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Mutual Localization and Positioning of Vehicles Sharing GNSS
pseudoranges: Sequential Bayesian approach and Experiments

Khaoula Lassoued, Isabelle Fantoni and Philippe Bonnifait

Abstract— In many cooperative Intelligent Transportation Sys-
tems (ITS) applications, absolute positioning and relative lo-
calization are key issues. When vehicles share GNSS positions,
there are often non negligible common-mode errors due mainly
to GNSS signal propagation and inaccurate ephemeris data.
Cooperative observation techniques allow estimating common
biases on the measured pseudodistances to correct these errors
and to increase absolute positioning and relative localization
accuracy. After having studied some structural properties of the
problem in its general form, a low computational cooperative
tightly-coupled approach is proposed using sequential Kalman
filtering and convex data fusion. As a case study, we consider
two vehicles, which cooperate and exchange information in
such a way that each vehicle can track the partner’s position
and improves its absolute position by merging common biases
estimates. Experimental results are presented to illustrate the
performance of the proposed approach in comparison with a
classic standalone method.

I. INTRODUCTION

In many ITS applications, direct wireless communication
V2V (Vehicle To Vehicle) allows the traffic participants to
know where they are with respect to the others even if they
can’t see the others with their own exteroceptive sensors
(e.g. cameras or lidars). But, when using low cost Global
Navigation Satellite Systems (GNSS) receivers in complex
environments, errors can have a great impact. The effects
of these errors can be reduced by considering information
exchange. Standalone GNSS positioning is affected by atmo-
spheric and ephemeris errors and also multipath. Our target
is to eliminate the common errors and to improve the posi-
tioning and localization performance. Positioning means the
estimation of the ego position in a fixed working frame and
localization refers to the estimation of the relative partners
positions in the ego frame. The bias error of standalone
GNSS is little observable when loosely coupling the GNSS
fixes with Dead Reckoning (DR). In [1], the GPS bias is
estimated using the perception of lanes and crosswalks stored
in the map data. In [2], the authors used a GPS/DR/map in
a tightly coupled mode for autonomous vehicle navigation.
Moreover, they proposed an error model to estimate the bias
on every pseudorange. V2V communication allows taking
advantage of the fact that GPS receivers operating in close
vicinity and observing the same constellation of satellites
have correlated errors. These errors can be largely eliminated
when other receivers are taken into consideration as it is done
in the differential DGPS technique, when a reference station
estimates the errors thanks to its known surveyed position
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and provides this information in the form of corrections to
the users located in the vicinity [3]. In [4], a loosely coupled
RTK GPS receiver position with DR/laser/magnets sensors
is proposed in order to reduce errors in position estimates for
an accurate cooperative localization. In the present work, we
do not compensate the position estimates but we exploit raw
pseudoranges measurements since we consider environments
in which the vehicles may not have the same satellites
in view. Our approach has some similarities with DGPS
but an important difference comes from the fact that the
considered mobile GNSS receivers are not precisely located.
Two existing main data fusion processes address this issue:
centralized and decentralized. The first one is based on a
central fusion point or group of points depending on the
agents operation in a limited or large environment. Mao et.
al [5] proposed a centralized Bayesian algorithm for vehicle
positioning and tracking in large environments. However,
their algorithm is not able to realize cooperative tracking.
The second fusion scheme is based on a decentralized
architecture which can also be separated in data exchange
or state exchange approaches. In [6], robots exchange rela-
tive and absolute positioning information. The cons of this
approach are the large quantity of transmitted information.
When exchanging global states, this data fusion strategy can
significantly reduce the amount of shared data but it has to
address the data incest problem (i.e. the result of a repeated
use of identical information). Roumeliotis et al. introduced
a distributed approach for collective localization based on
a centralized EKF [7] and resolved the data incest problem
by exchanging only a part of the group state [8] between
vehicles. An other approach [9] exploits all the available
information in each vehicle and handled private copies of the
group knowledge to solve the data incest issue. To do the data
fusion, there are different fusion operators depending on the
assumptions whether the two estimates to be fused are inter-
correlated or not. One can use Simple Convex Combination
(SCC), Bar-Shalom/Campo Combination (BCC), Informa-
tion De-correlation (ID), Linear Minimum Variance Estimate
(LMVE) and Covariance Intersection (CI) [10].
In this work, we propose a new formulation of multi-vehicles
cooperation using sequential Bayesian estimation and SCC.
The novelty of the proposed approach lies in improving ego
positioning and mutual localization in between vehicles by
sharing GNSS pseudoranges biases. The developed method
allows the data fusion of estimated biases in a distributed
way with no central fusion node using SCC by assuming that
the cross-covariance between two estimates can be ignored.
Experimental evaluation using two vehicles is performed to



