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OPTIMIZATION OF LENGTH AND THICKNESS OF SMART TRANSDUCTION LAYERS ON BEAM STRUCTURES FOR CONTROL AND M/NEMS APPLICATIONS

This work addresses the optimization of the geometry of smart sensors and actuators on cantilever beams. Three transduction principles are studied and compared in term of efficiency: piezoelectric, electrostatic and dielectric. For the piezoelectric transduction, an active layer of a shorter length than the one of the beam is added on its surfaces. For the electrostatic transduction, the beam is made of a conducting material and it is faced with a fixed electrode at a distance called the gap. This architecture is widely used for M/NEMS (Micro/Nano Elec-troMechanical Systems). The last transduction principle, new and promising, is based on the use of dielectric layers on the beam surface. In this case, the excitation is based on electrostatic forces between the charged electrodes, causing transverse deformation of the dielectric film and bending of the multilayer structure; the detection of the vibration is capacitive, based on the fluctuation of the capacitance due to the deformation of the dielectric film. This work presents the optimization of the length and the thickness of the piezoelectric/dielectric layers and, for the electrostatic case, the optimization of the length and the gap of the electrostatic cavity. The study is based on an analytic model for a laminated beam and closed-form formula of the optimization parameters (coupling factor, driving efficiency, sensing efficiency) are obtained. The application of those three transduction principles mainly focus on resonating M/NEMS sensors, whereas the case of piezoelectric transduction is also useful for * Address all correspondence to this author.

vibration control of macro-structures, especially with passive shunt techniques. General results on the comparison of the transduction efficiency, as a function of the device size and of the material properties, are also derived.

INTRODUCTION

The coupling of a mechanical structure elasticity to an electronic circuit is often use in modern applications. For macrostructures (of human size), piezoelectric materials are often used for their ability to convert the mechanical energy of the structure they are bonded on into electrical and conversely. Applications are sensors, actuators or, in the case of vibrations, control or energy harvesting [START_REF] Preumont | Vibration Control of Active Structures[END_REF][START_REF] Anton | A review of power harvesting using piezoelectric materials (2003-2006)[END_REF]. In the case of micro or nano structures, the traditional transduction principle is electrostatics, for which the mechanical structure is made of a conducting material and it is faced with a fixed electrode at a distance called the gap [START_REF] Younis | MEMS Linear and Nonlinear Statics and Dynamics[END_REF]. For actuation, a voltage is imposed between the structure and the electrode, which creates an electrostatic pressure on the structure. For detection, one monitors the electric charge variations in the electrode, that are linked to the change of the electric capacitance due to the gap variations when the structure bends. Piezoelectric transduction is also often used for micro/nano structures [START_REF] Dezest | Wafer-scale fabrication of self-actuated piezoelectric nanoelectromechanical resonators based on lead zirconate titanate (pzt)[END_REF][START_REF] Karabalin | Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films[END_REF]. In this work, a promising new transduction principle, introduced in [START_REF] Bouwstra | Excitation and detection of vibrations of micromechanical structures using dielectric thin film[END_REF] and denoted by "dielectric transduction", is also studied. It is based on the use of dielectric layers on the beam surface. In this case, the excitation is based on electrostatic forces between the charged electrodes, causing transverse deformation of the dielectric film and bending of the multilayer structure due to Poisson's effect; the detection of the vibration is capacitive, based on the fluctuation of the capacitance due to the transverse deformation of the dielectric film.

The goals of the present work are following. First, a model for the dielectric transduction principle is proposed. It is shown that in the case of thin dielectric layers, it is possible to formulate the dielectric transduction on the form of a classical piezoelectric constitutive law, with a particular value for the transduction constant d 31 . Then, the three transduction principles (piezoelectric, dielectric and electrostatic) are compared in term of efficiency. Finally, the effect of the geometry of the transduction layers (length, thickness and position on the structure for piezoelectric and dielectric; length and position of the electrode for electrostatic) on the transduction efficiency are studied, in order to optimize the electromechanical structure. Two efficiency indicator families are considered: (i) the modal electromechanical coupling factor (MEMCF), useful for passive control applications such as piezoelectric shunts (ii) several transduction indicators for resonant Micro/Nano Electro Mecanical Systems (M/NEMS). A cantilever beam is considered as a test structure. One issue addressed in particular is the mechanical effect (mass and stiffness addition) of the piezoelectric/dielectric layer on the optimization process, thanks to the multilayer modelling of the beam: can we neglect it ? In optimization of passive control with piezoelectric shunts, some studies prove that it cannot be neglected [START_REF] Ducarne | Placement and dimension optimization of shunted piezoelectric patches for vibration reduction[END_REF][START_REF] Sénéchal | Optimization of shunted piezoelectric patches for vibration reduction of complex structures -application to a turbojet fan blade[END_REF]. Is it the same for optimization of resonant M/NEMS sensors ?

