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INTRODUCTION

The simulation of water flows with a free water surface is inherently a multiphysics problem, as the surface deformation through waves interacts with the viscous, turbulent flow below the surface. In a flow solver, a model for the water surface position has to be added to the standard Navier-Stokes equations. In general, this is a convection equation for either the volume fraction of water (VoF methods) or for a smooth distance function to the surface (level set methods). Accurate simulation of water flow requires a good resolution of this additional model, as well as the flow equations, on the same grid. Thus, adaptive grid refinement applied to water flows must take into account both these models. And therefore, refinement criteria that are a combination of different sensors are essential.

An adaptive grid refinement method has been developed [START_REF] Wackers | Adaptive grid refinement for ship flow computation[END_REF][START_REF] Wackers | Adaptive grid refinement applied to RANS ship flow computation[END_REF] for ISIS-CFD, the unstructured Reynolds-averaged Navier-Stokes solver developed by the Numerical Modelling group of LMF. This commercialised flow solver is aimed at the simulation of realistic flow problems in all branches of marine hydrodynamics. The method is therefore developed to be general and flexible, featuring anisotropic refinement on unstructured hexahedral grids, derefinement of previous refinements to enable unsteady flow computation, and full parallelisation including integrated dynamic load balancing. The anisotropic refinement is metric-based. Thus, the refinement criteria are 3 ×3 symmetric tensors in each cell, which indicate the local desired cell size in all directions. This formulation allows the straightforward implementation of highly differing refinement criteria. The refinement method has already been succesfully applied to different test cases in marine flow simulation [START_REF] Wackers | Adaptive grid refinement applied to RANS ship flow computation[END_REF].

The focus of this paper is on the development of combined refinement criteria in the metric-based context. We discuss how multiple refinement criteria can be combined into one, how the different criteria should be weighted to achieve good accuracy in all equations, and which features are relevant as refinement criteria for hydrodynamic flows. Section 2 introduces the flow solver and the meshes used, section 3 gives an overview of the anisotropic mesh refinement method. Then section 4 discusses the necessity of combined criteria for flows with a free water surface. Section 5 shows the construction of a criterion that combines directional refinement at the free water surface with a pressure Hessian criterion. Two test cases in section 6 indicate that the criterion generates effective meshes for two-and three-dimensional free surface flows.

FINITE-VOLUME METHOD

The grid refinement is applied to a finite-volume method on unstructured grids, with a surface-capturing discretisation of the water surface, as implemented in the flow solver ISIS-CFD developed by the Numerical Modelling Group at LMF. This section describes the governing flow equations, the finite-volume discretisation and the type of meshes used, concentrating on those aspects that are most important for grid refinement and the construction of refinement criteria. Full details of the discretisation can be found in [START_REF] Queutey | An interface capturing method for free-surface hydrodynamic flows[END_REF].

Governing equations

The ISIS-CFD flow solver resolves the incompressible Unsteady Reynolds-Averaged Navier Stokes equations in a two-fluid formulation. The conservation laws for momentum, total mass, and mass of each fluid, are written as follows:

∂ ∂t V ρU i dV + S ρU i -→ U • -→ n dS = S (τ ij I j -pI i ) • -→ n dS + V ρg i dV, (1) 
S -→ U • -→ n dS = 0, (2) 
∂ ∂t V c i dV + S c i -→ U • -→ n dS = 0, ( 3 
)
where V is a volume, bounded by the closed surface S with a unit normal vector -→ n directed outward.

-→ U and p represent, respectively, the velocity and pressure fields. τ ij and g i are the components of the viscous stress tensor and the gravity vector, whereas I j is a vector whose components are zero, except for the component j which is equal to unity. c i is the i th volume fraction for fluid i and is used to distinguish the presence (c i = 1) or the absence (c i = 0) of fluid i. In the case of turbulent flows, additional transport equations for modelled variables are solved in a form similar to the momentum equations and they are discretized and solved using the same principles.

The effective flow physical properties (viscosity µ and density ρ) are obtained from the physical properties of the constituent fluids (µ i and ρ i ) with the following constitutive relations:

ρ = i c i ρ i , µ = i c i µ i , 1 = i c i . (4) 
Thus, for two fluids, equation ( 3) only has to be solved for fluid 1.