face real conditions. Both methods, cooperative and stan-
dalone, are compared to illustrate the improvements brought
by cooperation.

Section II introduces the system modeling. Section III out-
lines an observability study of the cooperative localization
using biased exteroceptive measurements. The proposed dis-
tributed cooperative localization algorithm is described in
section IV. Experimental results are presented in section V,
with a comparison between the standalone and cooperative
methods.

II. MODELING

We present here the mathematical models for nr vehicles.
Each vehicle Ri has to be able of operating autonomously
without being reliant on a central processing unit. A fully
distributed state estimation method is adopted.

A. Observation model

The observation model is the distance from each vehicle
i (i = {1, . . . , nr}) located at coordinates pi = (xi, yi, zi)
to each satellite j (j = 1, . . . , ns) at position pj . nr and
ns denote the number of vehicles and the total number of
satellites in view from the vehicles. In a GNSS system, this
distance is derived from the time of transmission which is
called pseudorange iρj [3]. Moreover, the position of every
satellite is known with some error ∆j = (δxj , δyj , δzj ) in the
working frame. Eq. (1) shows the expression of iρj , where
di = cδti is the receiver clock offset (δti is the receiver clock
delay of vehicle i and c is the speed of light):

iρj =
√

(xi−(xj+ δxj))
2+(yi−(yj+δyj))

2+(zi−(zj+δzj))
2+di
(1)

This model can be linearized with ∆j acting as an additive
bias bj on the pseudorange iρj . Considering:{

iρj∆=
√

(xi−(xj+δxj))
2+(yi−(yj+δyj))

2+(zi−(zj+δzj))
2

iρjreal=
√

(xi−xj)2+(yi−yj)2+(zi−zj)2+di
Eq. (1) becomes:

iρj =i ρj∆ + di (2)
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Fig. 1: GNSS pseudoranges

From Fig. 1 we have :

cosα =
iρj∆ − iρjreal cos θ

bj
(3)

The pseudoranges iρj∆ and iρjreal from satellite j to vehicle
i are different from the distance bj between the real position

of satellite and the erroneous one. The two lines of sight
iρj∆ and iρjreal are nearly parallel to each other. It means
that θ ≈ 0 and then α ≈ 0. Taking Eq. (3) while considering
α ≈ 0 and θ ≈ 0 we get:

iρj∆ = iρjreal + bj (4)

Using Eq. (4), Eq. (1) becomes:
iρj =

√
(xi−xj)2+(yi−yj)2+(zi−zj)2+bj+di (5)

where bj is the bias of satellite j. In section V, we will add
a term iβj , in order to take into account the measurement
noise. The observation model presented in Eq. (5) being
similar for each vehicle, the pseudoranges vector is written
as:

iY =
[

iρ
1 iρ2 . . . iρns

]T
B. Evolution model

A classical unicycle model f is used to predict the DR
position and orientation of the vehicles. The receiver clock
offset di and its drift ḋi have also to be taken into account.
Each vehicle is equipped with a yaw rate gyro and wheel
encoders to measure the speed and the angular velocity,
which constitute an input vector iUk = [ vi,k ωi,k ]T . The
evolution model of vehicle i and an auto-regressive (AR)
biases model at each sample k are described by:

f =



xi,k = xi,k−1 + Tevi,k−1 cosψi,k−1

yi,k = yi,k−1 + Tevi,k−1 sinψi,k−1

zi,k = zi,k−1

ψi,k = ψi,k−1 + Teωi,k−1

di,k = di,k−1 + Teḋi,k−1 + αd
k

ḋi,k = ḋi,k−1 + αḋ
k

(6)

bjk = a bjk−1 + α
bj
k

(7)
where Te is the sampling period, ψi is the orientation angle of
the vehicle, a ∈ [0, 1] is the inverse of the correlation time,
αd
k, αḋ

k and α
bj
k are respectively the noises corresponding

to the receiver clock offset di, its drift ḋi and to the bias
bj at each sampling time k. In the following, N denotes
the covariance matrix of the measurements noise γk =
[ γvk γωk ]T of Uk, and Q denotes the covariance matrix
of the model noise αk = [ αb1

k . . . αb2
k αd

k αḋ
k

]T .