Modelling of the electromechanical structures

The electromechanical structures under study are sketched on Fig. 1. For the piezoelectric and dielectric actuation, one active layer is considered, so that the structure has the form of a laminated beam, whose cross section geometry depends on the axial coordinate x. For the electrostatics transduction, the beam's cross-section geometry is assumed uniform. In the two cases, the beam kinematics is based on the classical Euler-Bernoulli assumptions: each beam cross section remain plane and normal. The model exposed in [START_REF] Ducarne | Placement and dimension optimization of shunted piezoelectric patches for vibration reduction[END_REF][START_REF] Thomas | Vibration of an elastic structure with shunted piezoelectric patches: efficient finite-element formulation and electromechanical coupling coefficients[END_REF] is used. It is based on the classical continuum mechanics theory, that is assumed to apply to the small scale devices considered in this work (for NEMS with no dimension under 100 nm [START_REF] Pelesko | Modeling MEMS and NEMS[END_REF]). The displacement field writes:

u x (x, y, z, t) = u(x, t) -z w ,x (x, t), u z (x, y, z, t) = w(x, t), (1) (2)
where t is the time, u x and u z are the axial and transverse displacement of the point of coordinates (x, y, z); u is the beam center line axial displacement and w its transverse displacement; (•) ,x denotes a partial derivative with respect to x. The displacement u y in the y-axis direction is not considered in this work. The only non-zero strain tensor component is:

x + x - l b x + x - h b g V (t) Q(t) b V (t) Q(t) h t h b
ε x = u x,x = u ,x -zw ,xx . (3) 
The electric state of the electromechanical structures is defined by the electric field and the electric displacement under the electrostatic approximation [START_REF] Tiersten | Linear piezoelectric plate vibrations[END_REF]. The electric field is assumed to be transverse and uniform, so that the potential difference V between the electrodes of an active layer of thickness h t , or between the elastic structure and the lower electrode (separated by a gap g, in the case of the electrostatic transduction), is:

V (t) = -E z (t)h t , or V (t) = -E z (t)g, (4) 
where E z is the transverse component of the electric field.

Piezoelectric transduction

For a piezoelectric active layer, the following linear constitutive law is considered:

σ x = Y p ε x -e 31 E z D z = e 31 ε x + p E z (5a) (5b)
where σ x and D z are the axial stress and the transverse electric displacement, Y p is the piezoelectric material Young's modulus in the (x, y) plane at constant electric field, e 31 is the modified piezoelectric constant and p is the modified dielectric permittivity at constant strain, when beam assumptions are formulated (σ y = σ z = 0) [START_REF] Thomas | Vibration of an elastic structure with shunted piezoelectric patches: efficient finite-element formulation and electromechanical coupling coefficients[END_REF]. In particular, e 31 = Y p d 31 where d 31 is the usual 3D piezoelectric constant.

For a thin piezoelectric layer (h t l b with l b the length of the beam), the electric field E z is assumed normal to the electrodes and uniform (the fringe effects are neglected as well as a possible linear dependence as a function of z [START_REF] Thomas | Vibration of an elastic structure with shunted piezoelectric patches: efficient finite-element formulation and electromechanical coupling coefficients[END_REF]). Integrating the above constitutive law across the area of the beam's cross section and across the electrodes area (situated between x = x - and x = x + ) lead to the following relations between the generalized quantities: the bending moment M and the electric charge Q contained in the upper electrode [START_REF] Ducarne | Placement and dimension optimization of shunted piezoelectric patches for vibration reduction[END_REF]:

