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ABSTRACT
This work addresses the optimization of the geometry of

smart sensors and actuators on cantilever beams. Three trans-
duction principles are studied and compared in term of effi-
ciency: piezoelectric, electrostatic and dielectric. For the piezo-
electric transduction, an active layer of a shorter length than
the one of the beam is added on its surfaces. For the electro-
static transduction, the beam is made of a conducting material
and it is faced with a fixed electrode at a distance called the gap.
This architecture is widely used for M/NEMS (Micro/Nano Elec-
troMechanical Systems). The last transduction principle, new
and promising, is based on the use of dielectric layers on the
beam surface. In this case, the excitation is based on electro-
static forces between the charged electrodes, causing transverse
deformation of the dielectric film and bending of the multilayer
structure; the detection of the vibration is capacitive, based on
the fluctuation of the capacitance due to the deformation of the
dielectric film. This work presents the optimization of the length
and the thickness of the piezoelectric/dielectric layers and, for
the electrostatic case, the optimization of the length and the gap
of the electrostatic cavity. The study is based on an analytic
model for a laminated beam and closed-form formula of the opti-
mization parameters (coupling factor, driving efficiency, sensing
efficiency) are obtained. The application of those three trans-
duction principles mainly focus on resonating M/NEMS sensors,
whereas the case of piezoelectric transduction is also useful for
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vibration control of macro-structures, especially with passive
shunt techniques. General results on the comparison of the trans-
duction efficiency, as a function of the device size and of the ma-
terial properties, are also derived.

INTRODUCTION
The coupling of a mechanical structure elasticity to an elec-

tronic circuit is often use in modern applications. For macro-
structures (of human size), piezoelectric materials are often used
for their ability to convert the mechanical energy of the structure
they are bonded on into electrical and conversely. Applications
are sensors, actuators or, in the case of vibrations, control or en-
ergy harvesting [1, 2]. In the case of micro or nano structures,
the traditional transduction principle is electrostatics, for which
the mechanical structure is made of a conducting material and it
is faced with a fixed electrode at a distance called the gap [3].
For actuation, a voltage is imposed between the structure and the
electrode, which creates an electrostatic pressure on the structure.
For detection, one monitors the electric charge variations in the
electrode, that are linked to the change of the electric capacitance
due to the gap variations when the structure bends. Piezoelectric
transduction is also often used for micro/nano structures [4, 5].
In this work, a promising new transduction principle, introduced
in [6] and denoted by “dielectric transduction”, is also studied.
It is based on the use of dielectric layers on the beam surface.
In this case, the excitation is based on electrostatic forces be-
tween the charged electrodes, causing transverse deformation of



the dielectric film and bending of the multilayer structure due
to Poisson’s effect; the detection of the vibration is capacitive,
based on the fluctuation of the capacitance due to the transverse
deformation of the dielectric film.

The goals of the present work are following. First, a model
for the dielectric transduction principle is proposed. It is shown
that in the case of thin dielectric layers, it is possible to formulate
the dielectric transduction on the form of a classical piezoelec-
tric constitutive law, with a particular value for the transduction
constant d31. Then, the three transduction principles (piezoelec-
tric, dielectric and electrostatic) are compared in term of effi-
ciency. Finally, the effect of the geometry of the transduction
layers (length, thickness and position on the structure for piezo-
electric and dielectric; length and position of the electrode for
electrostatic) on the transduction efficiency are studied, in or-
der to optimize the electromechanical structure. Two efficiency
indicator families are considered: (i) the modal electromechan-
ical coupling factor (MEMCF), useful for passive control ap-
plications such as piezoelectric shunts (ii) several transduction
indicators for resonant Micro/Nano Electro Mecanical Systems
(M/NEMS). A cantilever beam is considered as a test structure.
One issue addressed in particular is the mechanical effect (mass
and stiffness addition) of the piezoelectric/dielectric layer on the
optimization process, thanks to the multilayer modelling of the
beam: can we neglect it ? In optimization of passive control
with piezoelectric shunts, some studies prove that it cannot be
neglected [7, 8]. Is it the same for optimization of resonant
M/NEMS sensors ?