III. OBSERVABILITY CONSIDERATIONS

Let consider simple and double difference observable com-
binations to remove biasesand clock offsets from the state.
This allows to study the observability of the positions of the
cooperative system made of nr vehicles. Let i = 1, . . . , nr be
the index of the vehicles, j = 1, . . . , ns the index of common
satellites in between the vehicles and iRj the geometric dis-
tance between vehicles and satellites. The single difference
between two receivers requires at least one common visible
satellite and 2 receivers. Taking the single difference, the
common bias bj can be effectively removed:

SDj
(1,2) = 1ρj −2 ρj = (1Rj − 2Rj) + (d1 − d2) (8)



Considering another k satellite, the double difference is
the difference of single differences considering at least 2
satellites {k,j} and two vehicles. With a double difference,
the errors due to the receivers clocks (dk and dj) can be
canceled:
DDjk

(1,2)
=SDj

(1,2)−SD
k
(1,2) =1ρj−2ρj−2ρk+2ρk

(9)
= 1Rj − 2Rj −2 Rk +2 Rk

Now, the state observability of a cooperative system is
studied using the DD measurements (Eq. 9). The system is
observable if one can find its unknown variables. We have to
find the minimal number ns of satellites such that the system
is observable. To obtain at least one DD measurement, we
need nr ≥ 2 and ns ≥ 2.

pi being the position of each vehicle i, the state vector of
the cooperative system is:

ix =
[
p1 p2 . . . pnr

]T
(10)

The number nx of unknown variables of the system ix are
the coordinates of each robot i:

nx = 3.nr (11)

Let nm be the number of available DD measures (Eq. 9).
Clearly to solve this problem one must have:

nm ≥ nx (12)

nm, nr and ns are linked by the following expression where
Cns

2 and Cnr
2 are the binomial coefficients (e.g. combination

of 2 satellites from ns satellites respectively combination of
2 robots from nr) :

nm = Cns
2 .Cnr

2 (13)

For instance, with 2 vehicles one has 1DD with 2 satellites
and 6DD with 4 satellites and 105DD with 15 satellites
and with 4 vehicles one has 18DD with 3 satellites.

Using Eq. (11) and (13), the inequality in (12) becomes:

Cns
2 .Cnr

2 ≥ 3.nr (14)

By taking the expressions Cns
2 = ns (ns−1)

2 and Cnr
2 =

nr (nr−1)
2 , we can further simplify Eq. (14) as a second-order

polynomial in ns as follows:

f(ns) = n2
s − ns − a ≥ 0 (15)

where a = 12
nr−1 ≥ 0, (nr − 1 ≥ 1 as nr ≥ 2). Eq. (15)

has two solutions and one of them is rejected since it is
negative. The minimal required number of common satellites
ns between vehicles such that the system is observable is
1+
√

1+4a
2 .

As a conclusion of the relation between the solution ns and
the number of vehicles nr, in order to observe the positions
of the vehicles of the system (10) one must have: If nr =
2 ⇒ ns ≥ 4 , if 3 ≤ nr ≤ 6 ⇒ ns ≥ 3 and if nr ≥ 7 ⇒
0 < a ≤ 2 ⇒ 1 < S1 ≤ 2 ⇒ ns ≥ S1 > 1 ⇒ ns ≥ 2.
This conclusion shows that as we increase the number of
vehicles, we increase the number of measurements. Then,
we can reduce the minimal required number of satellites ns.

At this stage, we have the minimal condition to estimate the
position of every vehicle.

