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Abstract 

Machining is a process implying extremely high coupled thermo-mechanical stresses. The 

workpiece mechanical properties decrease with the temperature generated during the process and 

that temperature has a direct influence on wear intensity undergone by the tool. In the case of a 

drilling operation, the temperature generated by the cutting process can lead to metal burr formation 

and/or composite matrix degradation by burning. When these two materials are used in the form of 

a sandwich-type stacking, the temperature attained in the metallic part can cause new defects such 

as: i) a difference between the diameters measured in each material and ii) organic matrix damages 

due to heat diffusion from the metal towards the CFRP layer.  

Temperature reached at the tool/workpiece interface is difficult to measure during drilling 

operation, due to its enclosed configuration; numerical simulation is therefore a good alternative to 

access to this information. The purpose of this study is to develop and carry out numerical 

simulations in order to estimate the workpiece thermal field generated during drilling. The 

simulations are validated by comparing simulated and measured temperatures at 4 mm from the 

holes wall. This method is applied to evaluate thermal field generated during drilling (with chip 

removing cycles) of CFRP/Aluminum alloy stacks. The influence of the drilling kinematics on the 

workpiece thermal field is also investigated. 

Introduction 

Due to their high strength to weight ratio [1-3], hybrid structures made of carbon fibre reinforced 
plastic (CFRP) combined with metal, often aluminum (Al) or titanium (Ti) alloys, have become 

widely used in fields such as aeronautics or aerospace. The parts produced in these fields are 

usually assembled by bolting or riveting. This assembly technique requires a prior drilling 

operation. In the case of multi-material parts, drilling must be done in one shot, in order to lead to  a 

good hole positioning accuracy. 

Few publications have been focused on the multi-materials drilling process. In 2001, Ramulu and 

al. [1] published one of the first studies on drilling of multi-material stacks (graphite/bismaleimide-

titanium alloy). Their work has shown that delamination is one of the main problems in multi 

material drilling. The best stack sequence to minimize this defect was found to be CFRP on the top 

and metal on the bottom. The authors also noted that thermal damages can be seen on the composite 

layer due to the heat generated during the process.  

These observations were supplemented by a study on drilling of multi-layer materials, which consist 

in CFRP, titanium and aluminum alloys, carried out by Brinksmeier et al. [4]. The influence of 

coatings and tool geometry on tool wear, forces, holes quality and chip formation has been analysed 

in their study. The main problems occurred in multi-material drilling were highlighted: CFRP 

delamination, tearing and damage on the hole entry, burr formation, intensive tool wear and a 

difference between diameters measured in each material. 
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A lot of these problems, as the CFRP delamination and fiber tearing on the hole wall [5-7], thermal 

damage [8-10] and burr formation [11;12] are inherent to the drilling process for each material 

taken separately. Only intensive wear, differences between diameters measured in each material, 

CFRP damage on the hole entry and CFRP thermal damage are inherent to the multi-material 

drilling operations. 

The metallic chips outgoing from CFRP hole can damage the hole entry as stated by Zitoune et al. 

[13] and Brinksmeier et al. [4]. The formation of this type of damage was observed and described 

by Montoya et al. [14] in a study on CFRP/Al and CFRP/Ti drilling. During drill rotation, 

depending on the orientation between metallic chip edge and the carbon fibers, metallic chips can fit 

between the carbon fibers of the CFRP first ply and pull them out. Studies on diameters differences 

highlighted a lot of diameter configurations. In the case of CFRP/Al stacks, smaller diameter values 

have been found in the CFRP- part than in the aluminum part, by Brinksemier et al. [4] and Zitoune 

et al. [13]. First authors have assigned it to the low CFRP modulus of elasticity; the last have 

considered the elastic stresses relaxation during machining as being the reason. The opposite trend 

can also be observed: smaller hole diameter values in the aluminum part than in the CFRP-part. As 

for the roughness and the damage at the CFRP hole entry, the metallic chips can enlarge the CFRP 

hole when they are discharged.  When the drilling process is carried out with a chip removing cycle, 

the enlargement of the CFRP hole can also be due to the multi passages of the tool on the hole wall 

surface. This phenomenon was observed by Montoya [15]. The heat generated during the drilling 

process can also lead to a thermal damage of the CFRP matrix as observed by Ramulu et al. [1].  