Modelling of the electromechanical structures
The electromechanical structures under study are sketched

on Fig. 1. For the piezoelectric and dielectric actuation, one ac-
tive layer is considered, so that the structure has the form of a
laminated beam, whose cross section geometry depends on the
axial coordinate x. For the electrostatics transduction, the beam’s
cross-section geometry is assumed uniform. In the two cases,
the beam kinematics is based on the classical Euler-Bernoulli as-
sumptions: each beam cross section remain plane and normal.
The model exposed in [7, 9] is used. It is based on the classi-
cal continuum mechanics theory, that is assumed to apply to the
small scale devices considered in this work (for NEMS with no
dimension under 100 nm [10]). The displacement field writes:

{
ux(x, y, z, t) = u(x, t)− z w,x(x, t),

uz(x, y, z, t) = w(x, t),

(1)
(2)

where t is the time, ux and uz are the axial and transverse dis-
placement of the point of coordinates (x, y, z); u is the beam
center line axial displacement and w its transverse displacement;
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Figure 1. ELASTIC BEAMS WITH ELECTROMECHANICAL TRANS-
DUCTION (a) BEAM WITH AN ACTIVE LAYER; (b) BEAM WITH ELEC-
TROSTATIC TRANSDUCTION

(·),x denotes a partial derivative with respect to x. The displace-
ment uy in the y-axis direction is not considered in this work.
The only non-zero strain tensor component is:

εx = ux,x = u,x − zw,xx. (3)

The electric state of the electromechanical structures is de-
fined by the electric field and the electric displacement under the
electrostatic approximation [11]. The electric field is assumed
to be transverse and uniform, so that the potential difference V
between the electrodes of an active layer of thickness ht, or be-
tween the elastic structure and the lower electrode (separated by
a gap g, in the case of the electrostatic transduction), is:

V (t) = −Ez(t)ht, or V (t) = −Ez(t)g, (4)

where Ez is the transverse component of the electric field.



Piezoelectric transduction
For a piezoelectric active layer, the following linear consti-

tutive law is considered:

{
σx = Yp εx − e31Ez

Dz = e31 εx + εpEz

(5a)
(5b)

where σx and Dz are the axial stress and the transverse electric
displacement, Yp is the piezoelectric material Young’s modulus
in the (x, y) plane at constant electric field, e31 is the modified
piezoelectric constant and εp is the modified dielectric permit-
tivity at constant strain, when beam assumptions are formulated
(σy = σz = 0) [9]. In particular, e31 = Yp d31 where d31 is the
usual 3D piezoelectric constant.

For a thin piezoelectric layer (ht � lb with lb the length of
the beam), the electric field Ez is assumed normal to the elec-
trodes and uniform (the fringe effects are neglected as well as a
possible linear dependence as a function of z [9]). Integrating
the above constitutive law across the area of the beam’s cross
section and across the electrodes area (situated between x = x−
and x = x+) lead to the following relations between the gener-
alized quantities: the bending moment M and the electric charge
Q contained in the upper electrode [7]:

{
M = −Dw,xx + ΘU(x)V,

Q = Θ
[
w,x
]x+

x−
+ CpV,

(6a)

(6b)

where

U(x) = ς(x− x−)− ς(x− x+), (7)

where ς(x) is the Heavyside step function (ς(x) = 0 ∀x < 0;
ς(x) = 1 ∀x ≥ 0). In the above equations, D(x) is the beam’s
bending stiffness (in short circuit V = 0), Θ is the piezoelectric
coupling coefficient and Cp is the blocked capacitance of the ac-
tive layer. Those three parameters depend on the geometrical and
material characteristic of laminated structure of the cross section.