Now, if we consider the complete state of the cooperative
system composed of positions, biases and receiver clock
offsets, we can show that the biases and the clock offsets are
also observable. Since we know the position of every vehicle
and the pseudo-distance measurement, the only unknown
variables in Eq. (5) are the bias and the clock offset. In the
worse case with 2 vehicles and 4 satellites in view, we get
a non singular linear system of 8 equations (8 pseudoranges
measurements and 8 estimated positions) and 6 unknowns (4
biases and 2 clocks terms) and therefore the biases and the
clock offsets are observable.

IV. BAYESIAN COOPERATIVE ESTIMATION

Suppose the state to be estimated is a finite dimensional
random vector x with mean x̄ and covariance P . Suppose
that n estimates x̂i have to be merged with their error
covariance given by Pi. The distributed fusion problem
is to estimate an “optimal” estimate x̂ from the available
estimates. The SCC fusion algorithm is given by Eq. (16),
where the error covariance and the state estimate are

P−1 =

n∑
i=1

P−1
i

x̂ = P · (
n∑

i=1

P−1
i · x̂i)

(16)

In each agent Ri, we have an ego part identified by the
index ego and a part dedicated to the tracking of the others
identified by the index o. Let Ri be the ego vehicle in the
group of nr vehicles. The index of the other vehicles Roj is
j = {1, . . . ,M} with j 6= i and M = nr − 1 is the number
of other vehicles in the group. This section describes the
algorithm running in Ri. The same algorithm is executed in
the other vehicles Roj .
ixego =

[
iq ib iξ

]T
is the ego state of Ri estimated

in Ri, where iq = [ xi yi zi ψi ]T is the pose of
Ri estimated in Ri in the absolute working frame, ib =
[b1, . . . , bns ]T are the biases of all ns satellites in view esti-
mated in Ri and iξ = [ di ḋi ]T are the inner variables of
Ri containing respectively the clock offset di and its drift ḋi.

iPego =

 Pq Pq,b Pq,ξ
Pq,b Pb Pb,ξ
Pq,ξ Pb,ξ Pξ

 is the ego error covariance,

iuego =
[
vi wi

]T
is the ego input of Ri, where vi

and wi are respectively the linear speed and the angular
rate measurements. iqo = [iqTo1 , . . . ,

iqToM ]T is the pose of
other vehicles estimated in Ri, iuo = [iuT

o1 , . . . ,
iuT

oM ]T

is the input of Ro composed of iuoj = [ voj woj ]T

which contains the linear speed and the angular rate measures
of each Roj . iPq,o = [iPq,o1 , . . . ,

iPq,oM ]T and iPb,o =
[iPb,o1 , . . . ,

iPb,oM ]T are the parts of the errors covariance
matrix depending respectively on q and bj of Roj .

Fig. 2 specifies the algorithm of the data fusion for agent Ri.
It involves 4 stages: prediction/track, update, communication
and fusion.



Stage 1: The agent Ri predicts its ego state using the
evolution model in Eq. (6) and Eq. (7) and its DR measure-
ments. Acquisition is done at high rate (typically, 100Hz).
Moreover, it tracks the other vehicles using the last known
input of the others. The state evolution of the group can be
modeled by the function ftrack according to Eq. (17):
iq̂oj = ftrack

(
iq̂oj

,i uoj

)

=


xoj ,k = xoj ,k−1 + Tevoj ,k−1 cosψoj ,k−1

yoj ,k = yoj ,k−1 + Tevoj ,k−1 sinψoj ,k−1

zoj ,k = zoj ,k−1

ψoj ,k = ψoj ,k−1 + Teωoj ,k−1

(17)

By denoting Ak =
∂f
(
ix̂egok−1,k−1

,iuegok

)
∂ixego

, Bk =

∂f(ix̂egok−1,k−1,
iuegok)

∂iuego
, the EKF solver in stage 1 is

described by Algorithm 1 and the track process by
Algorithm 2.

