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Abstract

We present a space–time model of the collision of two homoge-
neous, plane impulsive gravitational waves (each having a delta func-
tion profile) propagating in a vacuum before collision and for which
the post collision space–time has constant curvature. The profiles of
the incoming waves are k δ(u) and l δ(v) where k, l are real constants
and u = 0, v = 0 are intersecting null hypersurfaces. The cosmological
constant Λ in the post collision region of the space–time is given by
Λ = −6 k l.
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1 Introduction

Finding the space–time structure after the collision of gravitational and/or
electromagnetic waves is a difficult problem in general relativity due to the
non–linearity of the field equations. The problem is simplified by specialising
to impulsive and/or shock waves which are plane and homogeneous and then
exact solutions can be found, with the Khan–Penrose [1] and Bell–Szekeres
[2] solutions among the most famous. Up to now no solution where a cos-
mological constant appears after the collision of two homogeneous, plane,
impulsive gravitational waves has yet been found. This paper provides such
an exact solution.

Impulsive light–like signals, i.e. signals travelling with the speed of light
and having a delta function profile, are idealised models of more realistic
light–like signals having a profile with a finite width such as, for instance,
a burst of light–like matter or of radiation. In some situations they may
provide solvable models to describe their interactions and are sometimes
used as classical models of quantum phenomena. In black hole physics one
has the examples of mass inflation [3], the limiting curvature principle [4],
Hawking radiation and quantum fluctuations [5] and internal structure of a
Schwarzschild black hole [6], [7]. In general relativity an impulsive light–like
signal exists whenever the Riemann curvature tensor of the space–time man-
ifold exhibits a delta function term with support on a null hypersurface, with
the latter representing the space–time history of the signal and across which
the first derivatives of the metric tensor are discontinuous. This signal can
be a thin shell of light–like matter, or an impulsive gravitational wave or a
mixture of both [8]. Recently the cosmological constant has received much
attention in connection with a possible description of dark energy. Such ex-
otic matter is described by a perfect fluid with an equation of state for which
the sum of the energy density and isotropic pressure vanishes. In this paper
we examine the possibility that the collision of two impulsive gravitational
waves will produce such exotic matter by adopting a mathematical point of
view, i.e. by solving Einstein’s field equations with appropriate boundary
conditions. No attempt is made to propose a physical mechanism.

For most of the known wave collision models in general relativity the same
field equations apply before and after the collision. However the choice of
field equations before collision does not determine the choice of field equations
after collision. This freedom offers an opportunity to explore new and po-
tentially interesting models. The well known space–time model of a head–on
collision of two homogeneous, plane impulsive gravitational waves, travel-
ling in a vacuum, involves the assumption that the post collision region of
space–time is a vacuum space–time. With this assumption the post collision
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region is described by the Khan–Penrose [1] solution of Einstein’s vacuum
field equations (for a derivation see [9]). We demonstrate here that if the post
collision region of space–time is assumed to be a solution of Einstein’s field
equations with a cosmological constant then an exact solution of these field
equations can be found satisfying the same conditions on the null hypersur-
face boundaries of the post collision region as the Khan–Penrose solution. In
addition the cosmological constant can be expressed simply in terms of two
parameters which label each of the incoming waves. The post collision region
is a space–time of constant curvature and is thus curvature singularity–free,
in contrast to the Khan–Penrose model. The solution derived here is not
an extension of the Khan–Penrose solution since it has the property that if
the cosmological constant vanishes then at least one of the incoming waves
vanishes. The post collision model presented here can be explained in terms
of a redistribution of the energy in the incoming waves and this is described
in some detail.

In section 2 the incoming plane, impulsive gravitational waves propagat-
ing through a vacuum are introduced, the collision problem is specified (as a
light–like boundary value problem) and the solution of Einstein’s field equa-
tions with a cosmological constant in the post collision region is given. This
is followed in section 3 by a detailed study of the physical properties of the
products of the collision which, in addition to a cosmological constant, in-
clude impulsive gravitational waves (as in the Khan–Penrose collision) and
light–like shells of matter. When reasonable physical restrictions are invoked
the post collision region of space–time is anti– de Sitter space–time in this
case.