In this framework, free-surface water flows are modelled by specifying a discontinuous inflow condition for c i (c i = 1 below the surface and c i = 0 above it). As equation ( 3) is a pure convection equation, the resulting solution for c i is discontinuous in the whole domain. Thus, a sharp water surface is obtained without a specific model at the surface.

Discretisation and meshes

The flow equations of the previous subsection are discretised in a finite-volume framework. Pressure-velocity coupling is obtained through a Rhie & Chow SIMPLE-type method: in each time step, the velocity updates come from the momentum equations (1) and the pressure is given by the mass conservation law (2), transformed into a pressure equation. The water volume fraction c i comes from a discretisation of the linear convection equation (3), it is solved in each time step, decoupled from the pressure and velocity updates.

The discretisation is face-based. While all unknown state variables are cell-centered, the systems of equations used in the implicit time stepping procedure are constructed face by face. Fluxes are computed in a loop over the faces and the contribution of each face is then added to the two cells next to the face. This technique poses no specific requirements on the topology of the cells. Therefore, the grids can be completely unstructured, cells with an arbitrary number of arbitrarily-shaped faces are accepted.

For this study, unstructured hexahedral meshes are used (see figure 1). These meshes are generated with the HEXPRESS grid generator from NUMECA International. They offer the flexibility of an unstructured grid, yet have large regions where the mesh is structured. Variations in mesh size are handled by having small cells laying next to larger cells, a situation called 'hanging nodes' by other authors. In ISIS-CFD, due to the facebased algorithm, these cells are treated in exactly the same way as all the others: the larger cells are simply seen as cells with more than 6 faces.

Unstructure hexahedral grids are ideal for automatic grid refinement. Isotropic or anisotropic grid refinement can be applied to any of the hexahedral cells, the result will still be an unstructured hexahedral mesh. Therefore, locally refined meshes can be used directly in a flow solver that supports unstructured hexahedral meshes; no changes to the flow solver are needed to incorporate grid refinement. 

GRID REFINEMENT PROCEDURE

The grid refinement procedure developed for ISIS-CFD [START_REF] Wackers | Adaptive grid refinement for ship flow computation[END_REF][START_REF] Wackers | Adaptive grid refinement applied to RANS ship flow computation[END_REF] is integrated completely in the flow solver. The method is entirely parallelised, including automatic redistribution of the grid over the processors. During a flow computation, the refinement procedure is called repeatedly. In such a call, first the refinement criterion is calculated, then in a separate step of the procedure the grid is refined based on this criterion. For steady flow, the refinement procedure converges: once the grid is correctly refined according to the criterion, further calls to the procedure no longer cause any changes.

Anisotropic refinement

Anisotropic refinement is essential for our type of grid refinement. Isotropic refinement is very costly in three dimensions, since each refinement means a division in eight (for a hexahedron). Thus, creating very fine cells to accurately resolve a local flow phenomenon becomes almost impossible. However, by applying anisotropic refinement for flow features that need a fine grid in only one direction (notably, the water surface!), the total number of cells required can be greatly reduced or much finer flow details can be resolved.

Also, in unstructured hexahedral original grids, cells of completely different aspect ratios lie side by side (see figure 1). Therefore, when refining, we need to control the size of the fine cells in all their directions independently, otherwise refined grids may have smoothly varying sizes in one direction, but repeated changes from fine to coarse and back to fine in another. Isotropic refinement is not enough to prevent this. Therefore, directional refinement is the mandatory choice.

Tensor refinement criteria

For directional refinement, a way is needed to specify different cell sizes in different directions. The use of metric tensors as refinement criteria is such a way. This tech-nique was first developed for the generation and refinement of unstructured tetrahedral meshes [START_REF] Alauzet | High-order sonic boom modeling based on adaptive methods[END_REF][START_REF] George | Delaunay Triangulation and Meshing: Application to Finite Elements[END_REF]. It is also an extremely useful and flexible framework for the refinement of unstructured hexahedral meshes.

For tensor-based refinement, the refinement criterion in each cell is a 3 × 3 symmetric positive definite matrix C i . The refinement of the cells is decided as follows. Let the criterion tensors C i in each cell be known (they are computed from the flow solution, see section 5). In each hexahedral cell, the cell size vectors d j,i (j = 1, . . . , 3), which are the vectors between the opposing face centres in the three cell directions, are determined. Next, the modified sizes are computed as:

dj,i = C i d j,i . (5) 
Finally, a cell is refined in the direction j when the modified size exceeds a given, constant threshold value T r : dj,i ≥ T r .