The above equations assume no axial/bending coupling, a
case valid for a symmetric lamination in the transverse direc-
tion. In the present case, the lamination between x− and x+ is
asymmetric (see Fig. 1(a)). However, with clamped/free bound-
ary conditions for which the axial force is zero, the axial motion
is slaved to the bending motion and the above equations are still
valid with modified values of D, Θ and Cp. They write [7]:

Θ =
be31(hb + ht)

2(1 + κ)
::::::

, Cp =
εpblt
ht

(
1 +

k2
31κ

1 + κ

)
:::::::::::

(8)

where κ = Ypht/(Ybhb) and k31 = e31/
√
εpYp. The ax-

ial/bending coupling is responsible of the two additional under-
lined terms.

The beam’s equation of motion is [7]:

mẅ + [Dw,xx],xx −Θ∆(x)V = p, (9)

where m(x) is the beam’s mass per unit length, p(x, t) is
the external transverse forces per unit length and ∆(x) =
[δ(x− x−)δ(x− x+)],x with δ(x) the Dirac function.

Dielectric layer transduction
For a dielectric layer, we formulate the same assumptions

than the one used for a piezoelectric layer [9]: the dielectric
layer is thin and covered by conductive electrodes (of negligible
thickness), and the electric field Ez is assumed uniform. In this
case, when the dielectric layer is subjected to the electric field
Ez , electric charges of opposite sign appear in the electrodes,
which create an attractive force between the electrodes. The di-
electric layer is thus submitted to a compressing force per unit
area f [12, p. 103], that creates a non zero z component of the
stress in the dielectric layer:

σz = f = −εd
2
E2
z , (10)

where εd is the permittivity of the dielectric material. Further-
more, the dielectric layer is considered linear elastic, so that its
3D constitutive law writes:



εx =
1

Yd
[σx − ν (σy + σz)] ,

εy =
1

Yd
[σy − ν (σx + σz)] ,

εz =
1

Yd
[σz − ν (σx + σy)] ,

Dz = εdEz

(11a)

(11b)

(11c)

(11d)

where Yd and ν are the Young’s modulus and the Poisson’s ratio
of the dielectric material. In the same manner than for a piezo-
electric layer, since the considered structures are beams, we as-
sume that the stress in the y-direction vanishes: σy = 0.

The converse electromechanical coupling in the dielectric
layers is the result of its change of thickness due to f = σz , that
changes its length due to the Poisson’s effect. We then obtain,
with Eq. (11a), σy = 0 and Eq. (10):

σx = Yd εx −
νεd
2
E2
z (12)



The direct electromechanical coupling is also the result of the
change of thickness of the dielectric layer, that changes its elec-
trical capacitance. The current thickness of the dielectric layer is
hd(1 + εz), so that the electric field in the layer is related to the
potential difference between the electrodes with:

Ez = − V

hd(1 + εz)
' − V

hd
(1− εz), (13)

where εz is assumed small. Using Eq. (11c) and (12) gives:

εz = −νεx −
(1− ν2)εd

2Yd
E2
z . (14)

The local electromechanical coupling laws for the dielectric layer
are then: 

σx = Yd εx −
νεd
2

(
V

hd

)2

,

Dz = −νεdV
hd

εx − εd
V

hd
.

(15a)

(15b)

They are obtained by (i) introducing (13) in (12) and (ii) by in-
troducing (14) in (13) and the result in (11d) and (iii) neglecting
any higher order term than the quadratic ones in (V, εx).

In practice, a linear electromechanical coupling can be ob-
tained by superimposing a DC voltage Vdc to the fluctuating volt-
age: V (t) = Vdc + Ṽ (t). In this case, Eqs. (15a,b) becomes:


σ̃x = Yd εx −

νεdVdc

hd

Ṽ

hd
,

D̃z = −νεdVdc

hd
εx − εd

Ṽ

hd
.