2 Colliding Waves

A plane, homogeneous gravitational impulse wave propagating in a vacuum
is described in general relativity by a space–time with line element

ds2 = −(1 + k u+)2dx2 − (1− k u+)2dy2 + 2 du dv , (2.1)

where k is a constant (introduced for convenience) and u+ = uϑ(u) where
ϑ(u) = 1 for u > 0 and ϑ(u) = 0 for u < 0 is the Heaviside step function. The
metric given via this line element satisfies Einstein’s vacuum field equations
everywhere (in particular on u = 0). The only non–vanishing Newman–
Penrose component of the Riemann curvature tensor on the tetrad given via
the 1–forms ϑ1 = (1 + k u+)dx , ϑ2 = (1− k u+)dy , ϑ3 = dv , ϑ4 = du is

Ψ4 = −k δ(u) . (2.2)
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Thus the curvature tensor is type N (the radiative type) in the Petrov clas-
sification with the vector field ∂/∂v the degenerate principal null direction
and therefore the propagation direction of the history of the wave (the null
hypersurface u = 0) in space–time. The wave profile is the delta function,
singular on u = 0, and thus the wave is an impulsive wave. There are two
families of intersecting null hypersurfaces u = constant and v = constant
in the space–time with line element (2.1). A homogeneous, plane impulsive
gravitational wave propagating in a vacuum in the opposite direction to that
with history u = 0 has history v = 0 and this is described by a space–time
with line element

ds2 = −(1 + l v+)2dx2 − (1− l v+)2dy2 + 2 du dv , (2.3)

where l is a convenient constant and v+ = v ϑ(v). The Ricci tensor vanishes
everywhere when calculated with the metric tensor given by this line ele-
ment. The only non–vanishing Newman–Penrose component of the Riemann
curvature tensor on the tetrad given via the 1–forms ϑ1 = (1+ l v+)dx , ϑ2 =
(1− l v+)dy , ϑ3 = dv , ϑ4 = du is

Ψ0 = −l δ(v) , (2.4)

indicating a Petrov type N curvature tensor with degenerate principal null
direction ∂/∂u.

For the collision problem we envisage a pre–collision vacuum region of
space–time v < 0 with line element (2.1) and a pre–collision vacuum region of
space–time u < 0 with line element (2.3) (with both line elements coinciding
when v < 0 and u < 0). The waves collide at u = v = 0 and the post
collision region of the space–time corresponds to u > 0 and v > 0. In this
region the line element has the form ([1], [10], [11])

ds2 = −e−U(eV dx2 + e−V dy2) + 2 e−Mdu dv , (2.5)

where U, V,M are each functions of u, v. These functions must satisfy the
following conditions on the null hypersurface boundaries of the region u >
0 , v > 0:

v = 0 , u ≥ 0 ⇒ e−U = 1− k2u2 , eV =
1 + k u

1− k u
, M = 0 , (2.6)

and

u = 0 , v ≥ 0 ⇒ e−U = 1− l2v2 , eV =
1 + l v

1− l v
, M = 0 . (2.7)
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Einstein’s field equations with a cosmological constant Λ in the region u >
0, v > 0 calculated with the metric tensor given by the line element (2.5)
read:

Uuv = Uu Uv − Λ e−M , (2.8)

2Vuv = Uu Vv + Uv Vu , (2.9)

2Uuu = U2
u + V 2

u − 2Mu Uu , (2.10)

2Uvv = U2
v + V 2

v − 2Mv Uv , (2.11)

2Muv = Vu Vv − Uu Uv , (2.12)

where the subscripts denote partial derivatives. To implement our strategy
below for solving (2.8)–(2.12) subject to the boundary conditions (2.6) and
(2.7) we will need to know Vv at v = 0, which we denote by (Vv)v=0, and Vu

at u = 0, which we denote by (Vu)u=0. We already have from (2.6) and (2.7):

(Vu)v=0 =
2 k

1− k2u2
and (Vv)u=0 =

2 l

1− l2v2
, (2.13)

and also

(Uu)v=0 =
2 k2u

1− k2u2
and (Uv)u=0 =

2 l2v

1− l2v2
. (2.14)

In order to compute (Vv)v=0 and (Vu)u=0 we must first calculate (Uv)v=0 and
(Uu)u=0. We obtain these latter quantities by evaluating (2.8) at u = 0 and
at v = 0 and solving the resulting first order ordinary differential equations.
The constants of integration which arise are determined from the fact that
Uv and Uu both vanish when u = 0 and v = 0, which follows from (2.14).
We then find that

(Uv)v=0 = −
Λu (1− 1

3
k2u2)

1− k2u2
and (Uu)u=0 = −

Λ v (1− 1
3
l2v2)

1− l2v2
. (2.15)