To justify the intensive wear, the diameter difference and the CFRP thermal damage observed 

during the drilling of multi-material, the generated workpiece thermal field must be known. Drilling 

is a process that has a confined configuration. Therefore, it is difficult to access, experimentally, to 

this information. Nevertheless, combining experimental measurements with numerical simulations 

is a good alternative to obtain the workpiece thermal field. This article proposes a new method to 

estimate the thermal field in the workpiece during a drilling operation. The method accuracy is 

evaluated on the drilling of CFRP and aluminum alloy stacks with a chip removing cycle. The 

location of the maximum temperature on the interface tool/workpiece is discussed. The influence of 

the drilling kinematics on the attained maximum temperature is also investigated. 

Numerical model 

The objective of the current approach is to obtain an estimation of the temperature generated on the 

wall of the drilled hole, using temperature measurements collected 4mm from this wall. A 

numerical simulation was carried out in order to simulate the application and the movement of the 

heat flux on the hole wall. This simulation is validated by comparing numerical temperatures with 

the measured ones (at 4mm from the hole wall). Once validated, the numerical model enables to 

obtain temperature on the hole wall and therefore the maximum temperature generated by drilling. 

The software chose for simulations is COMSOL Multiphysics, a software based on finite elements 

method, able to take into account thermal loadings in both steady-state and transient conditions. The 

heat transfer by conduction is governed by thermal equation whose formulation is as follows: � ∙ �� ∙ ���� − ∇ ∙ 
�∇�
 = � (1) 

Where : 

ρ density (kg/m³); 

Cp specific heat (J/(kgK)); 

T temperature (K); 

k thermo-conductivity; 

Q heat sources. 

In the case of anisotropic materials such as composites, k becomes a tensor as below 



� = ���� ��� ������ ��� ������ ��� ����
In drilling, workpiece surfaces are subjected to heat sources as well as convective heat exchange 

due to lubrication. These boundary conditions are simulated by the application of a heat flux to the 

affected area. This heat flux is expressed by the following relation:  

�∇� = �� + ℎ����� − �� (2) 

Where : �� density of heat flow within the scope (W/m
2
);

h coefficient of convective transfer (W/Km
2
);

T surface temperature (K); ���� ambient temperature of the environment (K). 

In order to correctly describe the heat flux application, it is necessary that the time step between two 

calculations be smaller than the lowest time of application of different considered heat flux. In this 

study, the maximum time step is considered as 10
th

 part of the time required to achieve a pass of

3mm at the feed speed Vf (120mm/mn).    

The modeled machining operation is drilling 6mm diameter holes in two stacked materials witch are 

stuck by a metallic adhesive. The composition of the two plates and their thermal characteristics are 

shown in Table 1. Thermal properties of the CFRP used in this study were measured by flash 

method by the Laboratory for Thermosctructural Composites. 

Table 1. a) Stack composition and b) characteristics of materials 

Stacking CFRP/Al 

Plate 1 

Composition Carbon 

T800_DA550 

7 mm 
Thickness 

Plate 2 

Composition Aluminum 

7010 

14 mm 
Thickness 

a) 

Unit 
CFRP 7010 

Radial Axial 

Thermal 

conductivity 
[W/(m*K)] 3.4 0.8 157 

Specific heat [W/(kg*K)] 980 860 

Density [kg/m
3
] 1550 2830 

b) 

The surface, on which the heat flux generated by cutting is applied, can be considered of revolution. 