M = -Dw ,xx + ΘU (x)V, Q = Θ w ,x x+ x-+ C p V, (6a) (6b) 
where

U (x) = ς(x -x -) -ς(x -x + ), (7) 
where ς(x) is the Heavyside step function (ς(x) = 0 ∀x < 0; ς(x) = 1 ∀x ≥ 0). In the above equations, D(x) is the beam's bending stiffness (in short circuit V = 0), Θ is the piezoelectric coupling coefficient and C p is the blocked capacitance of the active layer. Those three parameters depend on the geometrical and material characteristic of laminated structure of cross section. The above equations assume no axial/bending coupling, a case valid for a symmetric lamination in the transverse direction. In the present case, the lamination between x -and x + is asymmetric (see Fig. 1(a)). However, with clamped/free boundary conditions for which the axial force is zero, the axial motion is slaved to the bending motion and the above equations are still valid with modified values of D, Θ and C p . They write [START_REF] Ducarne | Placement and dimension optimization of shunted piezoelectric patches for vibration reduction[END_REF]: 

Θ = be 31 (h b + h t ) 2(
where κ = Y p h t /(Y b h b ) and k 31 = e 31 / p Y p . The axial/bending coupling is responsible of the two additional underlined terms.

The beam's equation of motion is [START_REF] Ducarne | Placement and dimension optimization of shunted piezoelectric patches for vibration reduction[END_REF]:

m ẅ + [Dw ,xx ] ,xx -Θ∆(x)V = p, (9) 
where m(x) is the beam's mass per unit length, p(x, t) is the external transverse forces per unit length and

∆(x) = [δ(x -x -) δ (x -x + )] ,
x with δ(x) the Dirac function.

Dielectric layer transduction

For a dielectric layer, we formulate the same assumptions than the one used for a piezoelectric layer [START_REF] Thomas | Vibration of an elastic structure with shunted piezoelectric patches: efficient finite-element formulation and electromechanical coupling coefficients[END_REF]: the dielectric layer is thin and covered by conductive electrodes (of negligible thickness), and the electric field E z is assumed uniform. In this case, when the dielectric layer is subjected to the electric field E z , electric charges of opposite sign appear in the electrodes, which create an attractive force between the electrodes. The dielectric layer is thus submitted to a compressing force per unit area f [12, p. 103], that creates a non zero z component of the stress in the dielectric layer:

σ z = f = - d 2 E 2 z , (10) 
where d is the permittivity of the dielectric material. Furthermore, the dielectric layer is considered linear elastic, so that its 3D constitutive law writes:

                     ε x = 1 Y d [σ x -ν (σ y + σ z )] , ε y = 1 Y d [σ y -ν (σ x + σ z )] , ε z = 1 Y d [σ z -ν (σ x + σ y )] , D z = d E z (11a) (11b) (11c) (11d) 
where Y d and ν are the Young's modulus and the Poisson's ratio of the dielectric material. In the same manner than for a piezoelectric layer, since the considered structures are beams, we assume that the stress in the y-direction vanishes: σ y = 0.

The converse electromechanical coupling in the dielectric layers is the result of its change of thickness due to f = σ z , that changes its length due to the Poisson's effect. We then obtain, with Eq. (11a), σ y = 0 and Eq. [START_REF] Pelesko | Modeling MEMS and NEMS[END_REF]:

σ x = Y d ε x - ν d 2 E 2 z ( 12 
)
The direct electromechanical coupling is also the result of the change of thickness of the dielectric layer, that changes its electrical capacitance. The current thickness of the dielectric layer is h d (1 + ε z ), so that the electric field in the layer is related to the potential difference between the electrodes with:

E z = - V h d (1 + ε z ) - V h d (1 -ε z ), (13) 
where ε z is assumed small. Using Eq. ( 11c) and ( 12) gives:

ε z = -νε x - (1 -ν 2 ) d 2Y d E 2 z . (14) 
The local electromechanical coupling laws for the dielectric layer are then:

         σ x = Y d ε x - ν d 2 V h d 2 , D z = - ν d V h d ε x -d V h d . (15a) (15b) 
They are obtained by (i) introducing ( 13) in ( 12) and (ii) by introducing ( 14) in ( 13) and the result in (11d) and (iii) neglecting any higher order term than the quadratic ones in (V, ε x ).