(16a)

(16b)

where σ̃x = σx + νεdV
2

dc/2h
2
d and D̃z = Dz + εdVdc/hd are

the fluctuating axial stress and electric displacement. Note that
the quadratic nonlinear terms in (Ṽ , εx) have been neglected.
Eqs. (16a,b) are formally equivalent to the piezoelectric consti-
tutive law (5a,b) with equivalent piezoelectric coefficients1

e31 =
νεdVdc

hd
or d31 =

νεdVdc

hdYd
(17)

As a consequence, any dielectric thin layer is analogous to a
piezoelectric layer, so that any structure including dielectric lay-
ers can be modelled in the same way as if the dielectric lay-
ers were piezoelectric. In particular, the generalized constitutive

1When comparing Eqs. (16a,b) to (5a,b) to identify e31, and especially its
sign, one has to recall that Ṽ /hd in (16a,b) is the opposite of an electric field

laws (6a,b) and the equation of motion (9) are still valid for the
dielectric layers transduction.

Electrostatic transduction
For the electrostatic transduction, the beam is built in a con-

ductive material and behaves like an electrode. When a potential
difference V (t) is applied between the beam and the bottom elec-
trode (Fig. 1(b)), an electrostatic attractive force appears. We as-
sume, in the same manner than for the active layers, that the gap
between the beam and the bottom electrode is thin (g � lb),
so that the electric field is normal to the electrodes and uni-
form. The beam is thus submitted to a force analogous to the
one of Eq. (10), applied only on the area faced by the bottom
electrode, between x = x− and x = x+. By considering that
V (t) = Vdc + Ṽ , the equation of motion is:

mẅ +Dw,xxxx −ΘeU(x)Ṽ = p, Θe = −bε0Vdc

g2
, (18)

where ε0 is the gap (vacuum) permittivity, b is the beam’s width
and U(x) is defined by Eq. (7).

For the sensing effect, the charge in the electrodes is ob-
tained in the same way than for the dielectric actuation. The
electric displacement and field in the gap are:

Dz = ε0Ez, Ez =
V

g − w
' V

g

(
1 +

w

g

)
. (19)

Then, integrating Dz over the area faced by the electrode gives:

Q = Θe

∫ x+

x−

w dx+ CeV, Ce =
ε0blt
g

, (20)

where Ce is the capacitance of the cavity between the bottom
electrode and the beam, with lt = x+ − x− the electrode length.

Modal expansion
We discretize the beam’s transverse displacement field with

the following modal expansion:

w(x, t) =
N∑
i=1

Φi(x)qi(t) (21)

where qi(t) is the i-th modal coordinate and (Φi, ωi), i = 1 . . . N
are the first N short circuit eigenmodes of the beam, defined by
the following generalized eigenvalue problem:

[DΦi,xx],xx − ωiΦi = 0. (22)



Then, substituting Eq. (21) into Eqs. (9,6b) and (18,20), multi-
plying the result by Φj , integrating the equation of motion over
the length of the beam and using the orthogonality properties of
the (Φi, ωi), leads to:


q̈i + 2ξiωiq̇i + ω2

i qi − χi/MiṼ = 0, ∀i = 1, . . . N

Q =
N∑
i=1

χiqi + CṼ

(23a)

(23b)

where the modal electromecanical coupling coefficient χi and
capacitance C are:

piezo./dielectric transduction : χi = Θ
[
Φi,x

]x+

x−
(24a)

C = Cp (24b)

electrostatic transduction: χi = Θe

∫ x+

x−

Φi dx (24c)

C = Ce (24d)

and the i-th. modal mass is:

Mi =

∫ lb

0

m(x)Φ2
i (x) dx, [kg] (25)

OPTIMIZATION CRITERIA
The efficiency of the electromechanical transduction de-

pends on the purpose of the device and several optimization cri-
teria may be defined.

Modal coupling coefficient
The modal coupling coefficient is the parameter χi that ap-

pears in Eqs. (23). Its physical meaning is that it characterize
either the modal force that is created per unit of input voltage or
the electric charge that is created per unit modal displacement. It
can be expressed in [N/V] or [C/m]. It depends on the scaling of
the deformed shapes Φi.