This assumption simplifies the problem to a 2D axisymmetric case. The software does not enable to 

change the workpiece geometry during cutting simulation; thus, the removal of the material beneath 

the drill cannot be simulated. Therefore, the application area of the heat flux generated on the 

cutting edge is considered cylindrical. The workpiece width is 60mm, in order to avoid edge effects 

on surface S4 (Figure 1.a). On a width of 10mm from the z axis, the mesh is as thin as possible due 

to high temperature gradients occurred in this area. Far from this interest zone, the chosen mesh is 

coarser. Two measuring points have been set in order to model the location of the two 

thermocouples used to perform the experimental measurements. Along the z axis, they are put at 

mid-thickness of each material. Their radial position comes from the measurement of the actual 

distance between the hole wall and the center of the thermocouple housing, for each concerned test. 

This measurement was carried out using a digital microscope KEYENCE (see Figure 1.b).     



a) b) 

Figure 1. a) Model set of the workpiece, b) measuring the distance between the hole wall and the 

center of the thermocouple housing. 

Where : 

D diameter of the drilled hole; 

D_ext  outer diameter of the specimen; 

e_CFRP thickness of the composite part; 

e_MET thickness of the metal part; 

d_th_CFRP distance between the hole wall and the center of the thermocouple housing in 

the composite; 

d_th_MET distance between the hole wall and the center of the thermocouple housing in 

the metal. 

Heat flux modeling 

Two distinct heat flux can be observed during a drilling operation; i) the heat flux generated by 

cutting, located on the tool cutting edge; ii) the flux generated by friction between the drill margins 

and the hole wall. Bono et al. [17] as well as Cardoso et al. [18] have shown that the heat flux 

generated by the tool edges is higher on the drill corner than on its point. The distribution of the 

heat flux produced by the drill cutting edges can be considered triangular, as shown in Figure 1. The 

heat flux generated by the cutting edge will be applied on the height of the cutting edge (h_cutting) 

and will have a triangular distribution. The maximum flux transferred to the hole wall will therefore 

be localized on the corner of the drill bit (Figure 1). Because of the chip removing cycle, the friction 

of the drill margin on the hole wall is applied during drilling and while the drill plunge again, 

between two pass of cutting. Due to its back taper, the drill bit is not in contact with the hole wall 

over the entire margin length. The analysis of torque generated during machining and observations 

using an electronic microscope have enabled to highlight the contact length between drill margin 

and hole wall; this contact length is noted h_friction in Figure 1. 

Figure 1. : Modelling of the heat flow generated by the cutting and the friction between the tool 

margin and the hole wall 



As defined by Bonnet [16], the heat flux generated by friction is proportional to tangential stress on 

the surface of the drill margin:  

φ = σt ·Vc·β (3) 

Where: 

φ heat flux density received by a margin (W/mm
2
);

σt shear stress on a margin (N/mm
2
);

Vc sliding speed or cutting speed (m/s); 

β partition coefficient of the heat flux at the interface. 

A preliminary numerical simulation has highlighted that certain temperatures increase in the CFRP 

are not related to cutting or friction (see blue curve in Figure 2). These temperature rises always 

occur after a cutting pass in the metal part. As seen in Figure 2 (red curve), these temperature rises 

are not shown by the result of the preliminary simulation, which only takes into account the heat 

flux generated by cutting and friction; they either cannot be the result of the heat diffusion produced 

during metal cutting into CFRP part. It is also possible to see in Figure 2 that the time between the 

cutting phase and these temperature rises does not change. These ones can only be attributed to heat 

transmission due to the contact between hot metal chips and the hole wall. The metal chips need 

only few milliseconds to go out from the hole; thus, the chip temperatures when it is formed and it 

comes out of the hole, are considered similar. Therefore, the intensity of the corresponding heat flux 

is identical over the entire height of the composite hole wall.    

Figure 2. Comparison between experimental and numerical results (only heat flux related to cutting 

and friction are taken into account). 