In practice, a linear electromechanical coupling can be obtained by superimposing a DC voltage V dc to the fluctuating voltage: V (t) = V dc + Ṽ (t). In this case, Eqs. (15a,b) becomes:

         σx = Y d ε x - ν d V dc h d Ṽ h d , Dz = - ν d V dc h d ε x -d Ṽ h d . (16a) (16b) 
where 

σx = σ x + ν d V 2 dc /
e 31 = ν d V dc h d or d 31 = ν d V dc h d Y d ( 17 
)
As a consequence, any dielectric thin layer is analogous to a piezoelectric layer, so that any structure including dielectric layers can be modelled in the same way as if the dielectric layers were piezoelectric. In particular, the generalized constitutive 

Electrostatic transduction

For the electrostatic transduction, the beam is built in a conductive material and behaves like an electrode. When a potential difference V (t) is applied between the beam and the bottom electrode (Fig. 1(b)), an electrostatic attractive force appears. We assume, in the same manner than for the active layers, that the gap between the beam and the bottom electrode is thin (g l b ), so that the electric field is normal to the electrodes and uniform. The beam is thus submitted to a force analogous to the one of Eq. ( 10), applied only on the area faced by the bottom electrode, between x = x -and x = x + . By considering that V (t) = V dc + Ṽ , the equation of motion is:

m ẅ + Dw ,xxxx -Θ e U (x) Ṽ = p, Θ e = - b 0 V dc g 2 , ( 18 
)
where 0 is the gap (vacuum) permittivity, b is the beam's width and U (x) is defined by Eq. ( 7).

For the sensing effect, the charge in the electrodes is obtained in the same way than for the dielectric actuation. The electric displacement and field in the gap are:

D z = 0 E z , E z = V g -w V g 1 + w g . (19) 
Then, integrating D z over the area faced by the electrode gives:

Q = Θ e x +
x-

w dx + C e V, C e = 0 bl t g , (20) 
where C e is the capacitance of the cavity between the bottom electrode and the beam, with l t = x + -x -the electrode length.

Modal expansion

We discretize the beam's transverse displacement field with the following modal expansion:

w(x, t) = N i=1 Φ i (x)q i (t) (21) 
where q i (t) is the i-th modal coordinate and (Φ i , ω i ), i = 1 . . . N are the first N short circuit eigenmodes of the beam, defined by the following generalized eigenvalue problem:

[DΦ i,xx ] ,xx -ω i Φ i = 0. (22) 
Then, substituting Eq. (21) into Eqs. (9,6b) and (18,20), multiplying the result by Φ j , integrating the equation of motion over the length of the beam and using the orthogonality properties of the (Φ i , ω i ), leads to:

       qi + 2ξ i ω i qi + ω 2 i q i -χ i /M i Ṽ = 0, ∀i = 1, . . . N Q = N i=1 χ i q i + C Ṽ (23a) (23b) 
where the modal electromecanical coupling coefficient χ i and capacitance C are:

piezo./dielectric transduction :

χ i = Θ Φ i,x x+ x- (24a) 
C = C p (24b)
electrostatic transduction:

χ i = Θ e x+ x- Φ i dx (24c) C = C e (24d)
and the i-th. modal mass is:

M i = l b 0 m(x)Φ 2 i (x) dx, [kg] (25) 

OPTIMIZATION CRITERIA

The efficiency of the electromechanical transduction depends on the purpose of the device and several optimization criteria may be defined.

Modal coupling coefficient

The modal coupling coefficient is the parameter χ i that appears in Eqs. (23). Its physical meaning is that it characterize either the modal force that is created per unit of input voltage or the electric charge that is created per unit modal displacement. It can be expressed in [N/V] or [C/m]. It depends on the scaling of the deformed shapes Φ i .

