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Application of a Bayesian nonparametric model to derive toxicity estimates based on the response of Antarctic microbial communities to fuel contaminated soil
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Ecotoxicology is primarily concerned with predicting the effects of toxic substances on the biological components of the ecosystem. In remote, high latitude environments such as Antarctica, where field work is logistically difficult and expensive, and where access to adequate numbers of soil invertebrates is limited and response times of biota are slow, appropriate modelling tools using microbial community responses can be valuable as an alternative to traditional single-species toxicity tests. In this study, we apply a Bayesian nonparametric model to a soil microbial dataset acquired across a hydrocarbon contamination gradient at the site of a fuel spill in Antarctica. We model community change in terms of OTUs (operational taxonomic units) in response to a range of total petroleum hydrocarbon (TPH) concentrations. The Shannon diversity of the microbial community, clustering of OTUs into groups with similar behaviour with respect to TPH, and effective concentration values at level x, which represent the TPH concentration that causes x% change in the community, are presented. This model is broadly applicable to other complex datasets with similar data structure and inferential requirements on the response of communities to environmental parameters and stressors.

Introduction

An understanding of the environmental processes that affect ecosystems is of fundamental importance for their management and conservation. Ecotoxicology is primarily concerned with predicting the effects of toxic substances on the biological components of the ecosystem. Toxicity data based on the response of a range of native biota is critical to the derivation of site-specific environmental quality guidelines. These include trigger values or contaminant thresholds, which when exceeded prompt remediation and/or clean-up activities. They also include remediation targets which define an acceptable level of ecosystem recovery and restoration, and once reached through remediation, enable sign-off of sites as no longer posing significant environmental risk.

While ecotoxicological assessments aim to predict the effects of contaminants on an ecosystem, monitoring and characterising the state of an entire ecosystem is rarely practicable. Thus, toxicity tests are generally conducted on single species (populations), or groups of species (communities), as indicators of the overall system state. In remote, high latitude environments such as Antarctica, where field work is logistically difficult and expensive, and where terrestrial ecosystems are comprised of relatively few species and simple food webs, appropriate modelling tools using microbial community responses can be valuable as an alternative to traditional single-species toxicity tests. Such community assessments may provide more representative and relevant information that incorporates complex interactions between species compared with simple single-species tests.

Modelling the responses of species or communities to contamination gradients is conceptually very similar to the broader goal of modelling species responses to environmental conditions, which is an area of long-standing study in the ecological sciences. Conventional observational ecological studies have generally dealt with a relatively small number of species, and the modelling methods have been developed accordingly. Thus, while methods for single-species modelling are relatively mature and diverse (e.g. [START_REF] Elith | Novel methods improve prediction of species distributions from occurrence data[END_REF], community modelling methods are less well established. The development of community modelling methods has, at least in part, been driven by the emergence of high-throughput microbial and similar studies, which can provide information on tens of thousands of species simultaneously, many of which can be extremely sparse. One approach to community modelling is to model single species in an independent fashion, and then assemble the individual model predictions into a composite prediction of the community (e.g. [START_REF] Ellis | Gradient forests: calculating importance gradients on physical predictors[END_REF]. However, such approaches typically struggle with rare species, which are difficult to model with confidence because of their sparse observations. Appropriate propagation of the uncertainty in individual species models into the composite predictions can also be difficult. An alternative approach, which has become more common in recent years, is to simultaneously model the response of the community as a whole. This can involve the modelling of univariate summaries of multispecies responses, such as compositional dissimilarity (e.g. [START_REF] Ferrier | Spatial modelling of biodiversity at the community level[END_REF][START_REF] Ferrier | Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment[END_REF] or rank abundance distributions [START_REF] Foster | The analysis of biodiversity using rank abundance distributions[END_REF]. Alternatively, the responses of multiple species can be modelled simultaneously (e.g. [START_REF] Foster | The analysis of biodiversity using rank abundance distributions[END_REF][START_REF] Dunstan | Model based grouping of species across environmental gradients[END_REF][START_REF] Wang | mvabund an R package for model-based analysis of multivariate abundance data[END_REF].