Algorithm 1 An iteration of the prediction step for vehicle
Ri

Prediction(In out: ix̂ego,iPego)
1: iuego = [vi, ωi]

T
=Get(individual DR measurements)

2: ix̂ego = f
(
ix̂ego,

i uego

)
3: iPego = Ak · iPego ·AT

k +Bk ·N ·BT
k +Q

Algorithm 2 An iteration of the track step for vehicle Ri

Track(In: iq̂o,iuo ; out: iq̂o)
1: for j = 1, . . . ,M do
2: iq̂oj = ftrack

(
iq̂oj ,

i uoj

)
3: end for

Stage 2 : It consists in updating the state ixego with respect
to GNSS measurements. The acquisition is done at lower rate
(for example 5Hz when using a classical GPS receiver). In
order to reject outliers when the GNSS measurements are
made available, a gating process on the measurements of
every satellite is adopted. Let j be the index of exteroceptive
measurements with j = {1, . . . , nm}. For every pseudorange
measurement: Check that the SNR (Signal to Noise Ratio)
of satellite is high enough (e.g. 35 dBHz) and that the
Mahalanobis distance Dj depending on the innovation is
smaller than a threshold. The EKF solver in stage 2 is defined
by Algorithm 3. The process is time-triggered with the DR
sensors which have the highest rate (100Hz). The latency
of the GNSS measurements can be neglected.
Stage 3: When a communication is available the cooperation
can be done by sharing the following information at each
time-stamp k as it is detailed in Algorithm 4:

• Ri broadcasts dataS to the other vehicles :iuego (
the DR input at time k of Ri), iqego and iPq,ego

(sub-vector and sub-matrix corresponding to q in ixego

and iPego),ibego and iPb,ego(sub-vector and sub-matrix
corresponding to bj in ixego and iPego) and iid (the
identifier of ego vehicle).

• Ri receives from each other vehicles Roj the following
dataR: ojuego(the DR input at time k of Roj ), ojqego
and ojPq,ego(sub-vector and sub-matrix corresponding

to q in ojxego and ojPego), ojbegoand ojPb,ego (sub-
vector and sub-matrix corresponding to bj in ojxego

and ojPego) and oj id (ID of other vehicles).

Algorithm 3 An iteration of stage 2 for vehicle Ri

Update(In out: ix̂ego, iPego)
1: if New GNSS data is available then
2: ns= number of visible satellites
3:

[
ρ1, . . . , ρns

]
=Get(GNSS measurements)

4: Good_Pr=∅
5: for j = 1, . . . , nm do
6: if (ρj is valid)&(Dj < Threshold) then
7: Add(ρj) to the Good_Pr list
8: end if
9: end for

10:
[
ix̂ego,

iPego

]
=Update(ix̂ego,iPego,Good_Pr)

11: end if

Algorithm 4 An iteration of stage 3 for vehicle Ri

Communication(In: dataS; out: dataR)
1: for j = 1, . . . ,M do
2: Broadcast(iuego,

iqego,iPq,ego,ibego, iPb,ego,iid)
3: end for
4: for j = 1, . . . ,M do
5: iuoj id =Receive(

oj iduego)
6: iqoj id =Receive(

oj idqego)
7: iPq,oj id =Receive(

oj idPq,ego)
8: iboj id =Receive(

oj idbego)
9: iPb,oj id =Receive(

oj idPb,ego)
10: end for

Stage 4: The track update consists in replacing iqo , iPq,o

by oqego , oPq,ego at time-stamp k (Algorithm 5). The bias
update corresponds to the fusion of the received estimated
biases of the other vehicles obego and the Ri ego estimated
biases ibego using the SCC fusion algorithm. For example,
consider the fusion process in vehicle Ri. By denoting by
ibc the result of the fusion of the biases, by iPbc the result of
the errors covariance of biases fusion and by nM the number
of detected Roj , we get Algorithm 6. We can now write the
main cooperative Algorithm 7.