Resonant displacement criterion

The electromechanical transduction may be used as an actuation mean to create a resonant motion of the device. We consider the tip displacement of a cantilever beam submitted to a voltage Ṽ = V 0 cos Ωt at resonance (Ω ω i ). Using Eqs. ( 21) and (23a) reduced to a single mode, one obtains the tip displacement amplitude w 0 at the i-th resonance. It enable to define the following actuation efficiency criterion:

η act = w 0 V 0 = |χ i Φ i (l b )| 2ξω 2 i M i = |χ i Φ i (l b )| 2ξK i [m/V] ( 26 
)
where K i = ω 2 i M i is the modal stiffness of the i-th. mode.

Motional capacitance / conductance criteria

If the device is used as a mass sensor (see [START_REF] Dezest | Wafer-scale fabrication of self-actuated piezoelectric nanoelectromechanical resonators based on lead zirconate titanate (pzt)[END_REF] and reference therein), one is interested in maximizing the electric charge quantity (or the electric current intensity) that is generated at the terminals of the active layer when this active layer drives the device at a given resonance. In this case, the motional part of the generated electric charge 2 is (Eq. 23b) Q mot = χ i q i and the current intensity amplitude is

I 0 = ω i Q 0 (where Q mot = Q 0 cos(Ωt + ϕ))
since the device is run at Ω ω i . This enables to define the two following optimization criteria: the motional capacitance:

C mot = Q 0 V 0 = χ 2 i 2ξω 2 i M i = χ 2 i 2ξK i [C/V]
and the motional conductance:

G mot = I 0 V 0 = χ 2 i 2ξω i M i = χ 2 i 2ξ √ K i M i [A/V]

Electromechanical coupling factor

The electromechanical transduction can be used for passive vibration damping, by shunting the active layer with a dedicated electrical circuit (see [START_REF] Thomas | Performance of piezoelectric shunts for vibration reduction[END_REF] and reference therein or [START_REF] Berardengo | A new electrical circuit with negative capacitance to enhance resistive shunt damping[END_REF]). Basic electrical circuits are a simple resistance, that acts as an added viscous damper, or a resistance plus an inductance, that creates a resonant circuit that can be tuned on the mechanical resonance to be damped. Other techniques enhance the performance of the two basic shunts by adding in the circuit a switch whose open and close states are synchronized to the mechanical structure oscillations. In all these cases, it can be shown (see e.g. [START_REF] Thomas | Performance of piezoelectric shunts for vibration reduction[END_REF][START_REF] Ducarne | Structural vibration reduction by switch shunting of piezoelectric elements: modelling and optimization[END_REF]) that the performance of the system in term of vibration reduction are function of only one parameter: the modal electromechanical coupling factor (MEMCF) denoted here as k i for the i-th mode. It can be defined by a proper scaling of Eqs. (23a,b) (see [START_REF] Ducarne | Placement and dimension optimization of shunted piezoelectric patches for vibration reduction[END_REF][START_REF] Thomas | Vibration of an elastic structure with shunted piezoelectric patches: efficient finite-element formulation and electromechanical coupling coefficients[END_REF]) or more physically by the following effective coupling factor:

k i = (ω oc i ) 2 -(ω sc i ) 2 (ω sc i ) 2
where ω sc i = ω i and ω oc i are the natural frequencies of the beam when the active layer is respectively in short-circuit (V = 0) or in open circuit (Q = 0). In our case, imposing Q = 0 in Eq. (23b) and substituting for Ṽ in Eq. (23a) leads to (ω oc i ) 2 ω 2 i + χ 2 i /(CM i ) and:

k i = χ i ω i √ CM i = χ i √ CK i [non dim.] (27) 
The above expression for ω oc i and k i have been obtained by reducing the multi-mode model (23a,b) to only one mode (q j = 0, ∀j = i).