Now evaluating (2.9) at v = 0 and at u = 0 provides us with a pair of first
order ordinary differential equations for (Vv)v=0 and (Vu)u=0. These equations
are straightforward to solve and the resulting constants of integration are
determined from the fact that Vu = 2 k and Vv = 2 l when u = 0 and v = 0,
which follows from (2.13). The final results are:

(Vv)v=0 =
(

2 l +
Λ

3 k

)
(1− k2u2)−1/2 − Λ

3 k

(
1 + k2u2

1− k2u2

)
, (2.16)

(Vu)u=0 =
(

2 k +
Λ

3 l

)
(1− l2v2)−1/2 − Λ

3 l

(
1 + l2v2

1− l2v2

)
. (2.17)
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Dividing (2.9) successively by Vu and by Vv and then differentiating the
resulting equations and combining them we obtain

2
∂2

∂u∂v
log

Vu

Vv

=
(
Uu

Vv

Vu

)
u

−
(
Uv

Vu

Vv

)
v

. (2.18)

This suggests that we examine the possibility of a separation of variables:

Vu

Vv

=
A(u)

B(v)
, (2.19)

for some functions A(u) and B(v). The resulting mathematical simplification
is that (2.19) becomes a first order wave equation for V (see below) and that
(2.18) becomes a second order wave equation for U . From a physical point
of view we have shown [8] that if, as is the case in general, two systems of
backscattered gravitational waves exist in the post collision region (one with
propagation direction ∂/∂u in space–time and one with propagation direction
∂/∂v) then (2.19) implies that there exists a frame of reference in which the
energy densities of the two systems of waves are equal. Using (2.13), (2.16)
and (2.17) determines the right hand side of (2.19) and the result is

Vu

Vv

=
k
[(

1 + Λ
6 k l

)√
1− l2v2 − Λ

6 k l
(1 + l2v2)

]
l
[(

1 + Λ
6 k l

)√
1− k2u2 − Λ

6 k l
(1 + k2u2)

] . (2.20)

Hence this equation can be written as a first order wave equation

Vū = Vv̄ , (2.21)

with ū(u) and v̄(v) given by the differential equations

dū

du
= k

[(
1 +

Λ

6 k l

)√
1− k2u2 − Λ

6 k l
(1 + k2u2)

]−1

, (2.22)

dv̄

dv
= l

[(
1 +

Λ

6 k l

)√
1− l2v2 − Λ

6 k l
(1 + l2v2)

]−1

. (2.23)

These two equations are interesting in general but we shall concentrate in
this paper on two stand–out special cases: Λ = 0 and Λ = −6 k l. The
case Λ = 0 is shown in the Appendix to correspond to the Khan–Penrose [1]
space–time.

With Λ = −6 k l we can solve (2.22) and (2.23), requiring ū = 0 when
u = 0 and v̄ = 0 when v = 0, with

ū = tan−1 k u , v̄ = tan−1 l v . (2.24)
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By (2.21) we have V = V (ū + v̄) and the boundary condition (2.6) written

in terms of ū, v̄ reads: when v̄ = 0, V = log
(

1+tan ū
1−tan ū

)
. Hence

V (ū+ v̄) = log

(
1 + tan(ū+ v̄)

1− tan(ū+ v̄)

)
, (2.25)

and restoring the coordinates u, v we have

V (u, v) = log

(
1− k l u v + k u+ l v

1− k l u v − k u− l v

)
, (2.26)

for u ≥ 0, v ≥ 0 provided Λ = −6 k l. Next writing (2.9) in terms of the
variables ū, v̄ and using (2.21) and (2.25) we have

Uū + Uv̄ =
8 tan(ū+ v̄)

1− tan2(ū+ v̄)
, (2.27)

which is easily integrated to yield

e−U = C(ū− v̄)

(
1− tan2(ū+ v̄)

1 + tan2(ū+ v̄)

)
, (2.28)

where C(ū − v̄) is a function of integration. When v̄ = 0 the boundary
condition (2.6) requires e−U = 1 − tan2 ū and so C(ū) = 1 + tan2 ū. Hence
restoring the coordinates u, v we have U(u, v) given by

e−U =
(1− k l u v)2 − (k u+ l v)2

(1 + k l u v)2
, (2.29)

for u ≥ 0, v ≥ 0. In the light of (2.28) we see that U is a linear combination
of a function of ū − v̄ and a function of ū + v̄ and thus satisfies the second
order wave equation Uūū = Uv̄v̄. This wave equation is the equation that
(2.18) reduces to when (2.21) holds and the barred coordinates are used.