Algorithm 5 Track update of stage 4 for vehicle Ri

Track_update(In: oqego,oPq,ego; out: iqo,iPq,o)
1: iqo = oqego
2: iPq,o =oPq,ego

V. EXPERIMENTAL RESULTS

The results of two scenarios, i.e., standalone and cooperative,
are reported here to quantify the performance gain due to the
cooperation. In this work, we tested our approach only with
two vehicles. Two automotive experimental vehicles per-
formed different trajectories near the Heudiasyc laboratory.
A low-cost U-blox 4T GPS receiver providing pseudoranges
measurements at 5Hz was used in every vehicle. Each
vehicle was equipped with a Polarx Septentrio in RTK mode
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Algorithm 6 A fusion iteration of stage 4 for vehicle Ri

Fusion(In: ibego,iPb,ego,ojPb,ego,ojbego; out: iPbc ,ibc)

1: iPbc = iP−1
b,ego +

nM∑
k=1

okP−1
b,ego

2: ibc = P−1
bc

(iPb,ego · ibego +

nM∑
k=1

okPb,ego · okbego)

Algorithm 7 Cooperation between vehicle Ri and Ro

1: Fusion(In: ibego,iPb,ego,ojPb,ego,ojbego; out: iPbc ,ibc)
2: for t = 1, . . . , tcan do
3: Prediction(In out: ix̂ego,iPego)
4: Track(In: iq̂o,iuo ; out: iq̂o)
5: Update(In out: ix̂ego, iPego)
6: Communication(In: dataS; out: dataR)
7: Track_update(In: oqego,oPq,ego; out: iqo,iPq,o)
8: end for

to obtain the ground truth data and a CAN-bus gateway to
get the measured input uego =

[
v w

]T
at 100Hz rate.

10 satellites were in view during the acquisition and 6 of
them were at least in common, which satisfies the condition
of the observability study in III. The GPS satellite visibility
was sometimes very constrained due to the buildings near the
test area. Positioning and localization performance is studied
in terms of the 2D pose errors. Fig. 3 and 4 show the absolute
Horizontal Positioning Errors (HPE) of R1 and R2 for the
cooperative (C) and the standalone (S) methods. We can
notice that the C method has reduced the confidence domain
size and the HPE, especially for the vehicle R1 despite the
integrity lack in some samples compared to the S method.
Fig. 5 shows the relative localization errors for both methods.
A gain of accuracy of the order of several meters is observed.

Fig. 6 shows the cumulative distribution of HPE of R1 for
the C and S methods. It is noticeable that the cooperative
method improves the accuracy compared to standalone since
the 95th percentiles of the C and S methods are respectively
8.56m and 9.87m. Fig. 7 shows the Cumulative Distribution
Function of the confidence domain size of the HPE of
R1 by the S and C methods. The 95th percentiles of the
cooperative and standalone methods are respectively 5.67m2
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Fig. 3: Absolute Horizontal Positioning Errors of R1.
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Fig. 4: Absolute Horizontal Positioning Errors of R2.

and 6.61m2. The cooperative approach also improves the
S method in terms of confidence. A net improvement is
obtained for the vehicle R1 where HPE standard deviation is
reduced from 4.25m to 3.65m using our approach compared
to the S method. Concerning the vehicle R2 the improvement
of HPE is not as noticeable as in R1, but the confidence
domain size is reduced.
The accuracy improvement of the relative localization is
obtained thanks to the fusion of biases estimates. Especially,
the error average and error standard deviation are reduced
respectively from 7.85m and 4.2m to 6.5m and 3.9m using
the cooperative approach.

The bias on every pseudorange is initialized at zero. For each
subplot of Fig. 8 the abscissa expresses time in seconds,
the ordinate gives every estimated bias bj on meters where
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j = 1, . . . , ns. The measurements of satellites 17 and 27
became available after 76s and after 116s for satellite 28.

VI. CONCLUSION

This paper has described a cooperative sequential Bayesian
approach for positioning and localization of cooperative ve-
hicles. An observability analysis has been developed to show
that is possible to estimate the biases of the measurements
even if no vehicle is accurately located. Cooperation clearly
improves absolute positioning and mutual localization. The
use of an easy-to-implement SCC fusion operator proves
that the method gives better results in terms of accuracy
compared to the classical standalone method. The effect
of the use of SCC on the confidence estimation has been
also studied. Indeed, this data fusion operator is not robust
to the data incest problem since it reuses the fused biases
estimates in a sequential way. We have noticed that the
cooperative method looses sometimes its consistency as
shown by the experiments. Therefore, ongoing work is on
the implementation of set-membership methods to deal with
this issue [11] to get reliable confidence domains.
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