The MEMCF is a measure of the energy that can be exchanged between the electrical circuit and the mechanical structure [START_REF] Lesieutre | Can a coupling coefficient of a piezoelectric device be higher than those of its active material?[END_REF] in a given modal motion. It is also a measure of the efficiency of the active layers when they are used as both sensors and actuators at the same time. To compare the efficiency of the three transduction principles, we consider the modal coupling coefficient χ i (Eqs. ( 24a,c)) and we define the following ratios:

COMPARISON OF EFFICIENCY

V d c = 5 V , hd = 1 0 n m V d c = 1 0 V , hd = 1 0 n m V d c = 1 V , hd
χ dielec i χ piezo i = ν d V dc e 31 h d (28a) χ electrostat i χ piezo i = 0 V dc l 2 b e 31 g 2 h b x+ x- Φ i dx Φ i,x x+ x- (28b) 
The first ratio, that compares the efficiency of the piezoelectric and dielectric layer, is simply the ratio of the e 31 constants for the dielectric layer (Eq. ( 17)) and the piezoelectric layer. The second ratio, that compares the electrostatic transduction with respect to the piezoelectric one, is obtained by considering the value of Θ e (Eq. ( 18)) and the one of Θ (Eq. ( 8)), in the case of a very thin active layer (κ 0).

To illustrate those results, the fundamental vibration mode of a nano-beam of length l b = 10 µm, width b = 2 µm and thickness h b = 200 nm is considered with an active layer / electrode that covers the whole length of the beam (x -= 0, x + = l b ). The efficiency of the AlN piezoelectric material is considered as a reference. Here are some remarks.

• The standard values for e 31 (for usual piezoelectric materials) and V dc are of the order of 1 or 10, in S.I. units. As a consequence, the efficiency of the dielectric layer and the electrostatic transduction can be comparable to the one of the piezoelectric layer only for nano-beams, for which h d and g are between the nanometer and the micrometer. This is because the value of g and h d must balance the one of the permittivity 0 and d , of the order of 10 -11 F/m. • The efficiency of the dielectric layer is directly proportional to its permittivity d . Associated to a design with very thin layers (down to 10 nm, technically possible with the chosen dielectric materials), it is possible to achieve a dielectric transduction of equivalent efficiency to those of standard piezoelectric layer and electrostatic design, especially with SrTiO 3 material.

OPTIMIZATION OF THE GEOMETRY

We are interested here in choosing the geometry of the active layer that maximizes the performances of the devices. We propose to optimize the thickness h t of the active layer (or the gap g for the electrostatic transduction), the length l t = x + -x - of the active layer / electrode and their location on the beam, characterized by x -.

Optimization with the η act , C mot and G mot criteria

The three criteria η act , C mot and G mot are first written as functions of the geometry parameters h t (or g), l t and x -. We denote b /12 and m b = bρ b h b the bending stiffness and mass per unit length of the beam in the part not covered by the active layer, and D t and m t the same quantities in the part covered by the active layer (between x -and x + ). ρ b is the mass density of the beam's material. It is convenient to render dimensionless (denoted with overbars) the terms that depends on Φ i and ω i , in the following way:

x = x l b , ω i = 1 l b D t m t ωi (29) 
Moreover, the mode shapes are normalized so that M i = m t l b for all the modes.

Electrostatic actuation

For the electrostatic actuation, one obtains:

η act = 6 0 V dc l 4 b ξ Y b g 2 h 3 b Φ i (l b ) x+ x-Φ i dx ω2 i (30a) C mot = 6 b 2 0 V 2 dc l 5 b ξ Y b g 4 h 3 b x+ x-Φ i dx 2 ω2 i (30b) 
G mot = √ 3 b 2 0 V 2 dc l 3 b ξ √ ρ b Y b g 4 h 2 b x+ x-Φ i dx 2 ωi (30c) 
In this case, since there is no active layer, the mechanics of the beam does not depend on the "active part" of the device: the deformed shapes Φ i and the reduced frequencies ωi do not depend on the optimization parameters g, x -and l t . The optimization is then reduced to maximizing the factor x+ x-Φ i dx. The result is displayed on Fig. 3(left column) by shaded areas. It shows that for the i-th. mode, there are i maximum solutions. However, for all modes, the optimal solution is an electrode that covers the distance between the clamped end and the location of the first node of the mode shape (since the yellow area on Fig. 3(left column) is the largest).

Then, independently of this, one has to chose all other parameters to maximize the factor on the left part of Eqs. (30a-c). For instance, the gap g must be as small as possible, V dc as large as possible. . . One can also remark that η act does not depend on the device width b, whereas C mot and G mot do: the amount of generated electric charge / current is proportional to b, on the contrary of the beam's elasticity.