A common approach to characterising single-species responses is through the probability of presence p j of each species j at a site, often as a function of the environmental conditions at that site. This approach can be extended to multiple species using a multi-response model. The multinomial distribution, which generalises the binomial distribution to the case where there are more than two species, provides an intuitive framework when the sampling process consists of independent observations of a fixed number of species. This distribution gives the probability of observing any given combination of species, conditional on parameters which are the species relative proportions. This intuitive modelling of species relative proportions has led to the recent popularity of multinomial methods in ecological (e.g. [START_REF] Bohlin | Analysis of genomic signatures in prokaryotes using multinomial regression and hierarchical clustering[END_REF][START_REF] Fordyce | A hierarchical Bayesian approach to ecological count data: a flexible tool for ecologists[END_REF][START_REF] De'ath | The multinomial diversity model: linking Shannon diversity to multiple predictors[END_REF][START_REF] Holmes | Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics[END_REF] and genomic [START_REF] Dunson | Nonparametric Bayes modeling of multivariate categorical data[END_REF] applications. The multinomial approach also provides a natural link to indices that describe various community properties of interest to ecologists, such as species diversity, richness, and evenness. The literature on diversity in ecology is extensive, see e.g. [START_REF] Hill | Diversity and evenness: a unifying notation and its consequences[END_REF]; [START_REF] Patil | Diversity as a concept and its measurement[END_REF]; [START_REF] Foster | The analysis of biodiversity using rank abundance distributions[END_REF]; [START_REF] Colwell | Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages[END_REF][START_REF] De'ath | The multinomial diversity model: linking Shannon diversity to multiple predictors[END_REF]. We focus here on the Shannon index, cf Section 2.

In ecotoxicological studies with contaminants, interest is generally directed towards estimating the concentrations of toxicants that cause a certain level of impact on a population or community. The effective concentration, or EC x value, is the concentration that causes x% effect on the population relative to the controls (e.g. [START_REF] Newman | Quantitative ecotoxicology[END_REF]. For example, the EC 50 is the median effective concentration and represents the concentration of a toxicant which induces a response halfway between the control baseline and the maximum after a specified exposure time (see Section Methods for a more detailed definition). Of more ecological relevance in terms of protecting the ecosystem, estimates of lower effective quantiles such as the EC 10 and EC 20 are also commonly estimated. These more sensitive estimates are included in species sensitivity distribution (SSD) models, which are in turn used to derive appropriate protective guidelines on contaminant concentrations. Currently, it is not clear how to best calculate EC x values using whole-community data, and to identify the vulnerable members within.

In this study, we apply the modelling method presented by [START_REF] Arbel | Bayesian nonparametric dependent models for the study of diversity in species data[END_REF] to a soil microbial dataset acquired across a hydrocarbon contamination gradient at the site of a fuel spill in Antarctica. The method used here extends that presented by [START_REF] Holmes | Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics[END_REF]. It allows for an unknown a priori number of species, accounts for additional factors by introducing dependence into the model, and allows predictions to be made at any value of the dependent variable (i.e. contaminant concentration value). This brings estimates which are more efficient, both computationally and inferentially, and allows assessment of the response of species, for instance in terms of diversity, to contamination. This method provides a robust and practical way to assess a mixed community of organisms (whether microbes or macro organisms) and determine their responses to a toxicant. There are many studies that focus on the response of a single organism but often this response will have repercussive effects on a community and the surrounding ecosystem. This method provides a platform by which to explore those effects and derive toxicology data for multiple species without the need for empirical data.

Methods

Soil sample collection and analysis

Soil samples were collected from a range of sites across a fuel contamination gradient at Australias Casey Station in East Antarctica (110 • 32 E, 66 • 17 S). The data comprise counts of a large number (of the order of 1 800) of microbial taxa, referred to as OTUs (operational taxonomic units; see [START_REF] Schloss | Introducing mothur: opensource, platform-independent, community-supported software for describing and comparing microbial communities[END_REF], collected at 22 sites, across a range of hydrocarbon contamination [START_REF] Siciliano | Fertility controls richness but pH controls composition in polar microbial communities[END_REF]. Genomic DNA extracted from samples was sequenced on a 454 Titanium FLX+ instrument (Roche, Brandford, CT, USA) at the Research and Testing facility (Lubbock, TX, USA) using the universal bacterial primers 28F and 519R [START_REF] Dowd | Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP)[END_REF]. Pyrosequencing data were processed using the mothur software package [START_REF] Schloss | Introducing mothur: opensource, platform-independent, community-supported software for describing and comparing microbial communities[END_REF]. This involved removal of short reads (<150bp), excessive homoploymeric reads (>8bp repeats) and denoising with AmpliconNoise (min/max flows 360/720) [START_REF] Quince | Removing noise from pyrosequenced amplicons[END_REF]. Preclustering at 1% was performed to negate the per base error rate of the 454 platforms. Seed sequences were then aligned to the SILVA 16S rRNA gene database alignment using a NAST alignment algorithm [START_REF] Pruesse | SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB[END_REF][START_REF] Caporaso | PyNAST: a flexible tool for aligning sequences to a template alignment[END_REF]. Reads were then chimaera-checked [START_REF] Edgar | UCHIME improves sensitivity and speed of chimera detection[END_REF] and clustered into OTUs at 96% sequence similarity to achieve approximately species-level units as derived by [START_REF] Kim | Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes[END_REF]. Seed sequences from each OTU were then classified using a Naïve Bayesian classifier in mothur against the Greengenes 16S reference database (October 2012 version, see [START_REF] Mcdonald | An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea[END_REF].