With V (u, v) and U(u, v) given by (2.26) and (2.29) we use the field
equation (2.8) with Λ = −6 k l to calculate M(u, v). The result is

M(u, v) = 2 log(1 + k l uv) , (2.30)

and this clearly satisfies the boundary conditions (2.6) and (2.7). Now with
V, U and M determined a lengthy calculation verifies that the remaining field
equations (2.10)–(2.12) are automatically satisfied. Thus the line element
(2.5) of the post collision region reads

ds2 =
−(1− k l u v + k u+ l v)2dx2 − (1− k l u v − k u− l v)2dy2 + 2 du dv

(1 + k l u v)2
.

(2.31)
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If in the metric tensor components here we replace u, v by u+ = uϑ(u), v+ =
v ϑ(v) we obtain in a single line element the expressions (2.1) and (2.3) for
the pre–collision regions and (2.31) for the post collision region. In particular
this will enable us to calculate the physical properties of the boundaries
v = 0 , u ≥ 0 and u = 0 , v ≥ 0 of the post collision region.

3 Post Collision Physical Properties

With our sign conventions, choice of units for which c = G = 1, and energy–
momentum–stress tensor Tab, Einstein’s field equations with a cosmological
constant Λ read

Rab = Λ gab − 8π(Tab −
1

2
T c

c gab) . (3.1)

Also for a perfect fluid with proper density ρ and isotropic pressure p we
have

Tab = (ρ+ p)ua ub − p gab , (3.2)

where ua, satisfying ua u
a = 1, is the 4–velocity of a fluid particle. We

note that for the exotic matter mentioned in section 1, ρ + p = 0 and thus
Tab = ρ gab and, with our sign conventions, Einstein’s field equations with this
energy–momentum–stress tensor are equivalent to the field equations with a
cosmological constant Λ = 8πρ.

On the half null tetrad ϑ1 = e−
1
2

(U−V )dx , ϑ2 = e−
1
2

(U+V )dy , ϑ3 =
e−

1
2
Mdv , ϑ4 = e−

1
2
Mdu with V, U,M given by (2.26), (2.29) and (2.30) with

u, v replaced by u+, v+ the Ricci tensor components of the space–time are
given by

Rab = −6 k l ϑ(u)ϑ(v) gab +
2 k l u+(k2u2

+ − 3)

1− k2u2
+

δ(v) δ3
aδ

3
b

+
2 k l v+(l2v2

+ − 3)

1− l2v2
+

δ(u) δ4
aδ

4
b . (3.3)

This confirms that the space–time region u > 0, v > 0 is a solution of the
field equations with a cosmological constant, Rab = Λ gab, with Λ = −6 k l
and that there are light–like shells with the boundaries v = 0, u ≥ 0 and
u = 0, v ≥ 0 as histories, corresponding to the delta function terms in (3.3).
Here gab are the (constant) metric tensor components on the half null tetrad
given via the basis 1–forms {ϑa}. The light–like shells have no isotropic
surface pressure [12] and the surface energy densities are µ(1) and µ(2) given
by

8 π µ(1) =
Λu

3

(
k2u2 − 3

1− k2u2

)
on v = 0 , u ≥ 0 , (3.4)

8



and

8 π µ(2) =
Λ v

3

(
l2v2 − 3

1− l2v2

)
on u = 0 , v ≥ 0 . (3.5)

The light–like shells must have positive surface energy densities. The only
way to realise this on v = 0, u ≥ 0 (respectively on u = 0, v ≥ 0) is to
have kl > 0 and k2u2 < 1 (respectively kl > 0 and l2v2 < 1). Thus the
cosmological constant Λ = −6 k l must be negative. These restrictions on
the coordinates are less restrictive than the condition k2u2 + l2v2 < 1 for
u ≥ 0 and v ≥ 0 required in the Khan–Penrose post collision space–time
on account of the presence of the curvature singularity. These restrictions
on the coordinates also avoid infinite surface energy densities in the shells
which are arguably as serious as a curvature singularity. Light–like shells did
not appear in the Khan–Penrose model and their presence here is due to the
non–zero cosmological constant.

This result implies that the energy density of the exotic matter is nega-
tive and that consequently only the so–called strong energy condition [13],
namely, ρ+ p ≥ 0 and ρ+ 3 p ≥ 0, can be satisfied.