The tensors C i are direct specifications of the desired cell sizes: in the refined grid, the cell sizes are inversely proportional to the magnitude of the C i .

THE NEED FOR COMBINED REFINEMENT CRITERIA

Water waves are usually generated by the pressure and velocity disturbances created when the water flow passes around a foreign body, either a stationary object or a floating body such as a ship. These disturbances are not only generated at the surface, but also well below it; even a fully submerged object may create waves (see for example section 6.1). Once the waves are created, they propagate through a cyclic exchange of potential (gravity) and kinetic energy. Water particles in a travelling wave field describe an orbital motion; the velocities associated with this motion cause the propagation of the wave energy. Thus, to correctly resolve the generation and the propagation of a travelling surface wave, a good resolution must be obtained for the pressure and velocity fields below the surface, as given by equations ( 1) and [START_REF] Wackers | Adaptive grid refinement applied to RANS ship flow computation[END_REF].

The accuracy of the volume fraction equation ( 3) is of prime importance as well. As the water surface is physically a discontinuity, the interface region for c i must be as sharp as possible. It can be shown [START_REF] Queutey | An interface capturing method for free-surface hydrodynamic flows[END_REF], that a diffused interface increases numerical damping, so a too coarse grid at the surface will damp out waves. In our experience, the grid at the surface needs to be about twice as fine as the grid used in the vicinity of the surface, in order to resolve correctly equation [START_REF] Queutey | An interface capturing method for free-surface hydrodynamic flows[END_REF].

Thus, to create suitable grids, a grid refinement criterion for water wave simulation must be based both on the pressure and velocity field and on the volume fraction. For these two, different indicators must be used. The reason for this, is that c i is discontinuous at the surface and constant everywhere else, while the pressure and the velocity are smooth in the whole flow field except at the surface. Therefore, gradient-or second-derivative based error indicators can be used to identify the regions of importance for the flow field below the surface, but any derivative-based indicator applied to c i would go to infinity when the grid is refined, thus causing infinite refinement unless the criterion is artificially limited. Also, grid misalignment must be avoided in the surface region, as it leads to large errors in the volume fraction. Therefore, the grid specified by the criterion must be as uniform as possible near the surface. Numerical evaluations of the derivatives of c i are never smooth, so they cannot guarantee uniform grid.

Therefore, a suitable refinement criterion for water flow with waves is an error indicator for the flow field and a simpler criterion for c i , combined into one.

PRESSURE HESSIAN -FREE SURFACE CRITERION

A possible criterion for the simulation of flow with waves is based on the Hessian matrix of second derivatives of the pressure, combined with a criterion that refines in the normal direction of the surface for those cells where c i is neither 0 nor 1.

Free-surface criterion

To resolve accurately the solution of equation ( 3), which is a discontinuity for c i that is convected with the flow, it is sufficient to refine the grid in the direction normal to the water surface. When the surface is locally aligned with the cell directions, anisotropic refinement can be used to keep the total number of cells as low as possible.

The free-surface criterion is therefore based on a vector, normal to the surface, with length 1. Thus, from equation ( 6) it follows that the threshold value T r directly indicates the desired cell size at the surface. The normal direction to the surface is computed from a c i field that is smoothed out by averaging over a cell and its neighbours, a given number of times. The gradient of this field gives the normal directions. The criterion vectors v i are then chosen as the unit vectors in this normal direction for those cells where the smoothed c i field is non-zero, and as zero everywhere else. Switching based on the smoothed field guarantees that the mesh is refined also next to the surface, to create a margin of safety.

In tensor form, the free-surface criterion is implemented as matrices having only one non-zero eigenvalue, associated with the direction of the vector. In the directions normal to the vector, the eigenvalues are zero, so the desired grid size is infinity. Thus, the grid is only refined in the direction of the vectors. The tensors C S,i are computed as follows (with ⊗ representing the tensor product):

C S,i = v i ⊗ v i . (7) 
The free-surface criterion has been used on its own, with good results, in our earlier work [START_REF] Wackers | Adaptive grid refinement for ship flow computation[END_REF][START_REF] Wackers | Adaptive grid refinement applied to RANS ship flow computation[END_REF].

Computing the Hessian

Hessian-based criteria are often used to control anisotropic grid refinement [START_REF] Alauzet | High-order sonic boom modeling based on adaptive methods[END_REF]. We base this criterion on the pressure as this variable is insensitive to boundary layers, where we consider that the original unrefined grid should be sufficiently fine to ensure the best grid quality.