While a range of geographic, environmental and soil physico-chemical measurements were obtained as covariate data for each sample, in this study we specifically focus on the concentration of fuel in the soil, measured as total petroleum hydrocarbon (TPH) in mg/kg of soil. TPH concentrations in each soil sample were measured using a Gas Chromatograph with flame ionization detection (GC-FID) via hexane extraction, as described by [START_REF] Schafer | Soil biogeochemical toxicity end points for sub-Antarctic islands contaminated with petroleum hydrocarbons[END_REF]. Total signal in the C9-C28 range was measured to determine TPH concentrations.

Although a continuous variable, the same TPH concentration was recorded for several sites, ranging from 0 to 22 000 mg TPH/kg soil. This is the case for the baseline which comprises 10 uncontaminated sites (ie with zero TPH). The statistical model (see below) expresses the count of each OTU as a function of the environmental covariates. In order to accommodate for multiple sites with identical TPH concentrations, the ties in concentration were jittered, i.e. had a random Gaussian noise added (absolute value for the case TPH=0). This noise can be interpreted as errors in the measurement process and be incorporated in the probabilistic model. Reproducing the estimation for different small values of variance for that noise compared with the variability in observed TPH, we have noted that the results were not substantially altered.

For computational reasons, only the most abundant OTUs were included in the analyses. Here, only OTUs with total abundance exceeding 10 over all sites were included, which occurred for 392 OTUs. However, we show in the Appendix that repeating the analyses by including or discarding up to 20% of OTUs did not substantially alter the results.

Statistical model

A brief summary of the modelling procedure is given here: full details of the model are provided by [START_REF] Arbel | Bayesian nonparametric dependent models for the study of diversity in species data[END_REF]. The following notation is used to refer to the data. Each unique covariate value, possibly after jittering, is indexed by i and is denoted by X i , i = 1, . . . , I. Recall that this may correspond to a single site or to a collection of sites with the same covariate value. However, for the sake of simplicity, we refer to i as the site index (i.e. "site i"). OTUs are indexed by j = 1, 2, . . ., so that the abundance of OTU j at site i is denoted by N j (X i ), and the total abundance of all OTUs at site i by N (X i ). The same notation, using p instead of N , relate to proportions, or average proportions, rather than abundances. That is, p j (X i ) is the probability of observing OTU j at site i. The probability distribution p(X i ) = (p 1 (X i ), p 2 (X i ), . . .), denoted with a bold letter for a vector, is the distribution of these probabilities across all OTUs at site i; i.e. the community composition. The dependence of the community composition on the covariate X is modelled by:

Y n,i | p(X i ) ind ∼ ∞ j=1 p j (X i )δ j ,
where the nth observation made at site i is denoted by Y n,i , for i = 1, . . . , I, n = 1, . . . , N (X i ), and δ j stands for taxa j. That is, observation is OTU j with probability p j (X i ).

Not all taxa in the population are assumed to have been observed, and no a priori value is placed on this total number, which might be much larger than the number of observed taxa. Note that we do not attempt to estimate the number of undetected taxa (see for example [START_REF] Royle | Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities[END_REF], for an extensive account on the role of imperfect detectability).

A Bayesian perspective is adopted for estimation of this model. The basic machinery requires specification of the prior distributions of the community vectors p(X i ). It takes the form of a probability distribution, which represents a reasonable prior knowledge about the parameters of the model. It is updated with the data and the sampling model through the celebrated Bayes' rule in order to obtain the posterior distribution of the parameters. All inferential information is enclosed in that distribution. A common approach to estimating such models is through Markov chain Monte Carlo methods (MCMC), which (approximately) sample from the posterior distribution. Hence, the inference from the fitted model make use of a so-called posterior sample, which is a random sample of probabilities p(X i ) drawn from the posterior distribution.

A common prior distribution for models of this type is the Griffiths-Engen-McCloskey dis-tribution, denoted by p(X i ) ∼ GEM(M ), and defined by

p j (X i ) = V j (X i ) l<j (1 -V l (X i )) with V j (X i ) iid ∼ Beta(1, M ).
This construction of generic probability weights p j is often described using the analogy of breaking a stick. Start with a stick of length 1, break it at a random length V 1 , and define p 1 = V 1 . Do the same for the remaining stick of size : break it at a random length V 2 , define

p 2 = V 2 (1 -V 1 )
, and continue iterating with this process. The remaining length a stage j, j i=1 (1 -V i ), goes to zero when j goes to infinity, and so the p j 's sum to 1. Commonly, independent priors on p(X i ) are used for different X i (e.g. [START_REF] Holmes | Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics[END_REF]. However, since we are dealing with a continuous covariate, it is arguably more appropriate to adopt a dependent prior that evolves smoothly with the covariate X: a small change in X i induces a small change in p(X i ). The GEM distribution can thus be extended to a dependent version with this smoothness constraint, denoted here by Dep-GEM. Both models will be compared in our analyses.