Resonant displacement criterion
The electromechanical transduction may be used as an actu-

ation mean to create a resonant motion of the device. We con-
sider the tip displacement of a cantilever beam submitted to a
voltage Ṽ = V0 cos Ωt at resonance (Ω ' ωi). Using Eqs. (21)
and (23a) reduced to a single mode, one obtains the tip displace-
ment amplitude w0 at the i-th resonance. It enable to define the
following actuation efficiency criterion:

ηact =
w0

V0
=
|χiΦi(lb)|
2ξω2

iMi
=
|χiΦi(lb)|

2ξKi
[m/V] (26)

where Ki = ω2
iMi is the modal stiffness of the i-th. mode.

Motional capacitance / conductance criteria
If the device is used as a mass sensor (see [4] and reference

therein), one is interested in maximizing the electric charge quan-
tity (or the electric current intensity) that is generated at the ter-
minals of the active layer when this active layer drives the device
at a given resonance. In this case, the motional part of the gener-
ated electric charge2 is (Eq. 23b) Qmot = χiqi and the current in-
tensity amplitude is I0 = ωiQ0 (where Qmot = Q0 cos(Ωt+ϕ))
since the device is run at Ω ' ωi. This enables to define the two
following optimization criteria: the motional capacitance:

Cmot =
Q0

V0
=

χ2
i

2ξω2
iMi

=
χ2
i

2ξKi
[C/V]

and the motional conductance:

Gmot =
I0
V0

=
χ2
i

2ξωiMi
=

χ2
i

2ξ
√
KiMi

[A/V]

Electromechanical coupling factor
The electromechanical transduction can be used for passive

vibration damping, by shunting the active layer with a dedicated
electrical circuit (see [13] and reference therein or [14]). Basic
electrical circuits are a simple resistance, that acts as an added
viscous damper, or a resistance plus an inductance, that creates
a resonant circuit that can be tuned on the mechanical resonance
to be damped. Other techniques enhance the performance of the
two basic shunts by adding in the circuit a switch whose open
and close states are synchronized to the mechanical structure os-
cillations. In all these cases, it can be shown (see e.g. [13, 15])
that the performance of the system in term of vibration reduction
are function of only one parameter: the modal electromechanical
coupling factor (MEMCF) denoted here as ki for the i-th mode.
It can be defined by a proper scaling of Eqs. (23a,b) (see [7, 9])
or more physically by the following effective coupling factor:

ki =

√
(ωoc
i )2 − (ωsc

i )2

(ωsc
i )2

where ωsc
i = ωi and ωoc

i are the natural frequencies of the beam
when the active layer is respectively in short-circuit (V = 0)
or in open circuit (Q = 0). In our case, imposing Q = 0 in
Eq. (23b) and substituting for Ṽ in Eq. (23a) leads to (ωoc

i )2 '
ω2
i + χ2

i /(CMi) and:

ki =
χi

ωi
√
CMi

=
χi√
CKi

[non dim.] (27)

2the part of the electric charge that is generated by the motion of the structure 



The above expression for ωoc
i and ki have been obtained by re-

ducing the multi-mode model (23a,b) to only one mode (qj =
0, ∀j 6= i).

The MEMCF is a measure of the energy that can be ex-
changed between the electrical circuit and the mechanical struc-
ture [16] in a given modal motion. It is also a measure of the
efficiency of the active layers when they are used as both sensors
and actuators at the same time.
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Figure 2. COMPARISON OF EFFICIENCY (FROM EQS. (28a,b)) BE-
TWEEN PIEZOELECTRIC (blue), DIELECTRIC (orange) AND CAPACI-
TIVE (green) TRANSDUCTIONS.

To compare the efficiency of the three transduction princi-
ples, we consider the modal coupling coefficient χi (Eqs. (24a,c))

and we define the following ratios:

χdielec
i

χpiezo
i

=
νεdVdc

e31 hd
(28a)

χelectrostat
i

χpiezo
i

=
ε0Vdcl

2
b

e31 g2hb

∫ x+

x−

Φi dx[
Φi,x

]x+

x−

(28b)

The first ratio, that compares the efficiency of the piezoelectric
and dielectric layer, is simply the ratio of the e31 constants for the
dielectric layer (Eq. (17)) and the piezoelectric layer. The second
ratio, that compares the electrostatic transduction with respect to
the piezoelectric one, is obtained by considering the value of Θe

(Eq. (18)) and the one of Θ (Eq. (8)), in the case of a very thin
active layer (κ ' 0).