H i =   (p i ) xx (p i ) xy (p i ) xz (p i ) xy (p i ) yy (p i ) yz (p i ) xz (p i ) yz (p i ) zz   . ( 8 
)
The Hessian matrix is usually computed by using the Gauss theorem for finding the gradients of the quantity, then applying the Gauss theorem again to the gradients in order to compute the second derivatives. Our meshes, however, always have places where the grid size changes abruptly, as small cells lie next to twice larger cells. In these locations, the Gauss method has an order of accuracy zero. Therefore, we compute the Hessian in each cell using a least-squares fit of a third-order polynomial to the solution in the cell, its neighbour cells and its neighbours' neighbours. There is no better third-order polynomial fit to these points, so the fit is fourth-order accurate. Therefore, its second derivatives are second order accurate, independent of the configuration of the neighbour cells.

To compute the refinement criterion, the Hessian is modified with a power law:

C H,i = (H i ) p , (9) 
where (H i ) p has the same eigenvectors as H i and eigenvalues that are those of H i (in absolute value) to the power p. In general, we use p = 1 2 .

Hessian at the free surface

The Hessian criterion cannot be directly evaluated at the free surface, because the the pressure gradient is proportional to the density ρ according to equation [START_REF] Wackers | Adaptive grid refinement for ship flow computation[END_REF]. Thus, in the water surface zone where c i goes from 0 to 1, the pressure gradient normal to the surface approaches a discontinuity as the grid becomes finer, while the second derivative normal to the surface approaches a Dirac δ function. The polynomial used for the least-squares fit cannot give a good approximation to the pressure field in this case.

To use the least-squares procedure around the surface, one could try to fit the polynomial to a modified pressure field whose first and second derivatives remain continuous even when the water surface approaches a discontinuity. Thus, all gradients due to non-equal densities in the cells should be removed from the pressure field in a cell and its neighbours. This implies finding locally a pressure field p * such that equation ( 1) is satisfied for the real velocities -→ U , but a constant density ρ. By dividing out ρ in the derivative form of equation ( 1), we find that p * must satisfy:

∇p * ρ = ∇p ρ . (10) 
This expression shows immediately that it is impossible to construct p * . Consider two coordinates -→ x 1 and -→ x 2 . Then

p * ( -→ x 2 ) -p * ( -→ x 1 ) = - → x 2 - → x 1 ∇p * • d -→ s = ρ - → x 2 - → x 1 ∇p ρ • d -→ s . (11) 
In general, ρ cannot be included in the gradient, so the integral depends on the path being followed. Thus, p * has no unique definition.

For the moment we consider that, while the Hessian computed from the real pressure field p has a peak at the surface, this peak is associated with an eigenvector normal to the surface. The pressure gradient parallel to the surface is approximately zero, so the second derivative parallel to the surface is close to zero as well. Therefore, we compute the Hessian at the surface from the original pressure, then we limit all eigenvalues of the matrix C i (equation ( 9)) to 1, divided by the desired cell size at the surface. The Hessian criterion then behaves like the free-surface criterion around the surface. We consider this a temporary solution and we hope to improve it later on.

The combined criterion

To create the criterion to be used, the two criteria above are combined. Even if the current implementation of the Hessian criterion has a behaviour similar to a free-surface criterion at the water surface, the real free-surface criterion is used as well because it guarantees that the grid at the surface is absolutely regular and that a safety zone of refined cells is generated around the surface.

The criteria are combined into one tensor criterion by taking a weighted maximum of the two tensors. We want T r to indicate directly the desired cell size (as for the free-surface criterion), so we apply a weighting factor c only to the Hessian criterion:

C C,i = max (C S,i , c C H,i ) . (12) 
The (approximate) maximum of the two tensors is computed using a procedure similar to the one in [START_REF] George | Delaunay Triangulation and Meshing: Application to Finite Elements[END_REF]. First, the eigenvalues and eigenvectors of the two tensors are computed. Then new eigenvalues are set for each tensor, as the maximum of the original eigenvalue and the length of the corresponding eigenvector when it is multiplied by the other tensor. This gives two approximations to the maximum tensor; the final tensor in each cell is a weighted average of these two.