The GEM prior on the vector V j (X i ) is required to be marginally Beta-distributed. The Dep-GEM prior additionally requires that V j (X i ) exhibit dependence across i in order to be smooth with respect to the covariate X. This is achieved using Gaussian processes Z, whose covariance matrices allow a very flexible modelling of the dependence through a so-called band-width parameter. Informally speaking, the band-width can be thought of as roughly the distance one has to move in the covariate space before the process can change substantially. Also, the model allows estimation of the probability p(X * ) for covariate values X * that are unobserved, by computing the predictive distribution of the Gaussian processes. See [START_REF] Arbel | Bayesian nonparametric dependent models for the study of diversity in species data[END_REF] for details.

The parameter M is called the precision parameter of the prior, and governs the uniformity of the probabilities drawn from it. Higher values of M yield a more uniform probability distribution, which is equivalent to a more diverse community, and so M effectively controls the level of diversity in the prior. For small M , the first few taxa share most of the weights, whereas in the limiting case M , the weights tend to be uniformly distributed, cf Figure 1. Exploratory analyses indicate that, given a sufficiently large range of M , the OTU frequencies drawn from this distribution are similar to those observed in the data. A random prior distribution on M can be used to ensure that it has adequate range.

A means of studying communities diversity is through the Shannon diversity index (also known as the Shannon-Wiener index, the Shannon-Weaver index, and the Shannon entropy), defined by

H Shan (p) = - j p j log p j . (1) 
The prior expectation of the Shannon index under the GEM prior is given by

E(H Shan ) = ψ(M + 1) -ψ(1),
where ψ is the digamma function (see [START_REF] Cerquetti | Bayesian nonparametric estimation of Patil-Taillie-Tsallis diversity under Gnedin-Pitman priors[END_REF]. Figure 2 illustrates the a priori effect of M on the Shannon index. The estimation of the model is described in [START_REF] Arbel | Bayesian nonparametric dependent models for the study of diversity in species data[END_REF]. Posterior sampling is per-formed by a Gibbs algorithm, with a Metropolis-Hastings step for non-conjugate conditionals. It is run for 50 000 iterations thinned by a factor of 5 with a burn-in of 10 000 iterations. The parameters of the hyperpriors are chosen so that they are weakly informative. The efficiency and convergence of the sampler was assessed by trace plots and autocorrelations of the parameters, which did not reveal any convergence issues.

Inference from fitted models

Fitted models can be used to make a range of inferences about the microbial taxa and the response of the community to contamination.

Diversity, defined in Equation ( 1) by the Shannon index as noted above, was estimated from the posterior sample obtained from the Gibbs algorithm. It consists of a sample of probabilities p(X) (i.e. estimates of community composition). The Shannon index can be calculated for each of these samples, yielding a posterior estimate of the Shannon index, which is illustrated in Figure 3, for both GEM and Dep-GEM models.

On the basis of their fitted responses, OTUs were classified as increasing or decreasing with contamination. The classification was based on the difference m j , for each OTU j, between its average probability at low contaminant (i.e. X < X med = 6 050 mg/kg TPH, the median value of observed TPH) and its average probability at high contaminant (i.e. X > X med ).

An intuitive interpretation of m j is that it indicates to what extent OTU j is impacted by the contaminant. The posterior distribution is available for m j , along with 95% credible intervals. The clustering was conducted as follows: if zero was on the left of the credible interval (i.e. m j was deemed from the posterior distribution to be highly likely to be larger than zero), then OTU j was classified as decreasing with TPH; if zero was on the right, it was classified as increasing. Otherwise (if the credible interval included zero) it was deemed that the model did not give enough information about the response of OTU j to the contaminant, and it was given a "no-classification" label. The classification was performed for both the GEM and the Dep-GEM models. We also classified each OTU directly using the raw data, from which no credible interval is available, and so no OTUs were placed in the "no-classification" group in this case.

In order to obtain an overview of the ecological relevance of these classification results, we compared the results to a list of 181 genera of known hydrocarbon-degrading bacteria [START_REF] Prince | Handbook of Hydrocarbon and Lipid Microbiology, chapter Prokaryotic Hydrocarbon Degraders[END_REF]. This list is based on published results from a wide range of ecosystem typesnot just Antarctic soils -and so this comparison was only expected to give general indications of ecological relevance. We expected that genera known to be hydrocarbon-degraders would typically show an increasing response to contamination, whereas the reverse would be true for other genera. The sensitivity (true positive rate) and specificity (true negative rate) were calculated on the basis of the number of correctly-classified OTUs (excluding those OTUs that were given "no-classification" by the model). The weighted sensitivity and specificity were also calculated by taking into account the relative abundances of the OTUs. Note that these comparisons were only conducted using those OTUs identified to a taxonomic level of genus or finer.