Piezoelectric / dielectric actuation In the case of an active layer actuation, one obtains:

η act = 3 e 31 l 2 b ξ Y b h 2 b D b D t (1 + κ) 1 + h t h b f1 Φ i (l b )[Φ i,x ] x+ x- ω2 i (31a) C mot = 3 e 2 31 bl b 2ξ Y b h b D b D t (1 + κ) 2 1 + h t h b 2 f2 [Φ i,x ] x+ x- 2 ω2 i (31b) G mot = √ 3 e 2 31 b 4ξ l b √ ρ b Y b 1 (1 + κ) 2 m b D b m t D t 1 + h t h b 2 f3 [Φ i,x ] x+ x- 2 ωi (31c) 
where

D t D b = 1 + 4 h 2 t h 2 b + 6 h t h b + 3 h t Y t h b Y b -3 1 + h t h b 2 κ 1 + κ
::::::::::::::::

m t m b = 1 + ρ t h t ρ b h b
where here again, the underlined term comes from the axial/bending coupling. The above equations are valid for both piezoelectric and dielectric actuation: for the latter, one has just to use the corresponding value of e 31 (Eq. ( 17). Y t denotes the Young's modulus of the active layer (Y b or Y d , depending on the choice of transduction).

We first analyze the effect of the active layer thickness h t . All terms but (1+h t /h p ) in Eqs. (31a-c) are decreasing functions of h t . In particular, the effect of an increase of h t is to increase the bending stiffness D t of the beam, so that the slope difference

[Φ i,x ] x+
x-of the active layer ends is decreasing. We now consider the factors f 1 , f 2 and f 3 of Eqs. (31a-c), that are functions of h t /h b and Y t /Y b (and of ρ t /ρ b for f 3 ). They are shown on Fig. 4 as function of h t /h b , for several values of Y t /Y b . One can observe that for values of Y t /Y b higher than 0.3, the f i are decreasing functions of h t /h b . For common piezoelectric / dielectric materials, their Young modulus is higher than the one of the beam material (silicon, steel, aluminium. . . ), so that the ratio Y t /Y b is higher than one or at least close to. As a consequence, since all terms decrease faster than (1 + h t /h p ) increases as a function of h t , the optimal thickness of the active layer is zero ! This paradoxical effect can be explained by considering the mechanical effect of the active layer. When actuated by a voltage Ṽ , it tends to change its length, which creates an axial force on the beam that is applied at a distance d = (h t + h b )/2 from the neutral axis. This force is be 31 Ṽ (obtained by integrating Eq. (5a) over the active layer cross-section): it does not depend on h t . As conclusion, increasing h t increases the distance d and consequently the equivalent bending moment, but this has a lesser effect than the increase of bending stiffness of the beam. As seen above, this effect is opposite if Y t /Y b is small.

In practice, h t has to be chosen so that the electric field E z = Ṽ /h t in the active layer is smaller than its breakdown value, above which the active layer becomes conductive.

Since h t has to be chosen as small as possible, the mechanical effect of the active layer on the elasticity of the beam can be neglected in a first approach. The slope difference [Φ i,x ] x+ xhas thus to be chosen as large as possible, by considering a particular mode shape of a standard cantilever beam. Fig. 3(right column) illustrates the best location and length of the dielectric layer. Again, i solutions are possible for mode i, with the best one being associated to an active layer located at the free end of the beam (shown in yellow on Fig. 3

(right column)).

Since in practice the active layer has a non zero thickness, a fine optimization of x -and l t can be done for modes higher than the first one, by maximizing [Φ i,x ] x+

x-with a mechanical model that includes the increase of mass and stiffness due to the active layer.

Finally, if a dielectric layer is considered, its thickness h t also appears in e 31 , which add another decreasing term as a function of h t . The above results (one has to choose h t as small as possible) are thus even more valid for a dielectric layer.