To illustrate those results, the fundamental vibration mode of
a nano-beam of length lb = 10 µm, width b = 2 µm and thick-
ness hb = 200 nm is considered with an active layer / electrode
that covers the whole length of the beam (x− = 0, x+ = lb).
The efficiency of the AlN piezoelectric material is considered as
a reference. Here are some remarks.

• The standard values for e31 (for usual piezoelectric ma-
terials) and Vdc are of the order of 1 or 10, in S.I. units. As
a consequence, the efficiency of the dielectric layer and the
electrostatic transduction can be comparable to the one of
the piezoelectric layer only for nano-beams, for which hd
and g are between the nanometer and the micrometer. This
is because the value of g and hd must balance the one of the
permittivity ε0 and εd, of the order of 10−11 F/m.
• The efficiency of the dielectric layer is directly propor-
tional to its permittivity εd. Associated to a design with very
thin layers (down to 10 nm, technically possible with the
chosen dielectric materials), it is possible to achieve a di-
electric transduction of equivalent efficiency to those of stan-
dard piezoelectric layer and electrostatic design, especially
with SrTiO3 material.

OPTIMIZATION OF THE GEOMETRY
We are interested here in choosing the geometry of the ac-

tive layer that maximizes the performances of the devices. We
propose to optimize the thickness ht of the active layer (or the
gap g for the electrostatic transduction), the length lt = x+−x−
of the active layer / electrode and their location on the beam,
characterized by x−.

Optimization with the ηact, Cmot and Gmot criteria
The three criteria ηact,Cmot andGmot are first written as func-

tions of the geometry parameters ht (or g), lt and x−. We denote
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by Db = bYbh
3
b/12 and mb = bρbhb the bending stiffness and

mass per unit length of the beam in the part not covered by the ac-
tive layer, and Dt and mt the same quantities in the part covered
by the active layer (between x− and x+). ρb is the mass density
of the beam’s material. It is convenient to render dimensionless
(denoted with overbars) the terms that depends on Φi and ωi, in
the following way:

x̄ =
x

lb
, ωi =

1

lb

√
Dt

mt
ω̄i (29)

Moreover, the mode shapes are normalized so that Mi = mtlb
for all the modes.

Electrostatic actuation For the electrostatic actuation,
one obtains:

ηact =
6 ε0Vdc l

4
b

ξ Yb g2h3
b

∣∣∣Φi(lb) ∫ x̄+

x̄−
Φi dx̄

∣∣∣
ω̄2
i

(30a)

Cmot =
6 b ε20V

2
dc l

5
b

ξ Yb g4h3
b

[∫ x̄+

x̄−
Φi dx̄

]2
ω̄2
i

(30b)

Gmot =

√
3 b ε20V

2
dc l

3
b

ξ
√
ρbYb g4h2

b

[∫ x̄+

x̄−
Φi dx̄

]2
ω̄i

(30c)

In this case, since there is no active layer, the mechanics of the
beam does not depend on the “active part” of the device: the de-
formed shapes Φi and the reduced frequencies ω̄i do not depend

on the optimization parameters g, x− and lt. The optimization is
then reduced to maximizing the factor

∫ x̄+

x̄−
Φi dx̄. The result is

displayed on Fig. 3(left column) by shaded areas. It shows that
for the i-th. mode, there are i maximum solutions. However, for
all modes, the optimal solution is an electrode that covers the dis-
tance between the clamped end and the location of the first node
of the mode shape (since the yellow area on Fig. 3(left column)
is the largest).