The EC x value (see e.g. [START_REF] Newman | Quantitative ecotoxicology[END_REF] is the TPH concentration associated with an x% response in the target organisms. For single-species studies, this is commonly assessed by an x% increase in mortality or some sub-lethal response, and is determined using logistic or probit regression. In applications with a multi-species response, it is the response of the community as a whole that is of interest. This can be defined in a number of ways depending on the specific aspects of interest to the ecological application. In an application where the Shannon index is deemed to be an appropriate community indicator, the estimated Shannon index curve (e.g. Figure 3) could be used to define the EC x threshold. As an alternative, we illustrate the use of a dissimilarity index as a measure of change in community composition. Many dissimilarity functions are available; for the purposes of demonstration we adopted the commonly-used Bray-Curtis dissimilarity [START_REF] Bray | An ordination of the upland forest communities of southern wisconsin[END_REF]. We defined the baseline community as the ten uncontaminated sites, where TPH equals zero. To calculate an EC x value, we seek the TPH level that corresponds to an x% change in the community composition relative to the baseline. The dissimilarity at TPH zero (labelled D 0 here) is an estimate of the variability in community composition between uncontaminated sites, and so is greater than zero. The Bray-Curtis dissimilarity has a maximum value of 1, which occurs when two sites have no species in common (i.e. disjoint community compositions). For EC x , we therefore calculated the D x threshold as D x = 1 -(1 -D 0 )(100 -x)/100. This is equivalent to assuming that an EC 0 value (i.e. no change relative to baseline) occurs at D = D 0 , an EC 100 value (i.e. 100% change in composition) occurs at D = 1, and with linear interpolation for intermediate values. The dissimilarity curve is not guaranteed to be monotonic, and so there may be several TPH values associated with a certain dissimilarity level D x . In this situation, the smaller value should generally be used, so as to provide a conservative EC x estimate. It is unlikely that this dissimilarity threshold will coincide exactly with one of the measured TPH levels in the data, and so this approach required the model to be able to interpolate between observed TPH values. This is one of the features of the Dep-GEM model. This approach also allowed the uncertainty in the EC x value to be estimated, by considering the 95% credible intervals on the estimated dissimilarity. Since the curves of the credible intervals are similarly not necessarily monotonically increasing, it may be necessary to define an increasing envelope of them in order to derive the credible intervals for EC x values. Note that this technique leads to conservative estimates for the uncertainty about EC x values, since it enlarges the proper credible intervals for the dissimilarity.

Results for microbial data

Estimates of diversity with respect to hydrocarbon contamination are shown in Figure 3.

The Dep-GEM model (Figure 3a) suggested that diversity first increases with TPH with a maximum at 3 000mg TPH/kg soil, and then decreases with TPH. The GEM model estimates are shown for comparison in Figure 3b. These estimates showed more variability with respect to TPH, being closer to the estimates of the diversity from raw data. Note that the GEM estimates were only available at levels of the covariate that were present in the data, because of the independent nature of the model specification. The Dep-GEM, in contrast, provided predictions across the full range of TPH values. q q q q q q q q q q q q q q q q q q q q q q Fuel concentration (g TPH/kg soil) (a) Dep-GEM q q q q q q q q q q q q q q q q q q q q q q Fuel concentration (g TPH/kg soil) The clustering results are summarised in Table 1. Our data included 64 distinct bacterial genera, of which 22 also appeared on the list of known hydrocarbon-degrading taxa. Table 1 shows the comparison of the classification results to the list of known hydrocarbon-degrading genera. Broadly, the results of all methods showed a reasonable match to the expected responses. The GEM model gave more "no-classification" results than the Dep-GEM model.
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This illustrates the fact that the GEM model uses less information than the Dep-GEM (which, for each contaminant value, borrows information to neighboring contaminant values for the estimation), hence has larger credible intervals which tend to include zero more often. This means that, although the sensitivity and specificity of the GEM model were similar to that of the Dep-GEM, more OTUs were left unclassified by the GEM approach compared to the Dep-GEM. The sensitivity and specificity of all methods were generally higher when weighted by OTU abundance (rather than simply calculated on the number of OTUs correctly classified). This that high-abundance OTUs were typically deemed to have a response that matched the expected behaviour. This may be because the higher-abundance OTUs are better modelled by these methods, and so their response is more likely to be correctly characterized. Alternatively, low-abundance OTUs may simply not express the response type that might be expected for their genus. OTUs from a hydrocarbon-degrading genus, if present only in low numbers, might not tend to increase in response to the presence of hydrocarbons because they are out-competed by other, more abundant hydrocarbondegrading bacteria. All methods showed generally low values of sensitivity (i.e. not all OTUs from hydrocarbon-degrading genera actually showed increasing responses to contamination). This is consistent with the nature of the list of hydrocarbon-degrading bacteria, which was drawn from a diverse range of studies covering many ecosystem types. Particular species found to be associated with hydrocarbon-degradation in those studies might not match the species within the same genera found in our samples. Additionally, the model was estimated separately on the three groups. We plot the results for diversity and dissimilarity estimation in Figure 5 in Appendix. Note that the decreasing / increasing pattern of the groups with respect to TPH is not visible in the graphs since it is defined in terms of probability of the species, while we plot diversity and dissimilarity.