Heat flux kinematics 

In order to correctly program the sequencing of different heat flux and thermal exchanges during 

drilling, it is essential to know the times between the end of a cutting pass i and the beginning of the 

following cutting pass j. These times are noted with t_retour_i_j. Figure 3 shows the cutting forces 

registered during drilling of a CFRP/Aluminum alloy stack. From these experimental results it is 

possible to extract the time t_retour_i_j.   



Figure 3. (a) Cutting forces during drilling of CFRP/Aluminium alloy stack; (b) determination of 

return times t_retour_i_j. 

From the back time and the displacement time of the drill bit the beginning and the end of each heat 

flux application can be calculated. The simulation includes four heat flux and interface transfers that 

are activated and inactivated during cutting. The convection (due to lubrication) is provided only 

when the drill bit does not form chips. The heat flux due to the crossing of the metal chips on the 

composite hole wall take place only during cutting. The heat flux generated by friction is applied 

during drilling and while the drill plunge again, between two pass of cutting. 

Estimation of the applied heat flux intensity 

Figure 4 associates each temperature rise to the heat flux that generated it. It is possible to 

distinguish the six temperature elevations in the aluminum corresponding to the six phases of 

cutting process. Resulting from one or from the superposition of several heat flux, twelve 

temperature increases can be observed in CFRP. 

Figure 4.  Temperature raises identification in the CFRP part of the multi-material. 

Primary simulation revealed that the heat generated in aluminum alloy do not produce temperature 

rising in the composite part of the stacking. This is explained by the low temperatures reached in 

aluminum but also by its high thermal conductivity. The heat produced in the aluminum alloy 

diffuses inside itself quickly enough; this avoids affecting the CFRP part of the multi-material. 

Conversely, the heat generated in the CFRP produces a temperature rise of the aluminum, at the 

concerned measurement point. Based on the torque measured during drilling, a first heat flux 

1 - Cutting and friction for pass 1 

2 - Cutting and friction for pass 2 

3 - Cutting, friction and chips ascent 

for pass 3 

4 - Friction for pass 4 

5 - Chips ascent for pass 4 

6 - Friction for pass 5 

7 - Chips ascent for pass 5 

8 - Friction for pass 6 

9 - Chips ascent for pass 6 

10 - Friction for pass 7 

11 - Chips ascent for pass 7 

12 - Friction for pass 8 



density estimation is done. For this estimation, one considers that all the mechanical energy is 

converted into thermal energy and that 50% of this one is transmitted into the workpiece.   

Numerical results analysis 

Figure 5 shows simulation results for drilling with tools having point angles of 125° (tool 1) and 60° 

(tool 2). The values of applied heat flux density are detailed in Table 1.  

Figure 5. Comparison between experimental and numerical temperatures when using a tool having a 

point angle of a) 125° and b) 60°. 

Figure 5 shows that the simulations describe well the different phases of temperature rise observed 

experimentally. In the case of the simulation concerning tool 1, the model enables to correctly 

describe the temperature rise of the CFRP as well as its cooling. The error between numerical and 

experimental curves is of about 3.5%. For tool 2, this error is of 8.4%, the cooling phases being less 

well described. This different behaviour can be due to variations in the boundary conditions of the 

experimental test, the latter being made near one of the workpiece border. In the metallic part, the 

gap between the experimental and numerical curves is higher: 37% and 16% for tools 1 and 2, 

respectively. The cooling phases described by numerical simulation are more accentuated than 

those experimentally observed. 