Then, independently of this, one has to chose all other pa-
rameters to maximize the factor on the left part of Eqs. (30a-c).
For instance, the gap g must be as small as possible, Vdc as large
as possible. . . One can also remark that ηact does not depend on
the device width b, whereas Cmot and Gmot do: the amount of
generated electric charge / current is proportional to b, on the
contrary of the beam’s elasticity.

Piezoelectric / dielectric actuation In the case of an
active layer actuation, one obtains:

ηact =
3 e31 l

2
b

ξ Ybh2
b

Db

Dt(1 + κ)

(
1 +

ht
hb

)
︸ ︷︷ ︸

f1

Φi(lb)[Φi,x]
x̄+

x̄−

ω̄2
i

(31a)

Cmot =
3 e2

31 blb
2ξ Ybhb

Db

Dt(1 + κ)2

(
1 +

ht
hb

)2

︸ ︷︷ ︸
f2

(
[Φi,x]

x̄+

x̄−

)2

ω̄2
i

(31b)

Gmot =

√
3 e2

31 b

4ξ lb
√
ρbYb

1

(1 + κ)2

√
mbDb

mtDt

(
1 +

ht
hb

)2

︸ ︷︷ ︸
f3

(
[Φi,x]

x̄+

x̄−

)2

ω̄i

(31c)

where

Dt

Db
= 1 +

(
4
h2
t

h2
b

+ 6
ht
hb

+ 3

)
htYt
hbYb

− 3

(
1 +

ht
hb

)2
κ

1 + κ
::::::::::::::::

mt

mb
= 1 +

ρtht
ρbhb

where here again, the underlined term comes from the ax-
ial/bending coupling. The above equations are valid for both
piezoelectric and dielectric actuation: for the latter, one has just
to use the corresponding value of e31 (Eq. (17). Yt denotes the
Young’s modulus of the active layer (Yb or Yd, depending on the
choice of transduction).

We first analyze the effect of the active layer thickness ht.
All terms but (1+ht/hp) in Eqs. (31a-c) are decreasing functions
of ht. In particular, the effect of an increase of ht is to increase



the bending stiffness Dt of the beam, so that the slope difference
[Φi,x]

x̄+

x̄− of the active layer ends is decreasing.
We now consider the factors f1, f2 and f3 of Eqs. (31a-c),

that are functions of ht/hb and Yt/Yb (and of ρt/ρb for f3). They
are shown on Fig. 4 as function of ht/hb, for several values of
Yt/Yb. One can observe that for values of Yt/Yb higher than
' 0.3, the fi are decreasing functions of ht/hb. For common
piezoelectric / dielectric materials, their Young modulus is higher
than the one of the beam material (silicon, steel, aluminium. . . ),
so that the ratio Yt/Yb is higher than one or at least close to. As
a consequence, since all terms decrease faster than (1 + ht/hp)
increases as a function of ht, the optimal thickness of the active
layer is zero !

This paradoxical effect can be explained by considering the
mechanical effect of the active layer. When actuated by a volt-
age Ṽ , it tends to change its length, which creates an axial force
on the beam that is applied at a distance d = (ht + hb)/2 from
the neutral axis. This force is be31Ṽ (obtained by integrating
Eq. (5a) over the active layer cross-section): it does not depend
on ht. As conclusion, increasing ht increases the distance d
and consequently the equivalent bending moment, but this has
a lesser effect than the increase of bending stiffness of the beam.
As seen above, this effect is opposite if Yt/Yb is small.

In practice, ht has to be chosen so that the electric field
Ez = Ṽ /ht in the active layer is smaller than its breakdown
value, above which the active layer becomes conductive.

Since ht has to be chosen as small as possible, the mechan-
ical effect of the active layer on the elasticity of the beam can
be neglected in a first approach. The slope difference [Φi,x]

x̄+

x̄−

has thus to be chosen as large as possible, by considering a par-
ticular mode shape of a standard cantilever beam. Fig. 3(right
column) illustrates the best location and length of the dielectric
layer. Again, i solutions are possible for mode i, with the best
one being associated to an active layer located at the free end of
the beam (shown in yellow on Fig. 3(right column)).