The estimated compositional dissimilarity curve with TPH is shown in Figure 4, along with the EC x values extracted from it and provided in Table 2. Dissimilarity generally increased with TPH, illustrating that the contaminant alters community structure. Typically, EC 10 , EC 20 and EC 50 values, cf Table 2, are reported in toxicity studies to be used in the derivation of protective concentrations in environmental guidelines or for comparisons of sensitivity between biota. EC 10 , EC 20 and EC 50 values estimated from this model are 1 875, 3 125 and 6 875 mg TPH/kg soil respectively. For small x (less than 10%), the lower bound of the credible interval on the EC x value is zero, because both TPH and dissimilarity values are bounded below by zero. Conversely, for large x (more than 75%), the upper bound on the credible interval is 25 000, which is the limit of the TPH range in our analysis.

As a sensitivity analysis of the performance of the model, we have estimated the model on modified data, by As the plots of the results in Figure 6 in Appendix show, the model is fairly robust to these modifications of the data as the estimations are consistent with Figures 3 and4.

Discussion

In this study we applied a dependent Bayesian model to soil microbial data, to assess the effects of hydrocarbon contamination on microbial communities. While many ecotoxicology studies are conducted using single species, in microbial analysis, whole communities are generally considered. Some studies have considered the effects of toxicants on microbial communities but with the advent of next generation sequencing technologies, we are now able to accurately identify members of the communities to make reliable inferences [START_REF] Vazquez | Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil[END_REF]. Our method allows community-level analyses to derive toxicology end points and to understand the effects of contaminants closer to the whole-of-ecosystem level. This is novel in the field of microbiology and can provide insight to the harmful effects of pollutants, because microbes are typically the most sensitive members of the ecosystem and can therefore potentially be used as an indicator of contamination impacts [START_REF] Van Dorst | Bacterial targets as potential indicators if diesel fuel toxicity in sub-Antarctic soils[END_REF]. While statistical methods to determine point estimates for single species tests are well established (e.g. Probit Analysis, Trimmed Spearman Karber), standard methods to determine the sensitivity of whole communities and to derive single point estimate values are currently lacking. In addition the responses of whole communities to stressors are often poorly understood. Such community based assessments are becoming more important, especially in harsh environments such as Antarctica in which plant and invertebrate communities typically display low diversity, and are difficult to measure responses in. The method presented here has potential value in other applications that consider changes in community composition with respect to environmental or other processes. More broadly, the method can be applied to any set of categorical response variables indexed by integers. As seen in the Introduction, the literature on diversity in Ecology is extensive, but we note that similar indices arise in other areas of science, such as biology, engineering, physics, chemistry, economics, health and medicine (see [START_REF] Borges | A family of nonextensive entropies[END_REF][START_REF] Havrda | Quantification method of classification processes. Concept of structural a-entropy[END_REF][START_REF] Kaniadakis | Two-parameter deformations of logarithm, exponential, and entropy: a consistent framework for generalized statistical mechanics[END_REF], and in more mathematical fields such as probability theory [START_REF] Donnelly | On the asymptotic distribution of large prime factors[END_REF], which are possible fields of application of our methodology.

There are several computational limitations of the approach: the model is difficult to estimate on very large data sets, even if extremely sparse as is the case of the original ecotoxicological data set studied here. Indeed, the sparsity of the data is a source of computational difficulty with the posterior computation (see [START_REF] Arbel | Bayesian nonparametric dependent models for the study of diversity in species data[END_REF]. However, in terms of diversity, most of the information is driven by the largest OTUs, and so working on a subsample of the data is satisfactory in this respect. We used only the most abundant OTUs, but showed that the results were not sensitive to the abundance threshold used for inclusion.

An attractive feature of the dependent model is that it allows predictions at arbitrary covariate levels, not just those values that were present in the data. This allows inferences to be made across the full range of covariate values (and, with care, possibly beyond the range of covariate values actually sampled). This is a particularly useful consideration in several situations, for instance where experimental data are sparse, such as in polar applications that involve costly and logistically difficult fieldwork, or in situations in which a critical contaminant level lies in-between two tested TPH levels (as with the calculation of EC x values demonstrated here). However, extra care should be taken with the interpretation of estimates that lie between sampled values since they are typically driven by the assumptions on the model (e.g. smoothness constraints) rather than by the data.