Table 1. Summary of density heat flux [in W/m²] values for the two case studies on the stack 

CFRP/Al  

Tool with 125° point Tool with 125° point 

CFRP 
Al 

CFRP 
Al 

Pass Cutting Friction Chips Cutting Friction Chips 

1 4,3·10
5

- - 2,8·10
5

- - 

2 4,3·10
5

- - 2,8·10
5

- - 

3 4,3·10
5
 5·10

4
 1,2·10

7
2,8·10

5
4·10

4
 2,95·10

6

4 - 3,2·10
5
 3,75·10

4
 1,2·10

7
2,8·10

5
4·10

4
 2,95·10

6

5 - 3·10
5
 3,25·10

4
 1,2·10

7
- 2,24 3,6·10

4
 2,95·10

6

6 - 2,1·10
5

3·10
4

1,2·10
7

- 1,4 3,1·10
4
 2,95·10

6

7 - 1,3·10
5

2·10
4

1,2·10
7

- 0,7 2,6·10
4
 2,95·10

6

8 - 0,8·10
5

1·10
4

1,2·10
7

- 0,14 2,6·10
4
 2,95·10

6

9 - - - - - 0,14 2,6·10
4
 2,95·10

6

The simulation results confirm the assumption that the heat flux generated by friction decreases 

with the number of passes of the tool on composite part. Knowing that the heat generated by friction 

is related to the pressure on the tool margins, these results highlighted that this friction heat 

decreases with the number of passes of the tool on the workpiece wall. These findings are in 

agreement with the hole diameter evolution in the composite part, that increases with the number of 

passes.  



Information about the temperature reached in each point of the workpiece during machining enables 

to estimate both the temperature reached on the hole wall and the extent of the heat affected areas 

around the drilled holes. Having access to the temperature on the hole wall enables to estimate the 

tool temperature in different points, these two items having a number of common features such as 

the tool corner and some part of the tool margins. The extent of heat affected areas gives 

information about the integrity of the stacking materials, an excessive temperature could damage 

them.   

Figure 6 shows the maximum temperature reached in any point on the hole wall. The simulation 

shows that the maximum temperature reached in CFRP is higher (160°C) than the one generated in 

the aluminum alloy (90°C). These are the temperatures obtained during the first drilled holes. Due 

to tool wear, the temperature reached in CFRP exceeds 200°C after drilling 250 holes, with tool 1. 

Although this temperature is below the upper limit of the epoxy resin heat resistance (350°C), this 

high temperature creates a risk of damaging the composite material.     

Figure 6.  Maximum temperature reached on the hole wall. 

Temperature changes within the same material can also be observed on the Figure 6. These 

variations are cyclical and can range from 10 to 70°C, depending on the type of material being 

machined. Cardoso et al. [18] noticed a temperature increase with the depth of tool plunging into 

the hole. This temperature rise can be related to the fact that the cut does not reach a steady state. In 

the present study, this phenomenon being conjugated to the kinematics of the machining operation, 

the temperature varies cyclically. As seen in Figure 6, the minimum temperature is reached at the 

beginning of a cutting pass and maximum at the end of it. 

The proposed simulation model also provides the extent of the heat affected area during machining. 

The composite area having a risk of damaging is localized near the hole wall and on a depth of 

0.8mm from the hole wall (see Figure 7). Thus, a depth of about 0.8mm and over the entire height 

of the hole wall, can have a risk of burning of the composite material.    



Figure 7. The position of the maximum temperature on the tool. 

Conclusions 

The analysis of the experimental temperature curves obtained during drilling of a CFRP/aluminium 

alloy stacking has shown some temperature picks that cannot be assigned to the friction and the 

cutting process in itself. These ones can only be attributed to heat transmission due to the contact 

between hot metal chips and the hole wall. 

The study have shown that the heat generated in aluminum alloy do not produce temperature rising 

in the composite part of the stacking. This is explained by the low temperatures reached in 

aluminum but also by its high thermal conductivity. The heat produced in the aluminum alloy 

diffuses quickly enough inside itself; this avoids affecting the CFRP part of the multi-material.  

The simulation revealed that the maximum temperature reached on the hole wall is generated during 

the passage of the heat flux associated to both cutting and friction. Temperature reached in the 

composite is greater than that achieved in the aluminum alloy, and that from the first drilled hole.  
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