

E[S̃r(t) |X,Y , c, β] =

exp
{
−ce−f0,r(0) [Ei(f0,r(t))− Ei(f0,r(X1 ∧ t))]

}(f0,r(X1 ∧ t)
f0,r(t)

)−ce−λ(X1∧t)

×
n∏
i=1

exp
{
−ce−fi,r(0) [Ei(fi,r(Xi ∧ t))− Ei(fi,r(Xi+1 ∧ t))]

−ce−fi,0(0) [Ei(fi,0(Xi+1 ∧ t))− Ei(fi,0(Xi ∧ t))]
}

×
(

i

i+ r

fi,0(Xi ∧ t)
fi,r(Xi ∧ t)

)−ce−λ(Xi∧t) ( i+ r

i

fi,r(Xi+1 ∧ t)
fi,0(Xi+1 ∧ t)

)−ce−λ(Xi+1∧t)

×
k∏
j=1

(
1 + r

(t− Y ∗j )1[Y ∗j ,∞)(t)∑n
i=1(Xi − Y ∗j )1[Y ∗j ,∞)(Xi) + 1/β

)−nj
, (A.1)

where Ei(·) is the exponential integral function defined for non-zero real
values z by

Ei(z) = −
∫ ∞
−z

e−t

t
dt

and the function fi,r, for i, r ≥ 0 such that i+ r > 0, is defined by

fi,r(x) = λ

(
ξi + 1/β + rt

i+ r
− x
)
.

Appendix B. Full conditional distributions

In this section we provide expressions for the full conditional distribu-
tions needed in the algorithm described in Section 4.1 for extended gamma
processes with base measure P0(dy) = λ exp(−λy)dy. These distributions
are easily derived, up to a constant, from the joint distribution of the vector
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(X,Y , c, β), that can be obtained from (7). Therefore we start by pro-
viding the full conditional distribution for the latent variable Yi, with i =
1, . . . , n, where Y (−i) denotes the vector of distinct values (Ỹ ∗1 , . . . , Ỹ

∗
k∗) in

(Y1, . . . , Yi−1, Yi+1, . . . , Yn) and (n
(−i)
1 , . . . , n

(−i)
k∗ ) represent the correspond-

ing frequencies.

P[Yi = dy |X,Y (−i), c, β] = p0G0(dy) +
k∗∑
j=1

pjδỸ ∗j
(dy), (B.1)

where

p0 ∝ c λ
n∑
j=i

1

j
e
−λ

ξj+1/β

j [Ei (fj,0(Xj+1))− Ei (fj,0(Xj))] ,

pj ∝ 1{Y ∗j ≤Xi}
n

(−i)
j∑n

l=1(Xl − Ỹ ∗j )1[0,Xl)(Ỹ
∗
j ) + 1/β

and

G0(dy) ∝ 1[0,Xi)(y)e−λy
1∑n

j=1(Xj − y)1[0,Xj)(y) + 1/β
dy.

Finally, the full conditional distributions for the parameters c and β are
given respectively by

L(c |X,Y , β) ∝ L0(c)ckβ−c
n∏
i=1

exp
{
−ce−fi,0(0) [Ei(fi,0(Xi))− Ei(fi,0(Xi+1))]

}
× (ξi + 1/β − iXi+1)−ce

−λXi+1

(ξi + 1/β − iXi)
−ce−λXi

(B.2)

and

L(β |X,Y , c) ∝ L0(β)β−c
n∏
i=1

exp
{
−ce−fi,0(0) [Ei(fi,0(Xi))− Ei(fi,0(Xi+1))]

}

×(ξi + 1/β − iXi+1)−ce
−λXi+1

(ξi + 1/β − iXi)
−ce−λXi

k∏
j=1

(
n∑
i=1

(Xi − Y ∗j )1[Y ∗j ,∞)(Xi) + 1/β

)−nj
,

(B.3)

where L0(c) and L0(β) are the prior distributions of c and β respectively.
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Appendix C. Censored observations

The methodology presented in Section 4 needs to be adapted to the
presence of right-censored observations in order to be applied to the dataset
in Section 4.3. Here we introduce some notation and illustrate how the
posterior characterization of Proposition 1 changes when data are censored.
To this end, let Ci be the right-censoring time corresponding to Xi, and
define ∆i = 1(0,Ci](Xi), so that ∆i is either 0 or 1 according as to whether
Xi is censored or exact. The actual ith observation is Ti = min(Xi, Ci) and,
therefore, data consist of pairs D = {(Ti,∆i)}i=1...n. In this setting, the
likelihood in (5) can be rewritten as

L(µ̃;D) = e−
∫
YK
∗
D(y)µ̃(dy)

∏
i: ∆i=1

∫
Y
k(Ti; y)µ̃(dy),

where

K∗D(y) =
n∑
i=1

∫ Ti

0
k(s; y)ds.

By observing that the censored times are involved only through K∗D, the
results derived in Proposition 1 under the assumption of exact data easily
carry over to the case with right-censored data. The only changes refer
to KX , that is replaced by K∗D, and the jump components which occur
only at the distinct values of the latent variables that correspond to exact
observations. For instance in Proposition 1, the Lévy intensity of the part
of the CRM without fixed points of discontinuity is modified by

ν∗(ds, dy) = e−sK
∗
D(y)ρy(s)ds cP0(dy),

while the distribution of the jump Jj has density function f( · |n∗j ,K∗D(Y ∗j ), Y ∗j )

with f defined in (8) and n∗j = #
{
i : Yi = Y ∗j and ∆i = 1

}
. Adapting the

results of Proposition 2 and Corollary 1, as well as the full conditional dis-
tributions in Appendix B, is then straightforward.
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