Since in practice the active layer has a non zero thickness, a
fine optimization of x− and lt can be done for modes higher than
the first one, by maximizing [Φi,x]

x̄+

x̄− with a mechanical model
that includes the increase of mass and stiffness due to the active
layer.

Finally, if a dielectric layer is considered, its thickness ht
also appears in e31, which add another decreasing term as a func-
tion of ht. The above results (one has to choose ht as small as
possible) are thus even more valid for a dielectric layer.

Optimization with the coupling factor criterion
The situation is by far different if the MEMCF is used as

optimization criterion. It has been shown in [7] that a non zero
optimal thickness is found in any cases, which leads to optimal
length and location of the active layer. This is due to the fact
that following Eq. (27), ki is inversely proportional to the elec-
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Figure 4. FACTORS f1, f2 AND f3 AS A FUNCTION OF ht/hb. THE
VALUES OF Yt/Yb ARE INDICATED ON THE FIGURE AND ρt/ρb =
1.

Mode 1 - k1 = 0.236 Mode 3 - k3 = 0.190
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Figure 5. DEFORMED SHAPES OF THE OPTIMAL CONFIGURA-
TIONS FOR AN ALUMINIUM / PIC151 BEAM CONSIDERING THE COU-
PLING FACTOR CRITERION (FROM [7]).

tric capacitance C of the piezoelectric layer, in addition to its
dependence on χi and Ki. All those quantities depend on the
thickness ht and the length lt of the active layer and those effects
can cancel each other. As a consequence (see [7, 8]), since the
optimal thickness ht can be large as compared to the one of the
beam, the mechanical influence of the active layer must be taken
into account in the optimization computation. This leads to the
optimal geometries shown on Fig. 5, where it is clear that the me-
chanical effect of the active layer influences the deformed shape
of the beam. This figure can be compared to Fig. 3 to see the op-
timization differences. For further details, see [7], especially for
quantitative values of the optimal length, thickness and location
of the active layers.

For the two other transduction principles, analogous results
may be obtained. However, since vibration damping with passive
shunt applications are a priori reserved to macro-structures, this
optimization is not considered here for a sake of brevity.



CONCLUSION
In this paper, three transduction principles have been com-

pared (electrostatic, piezoelectric and dielectric), in term of their
efficiency and of the optimization of the geometry of the active
part of the devices.

The first result is that the transduction principle of a dielec-
tric layer is electromechanically equivalent to that of a piezo-
electric layer. A similar constitutive law can be written, with a
modified e31 (or d31) coefficient, so that any model used to de-
sign a piezoelectric structure can be equally used for dielectric
layers.

The second result is that the dielectric layer transduction
principle is theoretically as efficient as the piezoelectric and elec-
trostatic ones, provided thin films of dielectric material with a
high permittivity are used. The thickness of the active layer must
be of the order of several tenth of nanometers, so that this trans-
duction principle is adapted only for nanostructures (the same
conclusion holds for the electrostatic transduction).

Finally, several optimization criteria have been considered.
It has been shown that if the device is used as a resonator, for
which one is interested in maximizing the resonance motion, the
thickness of the active layer has to be as thin as possible, so that
a model that neglects the mechanical effect of the active layers is
sufficient for the optimization. On the contrary, using the elec-
tromechanical coupling factor as an optimization parameter leads
to an optimal thickness of the active layer that can be of the same
order of magnitude than the one of the beam, so that a proper
model must include the mechanical effect of the active layer.
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vibration reduction by switch shunting of piezoelectric ele-
ments: modelling and optimization”. Journal of Intelligent
Materials Systems and Structures, 21(8), pp. 797–816.

[16] Lesieutre, G. A., and Davis, C. L., 1997. “Can a coupling
coefficient of a piezoelectric device be higher than those of
its active material?”. Journal of Intelligent Material Sys-
tems and Structures, 8(10), pp. 859–867.