In [START_REF] Holmes | Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics[END_REF], the total number of species is assumed to be known. In this case, the observational model is equivalent to the multinomial model at the species level. This assumption is a limitation of that model specification, in the sense that incorrect assumptions for the total number of species might alter the resultant estimations. This limitation is overcome by the nonparametric structure of the Dep-GEM model.

There are many ways in which this work can be extended. Additional factors to TPH which include other types of environmental factors about soil composition, geographical factors, etc, could be utilised in the model. This extension to multiple covariates would be more demanding to fit numerically, although with little additional coding cost. This would allow interactions between predictor variables to be specified a priori by the covariance structure of the Gaussian processes. The model could also handle categorical covariates (as well as a mix of continuous and categorical) by using a latent continuous variable (say a normal) for each of them, and then using for example its sign in the case of a binary variable.

This study brings some new elements to the understanding of the effects of contaminants on ecosystems. The grouping is a valuable information for knowing which OTUs are to be studied for deriving environmental quality guidelines, while the EC 50 and EC 20 estimates allow fixing thresholds in these guidelines.

The sensitivity and specificity of all methods was generally higher when weighted by OTU abundance (rather than simply calculated on the number of OTUs correctly classified). This suggests that high-abundance OTUs were typically deemed to have a response that matched the expected behaviour. This may be because the higher-abundance OTUs are better modelled by these methods, and so their response is more likely to be correctly characterized. Alternatively, low-abundance OTUs may simply not express the response type that might be expected for their genus. OTUs from a hydrocarbon-degrading genus, if present only in low numbers, might not tend to increase in response to the presence of hydrocarbons because they are out-competed by other, more abundant hydrocarbon-degrading bacteria.

All methods showed generally low values of sensitivity (i.e. not all OTUs from hydrocarbondegrading genera actually showed increasing responses to contamination). This is consistent with the nature of the list of hydrocarbon-degrading bacteria, which was drawn from a diverse range of studies covering many ecosystem types. Particular species found to be associated with hydrocarbon-degradation in those studies might not match the species within the same genera found in our samples.

Several OTUs were consistently classified as increasing with hydrocarbon contamination, yet did not appear on the list of known hydrocarbon-degrading genera. These were from the genera Methyloversatilis (order Rhodocyclales), Propionicimonas (order Actinomycetales), and Simplicispira (order Burkholderiales). However, other species from these genera are known hydrocarbon-degraders [START_REF] Prince | Handbook of Hydrocarbon and Lipid Microbiology, chapter Prokaryotic Hydrocarbon Degraders[END_REF]. It is thus possible that the OTUs in our study observed to increase with TPH also possess the genes for metabolic utilisation of the various compounds in the fuel [START_REF] Cooksey | Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato[END_REF][START_REF] Dressler | Determinants encoding resistance to sevral heavy metals in newly isolated copper-resistant bacteria[END_REF][START_REF] Cho | Antimicrobial activity of 4-hydroxybenzoic acid and trans 4-hydroxycinnamic acid isolated and identified from rice hull[END_REF].

Diversity of microbial communities, although not strongly affected, was reduced in response to fuel contamination. The EC 25 value of 3 125 mg TPH/kg soil estimated in this study indicates that relatively small concentrations of hydrocarbons can elicit an effect on the microbial community. Few other point estimates of fuel toxicity are available for Antarctic soil biota. Our results here for microbial diversity are higher than those of [START_REF] Schafer | Influence of liquid water and soil temperature on petroleum hydrocarbon toxicity in Antarctic soil[END_REF] who reported EC 25 values for microbial community composition and microbial biomass of 800 and 2 400 mg TPH/kg soil, respectively. [START_REF] Harvey | Validating potential toxicity assays to assess petroleum hydrocarbon toxicity in polar soil[END_REF] using nitrification rates as a surrogate for microbial activity, reported EC 25 values of 200 and 400 mg/kg for potential nitrification activity and gross nitrification, respectively. However, all of these microbial endpoints (including the results from the present study) are lower than the findings of [START_REF] Nydahl | Sensitivity and response of antarctic moss and terrestrial algae to fuel contamination[END_REF] who investigated the response of several Antarctic moss species and a terrestrial alga from Casey Station to soil artificially contaminated with fuel. All species were relatively insensitive to fuel contamination with reduced photosynthetic efficiency observed at concentrations ≥ 25 500 mg TPH/kg soil. Inhibitory concentrations (IC) were calculated, and IC 10 and IC 20 estimates ranged from 21 300 to 61 500 mg TPH/kg soil. Hence microbial processes and community structure and function appear to be more sensitive indicators of fuel contamination than are the responses of plants in single species tests. Further work is required using other Antarctic biota including plants and micro-invertebrates to assess whether this truly represents an increased sensitivity of microbial species compared to higher taxa.