Optimization with the coupling factor criterion

The situation is by far different if the MEMCF is used as optimization criterion. It has been shown in [START_REF] Ducarne | Placement and dimension optimization of shunted piezoelectric patches for vibration reduction[END_REF] that a non zero optimal thickness is found in any cases, which leads to optimal length and location of the active layer. This is due to the fact that following Eq. ( 27), k i is inversely proportional to the elec- tric capacitance C of the piezoelectric layer, in addition to its dependence on χ i and K i . All those quantities depend on the thickness h t and the length l t of the active layer and those effects can cancel each other. As a consequence (see [START_REF] Ducarne | Placement and dimension optimization of shunted piezoelectric patches for vibration reduction[END_REF][START_REF] Sénéchal | Optimization of shunted piezoelectric patches for vibration reduction of complex structures -application to a turbojet fan blade[END_REF]), since the optimal thickness h t can be large as compared to the one of the beam, the mechanical influence of the active layer must be taken into account in the optimization computation. This leads to the optimal geometries shown on Fig. 5, where it is clear that the mechanical effect of the active layer influences the deformed shape of the beam. This figure can be compared to Fig. 3 to see the optimization differences. For further details, see [START_REF] Ducarne | Placement and dimension optimization of shunted piezoelectric patches for vibration reduction[END_REF], especially for quantitative values of the optimal length, thickness and location of the active layers.

For the two other transduction principles, analogous results may be obtained. However, since vibration damping with passive shunt applications are a priori reserved to macro-structures, this optimization is not considered here for a sake of brevity.

CONCLUSION

In this paper, three transduction principles have been compared (electrostatic, piezoelectric and dielectric), in term of their efficiency and of the optimization of the geometry of the active part of the devices.

The first result is that the transduction principle of a dielectric layer is electromechanically equivalent to that of a piezoelectric layer. A similar constitutive law can be written, with a modified e 31 (or d 31 ) coefficient, so that any model used to design a piezoelectric structure can be equally used for dielectric layers.

The second result is that the dielectric layer transduction principle is theoretically as efficient as the piezoelectric and electrostatic ones, provided thin films of dielectric material with a high permittivity are used. The thickness of the active layer must be of the order of several tenth of nanometers, so that this transduction principle is adapted only for nanostructures (the same conclusion holds for the electrostatic transduction).

Finally, several optimization criteria have been considered. It has been shown that if the device is used as a resonator, for which one is interested in maximizing the resonance motion, the thickness of the active layer has to be as thin as possible, so that a model that neglects the mechanical effect of the active layers is sufficient for the optimization. On the contrary, using the electromechanical coupling factor as an optimization parameter leads to an optimal thickness of the active layer that can be of the same order of magnitude than the one of the beam, so that a proper model must include the mechanical effect of the active layer.
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 1 Figure 1. ELASTIC BEAMS WITH ELECTROMECHANICAL TRANS-DUCTION (a) BEAM WITH AN ACTIVE LAYER; (b) BEAM WITH ELEC-TROSTATIC TRANSDUCTION

  2h 2 d and Dz = D z + d V dc /h d are the fluctuating axial stress and electric displacement. Note that the quadratic nonlinear terms in ( Ṽ , ε x ) have been neglected. Eqs. (16a,b) are formally equivalent to the piezoelectric constitutive law (5a,b) with equivalent piezoelectric coefficients 1
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  When comparing Eqs. (16a,b) to (5a,b) to identify e 31 , and especially its sign, one has to recall that Ṽ /h d in (16a,b) is the opposite of an electric field laws (6a,b) and the equation of motion (9) are still valid for the dielectric layers transduction.
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 2 Figure 2. COMPARISON OF EFFICIENCY (FROM EQS. (28a,b)) BE-TWEEN PIEZOELECTRIC (blue), DIELECTRIC (orange) AND CAPACI-TIVE (green) TRANSDUCTIONS.
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 3 Figure 3. THE FIRST THREE MODE SHAPES OF A CANTILEVER BEAM SHOWING THE MAXIMAL VALUE OF x+ x-Φ i dx (BY SHADED AREAS, LEFT COLUMN) AND [Φ i,x ] x+ x-(BY COLORED ACTIVE LAY-ERS WITH OPTIMAL LOCATION AND LENGTH, RIGHT COLUMN)
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 415 Figure 4. FACTORS f 1 , f 2 AND f 3 AS A FUNCTION OF h t /h b . THE VALUES OF Y t /Y b ARE INDICATED ON THE FIGURE AND ρ t /ρ b = 1.