6 TEST CASES

Immersed NACA0012 wing

The first test case is meant to evaluate the behaviour of the combined refinement criterion for a two-dimensional wave field. We study the influence of the ratio parameter c from equation 12. The case is the geometry studied by Duncan [START_REF] Duncan | The breaking and non-breaking wave resistance of a two-dimensional hydrofoil[END_REF], a wave train generated by an immersed NACA0012 profile of chord 0.203 m at 5 degrees angle of attack, with its centre point at 0.236 m below the surface. The inflow velocity is 0.8 m/s and Re = 1.42 • 10 5 . The problem geometry can be found in figure 2. Four simulations are performed, starting from an original mesh that has some refinement around the profile but none at the surface. For each simulation, the grid is refined around the free surface to a target size T r = 0.002m. Different values of c give different sizes of the grid below the surface. The grid for c = 0.001 is given in figure 2, it shows refinement around the profile (notably at the leading edge), in a specific region between the profile and the surface, and in the wave field. A zoom of the meshes around the first wave is given in figure 3; the first figure is the result with refinement around the surface only, the last figure with c = 0.004 has pressure-based refinement below the surface with the same size as the refinement specified by the free-surface criterion. Interestingly, while the refinement procedure is fully anisotropic, the pressure Hessian criterion creates only square cells below the waves. In figure 4, the position of the free surface is given for the four cases. The results on the three grids produced with the combined criterion are very similar. Thus, it is not necessary to refine the grid below the surface to the same size as the grid at the surface, twice and even four times coarser cells are acceptable. As the total number of cells increases strongly with the parameter c (table 1), this parameter should be kept low. 

Series 60 wave pattern

An initial computation is made of the flow around a Series 60 ship in still water at Froude number F r = 0.316 and Re = 5.3 • 10 6 . The computation is started from a coarse mesh that has no initial refinement at all around the free surface, it is used to show that a sensible refined mesh for free-surface ship flow can be obtained entirely with automatic grid refinement. The grid is obtained with a target cell size T r = 0.001L and a ratio c = 0.004, the original grid has 253k cells and the final grid 2.81M cells.

Four X cross-sections of the refined mesh can be seen in figure 5. The free-surface criterion applies directional refinement around the undisturbed surface; without this refinement, the interface would be dispersed in front of the ship, so accurate computations would be impossible. Refinement in all directions appears in the strongest waves. Pressure-based refinement is seen at the bow of the ship, below the hull at the stern, and below the waves. It is concentrated near the sharp peaks of the wave system. As for the Duncan test case, the refined cells below the waves are predominantly square.

The wave pattern, compared with experiments from IIHR [START_REF] Longo | Effects of drift angle on model ship flow[END_REF], is given in figure 6. The correspondance is good, comparable with the results obtained in [START_REF] Queutey | An interface capturing method for free-surface hydrodynamic flows[END_REF] on structured grids of 3.8M cells. Given the results of the Duncan test, a similar accuracy can probably be obtained with fewer cells if c is reduced. This is a subject for further study. 

CONCLUSION

It is shown that refinement criteria for water flow with a free surface must refine both around the surface, to resolve the convection equation for the volume fraction, and in the region below it in order to capture the orbital flow fields. Due to the discontinuous solution at the surface, different criteria must be used to control the refinement in these two regions. Tests show, that a criterion which combines refinement normal to the surface with Hessian-based refinement, can accurately resolve free-surface flows when starting from uniformly coarse original grids. Optimal results are obtained when the grid at the surface is two to four times finer than directly below it. 
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 1 Figure 1: Cut through an unstructured hexahedral mesh.
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 2 Figure 2: Refined mesh around the immersed profile for the Duncan case with c = 0.001.
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 3 Figure 3: Refined meshes at the first wave for the Duncan case with surface-only refinement c = 0.0 (a), with c = 0.001 (b), c = 0.002 (c), and c = 0.004 (d).
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 4 Figure 4: Duncan test case, free-surface positions of the four computations.
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 5 Figure 5: Series 60, cross-sections of the grid at X/L = 0.0 (a), at X/L = 0.4 (b), at X/L = 0.8 (c) and behind the ship at X/L = 1.2 (d).

Figure 6 :

 6 Figure 6: Wave pattern of Series 60, compared with experimental results from IIHR.

Table 1 :

 1 Number of cells in the refined meshes, Duncan test case.

	c	0	0.001 0.002 0.004
	cells 3539 10244 37035 189860