Degradation of the hydrocarbon present in the soils and survivability of bacteria is a possible explanation for the community profile shifts observed in the data that was examined. However, there are a number of other reasons why the microbes may respond to an exogenous toxicant. Microbial communities are complex and many dependencies and competitive relationships exist [START_REF] Hosni | Sharing of quorumsensing signals and role of interspecies communities in a bacterial plant disease[END_REF][START_REF] Stewart | Growing unculturable bacteria[END_REF]. The restriction of the dominance of abundant taxa can significantly alter the impact on other bacteria. For example, if a dominant species is significantly impacted by the presence of a toxic hydrocarbon, then other species will have the opportunity to thrive and increase abundance, provided they are tolerant of or resistant to the compound. Additionally, the removal of a bacterial species from a community may limit the quantity of secondary metabolites available to a dependent sym-biont species that subsequently diminishes in abundance due to this indirect effect of the toxicant [START_REF] Epstein | General Model of Microbial Uncultivability[END_REF][START_REF] Lewis | Uncultured microorganisms as a source of secondary metabolites[END_REF]. These effects can at first have a positive impact of community measures such as species richness at low TPH levels, but will always impact negatively as levels rise.

The list of known hydrocarbon-degrading bacteria used here is certainly incomplete. The vast majority of bacteria are unable to be cultured in vitro [START_REF] Ferrari | Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria[END_REF]. In addition to the well-characterised species that degrade hydrocarbons, there are a large range of taxa from extreme environments, such as Antarctica, that are yet to be cultured [START_REF] Lee | Polar and Alpine Microbial Collection (PAMC): a culture collection dedicated to polar and alpine microorganisms[END_REF].

It is highly likely that, given the range of compounds in TPH and the richness of species in the samples examined, there are many more species capable of degradation. Here, the analysis was limited to those taxa that were able to be classified to genus level. However, it is common knowledge that bacterial taxonomy is far behind the rest of the field and many thousands of taxa isolated through molecular surveys remain unclassified [START_REF] Mcdonald | An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea[END_REF][START_REF] Werner | Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys[END_REF][START_REF] Winsley | Capturing greater 16S rRNA gene sequence diversity within the Bacteria domain[END_REF]. If a taxonomy was provided for all OTUs, it is likely that the confidence in this method will increase further as more taxa can be analysed, making the testing more robust.

Overall, this paper presents a novel modelling method for deriving point estimate concentrations in toxicological studies. It is unique in its approach and its ability to work with multiple species and large data sets to produce toxicity estimates which reduce complex multispecies responses to a single sensitivity value that represents the response of the community.

The model is broadly applicable to other complex datasets with similar data structure and inferential requirements on the response of communities to environmental parameters and stressors.
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Figure 1 :

 1 Figure 1: Proportions p j sampled from the Griffiths-Engen-McCloskey distribution. From left to right: precision parameter M = 5, 10, 20 (different y-axis scaling). The x-axis represents the species index j = 1, 2, . . .. The diversity of the sample increases as the precision parameter M increases (left to right). Large values of M tend to give more uniformly distributed probability values.

Figure 2 :

 2 Figure 2: Prior expectation of the Shannon diversity index under GEM distribution. The x-axis represents the precision parameter M .

Figure 3 :

 3 Figure 3: Diversity estimation results. (a) Dep-GEM model estimates (50 000 MCMC samples). Thick line: Shannon diversity estimate. Dashed lines: credible interval for the diversity index. Dots: Shannon diversity index in raw data. (b) GEM model estimates (50 000 MCMC samples). Triangles: posterior mean estimate of the Shannon diversity index.
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 1 Figure 4: Dissimilarity and EC x estimation results. (a) Posterior distribution (Dep-GEM model) of the dissimilarity between the control community (TPH equals zero) and other sites (color dots show the TPH levels actually present in the data). The thick line shows the mean estimate, including TPH values in between those actually observed. The dashed lines give 95% credible intervals of the dissimilarity estimate. (b) Illustration of estimation of EC x values and credible intervals.

Figure 5 :

 5 Figure 5: Estimation of the Dep-GEM model on the three response groups (50 000 MCMC samples). (Left) Diversity estimation results. Thick line: Shannon diversity estimate. Dashed lines: credible interval for the diversity index. Dots: Shannon diversity index in raw data. (Right) Bray-Curtis dissimilarity index and credible intervals. (Top) probability decreasing with TPH, (Middle) probability increasing with TPH, (Bottom) group with no clear pattern (see Section 3).

Figure 6 : 1 :

 61 Figure 6: Sensitivity analysis for Dep-GEM model estimates (50 000 MCMC samples). (Left) Diversity estimation results. Thick line: Shannon diversity estimate. Dashed lines: credible interval for the diversity index. Dots: Shannon diversity index in raw data. (Right) Illustration of estimation of EC x values and credible intervals based on the Bray-Curtis dissimilarity index. (Top) data D 1 , (Middle) data D 2 , (Bottom) data D 3 (see Section 3).
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