The Newman–Penrose components of the Weyl conformal curvature ten-
sor are given by

Ψ0 = −
l(1 + k2u2

+)

1− k2u2
+

δ(v) , Ψ4 = −
k(1 + l2v2

+)

1− l2v2
+

δ(u) , Ψ1 = Ψ2 = Ψ3 = 0 .

(3.6)
Thus the boundaries v = 0, 0 ≤ k2u2 < 1 and u = 0, 0 ≤ l2v2 < 1 are the
histories of impulsive gravitational waves corresponding to the delta function
terms here. The post collision region u > 0, v > 0 is conformally flat and is a
space–time of constant curvature with Riemann curvature tensor components
given by

Rabcd = −2 k l(gad gbc − gac gbd) . (3.7)

Hence this region of space–time does not possess a curvature singularity, in
striking contrast to the post collision region of the Khan–Penrose space–time.

4 Summary

We can briefly summarise our results as follows: for this model collision the
energy in the incoming impulsive gravitational waves is re-distributed after
the collision into two light–like shells of matter and two impulsive gravi-
tational waves moving away from each other followed by a space–time of
constant curvature. When the surface energy densities of the post collision
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light–like shells of matter are required to be positive the space–time of con-
stant curvature must be anti de Sitter space–time.
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A The case Λ = 0

With Λ = 0 we can solve (2.22) and (2.23), requiring ū = 0 when u = 0 and
v̄ = 0 when v = 0, with

ū = sin−1 k u , v̄ = sin−1 l v . (A.1)
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By (2.21) we have V = V (ū + v̄) and the boundary condition (2.6) written

in terms of ū, v̄ reads: when v̄ = 0, V = log
(

1+sin ū
1−sin ū

)
. Hence

V (ū+ v̄) = log

(
1 + sin(ū+ v̄)

1− sin(ū+ v̄)

)
= log

[(
cos ū+ sin v̄

cos ū− sin v̄

)(
cos v̄ + sin ū

cos v̄ − sin ū

)]
.

(A.2)
Restoring the coordinates u, v we have

V (u, v) = log

[(√
1− k2u2 + l v√
1− k2u2 − l v

)(√
1− l2v2 + k u√
1− l2v2 − k u

)]
, (A.3)

for u ≥ 0, v ≥ 0 provided Λ = 0. Writing (2.9) in terms of the variables ū, v̄
and using (2.21) and (A.2) we have

Uū + Uv̄ = 2 tan(ū+ v̄) . (A.4)

Integrating this results in

e−U = D(ū− v̄) cos(ū+ v̄) , (A.5)

where D(ū − v̄) is a function of integration. With v̄ = 0 the boundary
condition (2.6) requires e−U = cos2 ū and so D(ū) = cos ū. Restoring the
coordinates u, v we have U(u, v) given by

e−U = cos(ū− v̄) cos(ū+ v̄) = 1− k2u2 − l2v2 . (A.6)

Now (2.8) with Λ = 0 is automatically satisfied. Combining (2.8) with Λ = 0
and (2.12) we have

(2M + U)uv = Vu Vv . (A.7)

Changing the independent variables u, v to ū, v̄ using (A.1), and using (A.2),
this reads

(2M + U)ūv̄ = 4 sec2(ū+ v̄) . (A.8)

Integrating and using (A.6) we arrive at

e−2 M =
cos3(ū+ v̄)

cos(ū− v̄)
f(ū) g(v̄) , (A.9)

where f(ū) and g(v̄) are functions of integration. From the boundary condi-
tions (2.6) and (2.7) we see that M = 0 when v̄ = 0 and M = 0 when ū = 0
and so it follows that f(ū) g(v̄) = sec2 ū sec2 v̄. Hence

e−M =

√√√√cos3(ū+ v̄)

cos(ū− v̄)
sec ū sec v̄ . (A.10)
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Restoring the coordinates u, v and simplifying this becomes

e−M =
(1− k2u2 − l2v2)3/2

(
√

1− k2u2
√

1− l2v2 + k l u v)2
√

1− k2u2
√

1− l2v2
, (A.11)

for u ≥ 0, u ≥ 0 when Λ = 0. Substituting (A.3), (A.6) and (A.11) into
the field equations (2.10) and (2.11) verifies that these latter equations are
automatically satisfied. The line element (2.5) with V, U and M given by
(A.3), (A.6) and (A.11) is the Khan–Penrose post collision line element. No
derivation is given in [1].
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