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Abstract: An automatic grid refinement method is presented for the simulation of ship flows. It 
provides directional refinement of unstructured grids and derefinement of refined grids for 
unsteady simulation, it is fully parallel and includes automatic dynamic load balancing. Different 
refinement criteria are implemented. Results are presented that confirm the increased accuracy of 
solutions obtained on refined grids. Refinement around the water surface proves to be very 
effective for the simulation of strong breaking waves. A pressure gradient criterion is shown to 
detect the main features of a ship flow and to be able to generate effective fine grids in their 
entirety. 
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implementation. 
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1 Introduction 

Adaptive grid refinement is a technique to increase the 
accuracy and efficiency of numerical simulations for flows 
with localised flow phenomena. To obtain acceptable 
numerical errors near these structures, fine grids are needed 
there; for efficiency, coarse grids are desired in the rest of 
the domain. Adaptive grid refinement creates these grids by 
locally dividing the cells of an initial coarse grid into 
smaller cells. 

The water flow around a ship contains many local 
features. For a surface capturing discretisation, the water 

surface appears as a numerically smeared discontinuity in 
the volume fraction; to capture the surface sharply, very fine 
cells are needed around this discontinuity. Also, the orbital 
velocity field of the ship’s waves is local. It appears below 
the water surface, in the wave train. And lastly, the bilge 
vortices, that play an essential role in the velocity field 
encountered by the propeller, consist of local very strong 
gradients. 

Thus, to efficiently obtain highly accurate simulations of 
ship flow, adaptive grid refinement is an excellent choice. 
This is even more evident for unsteady ship flow, where the 
position of the local features changes in time. To be 
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successful for ship flow, the adaptive refinement technique 
must work for all these different types of flows. 

An automatic mesh adaptation method has been 
developed for ISIS-CFD, the flow solver created by Equipe 
Modélisation Numérique (EMN, i.e., CFD Department 
of the Fluid Mechanics Laboratory). The goal of the 
development was to produce a method that can be 
used in daily practice for all the applications of this 
code, notably complex geometries, steady and unsteady 
flows, free surface capturing, and grid deformation for 
the imposed or resolved motion of ship hulls. Furthermore, 
the method needs to be easily maintainable as the code 
develops over the years. Therefore, the mesh adaptation 
method has been made general: it allows unstructured 
grids, directional refinement to keep the size of 3D refined 
grids low, and derefinement of refined grids to enable 
unsteady flow simulation. The method is flexible to 
allow the easy changing of refinement criteria and, like 
the flow solver, it is completely parallel. Full integration of 
the refinement method in the flow solver is being 
completed. 

2 The ISIS-CFD flow solver 

ISIS-CFD, available as a part of the FINETM/Marine 
computing suite, is an incompressible unsteady Reynolds-
averaged Navier-Stokes (URANS) method. The solver is 
based on the finite volume method to build the spatial 
discretisation of the transport equations. The unstructured 
discretisation is face-based, which means that cells with an 
arbitrary number of arbitrarily shaped faces are accepted. A 
detailed description of the solver is given by Duvigneau et 
al. (2003) and Queutey and Visonneau (2007). 

The velocity field is obtained from the momentum 
conservation equations and the pressure field is extracted 
from the mass conservation constraint, or continuity 
equation, transformed into a pressure equation. In the case 
of turbulent flows, transport equations for the variables in 
the turbulence model are added to the discretisation. 
Free-surface flow is simulated with a multiphase flow 
approach: the water surface is captured with a conservation 
equation for the volume fraction of water, discretised with 
specific compressive discretisation schemes, see Queutey 
and Visonneau (2007). 

The method features sophisticated turbulence models: 
apart from the classical two-equation −k ε  and −k ω  
models, the anisotropic two-equation explicit algebraic 
stress model (EASM), as well as Reynolds stress transport 
models, are available, see Deng and Visonneau (1999) and 
Duvigneau et al. (2003). The technique included for the six 
degree of freedom simulation of ship motion is described by 
Leroyer and Visonneau (2005). Time-integration of 
Newton’s laws for the ship motion is combined with 
analytical weighted or elastic analogy grid deformation to 
adapt the fluid mesh to the moving ship. Furthermore, the 
code has the possibility to model more than two phases. For 
brevity, these options are not further described here. 

3 Refinement technique 

During a flow calculation with adaptive grid refinement, the 
refinement procedure is called repeatedly to keep the grid 
permanently adapted to the developing solution. Globally, 
the method works as follows: the flow solver is run on an 
initial grid for a limited number of time steps. Then the 
refinement procedure is called. If a refinement criterion, 
based on the current flow solution, indicates that parts of the 
grid are not fine enough, these cells are refined and the 
solution is copied to the refined grid. On this new grid, the 
flow solver is restarted. Then the refinement procedure is 
called again, to further refine or to derefine the mesh. This 
cycle is repeated several times. When computing steady 
flow, the procedure eventually converges: once the flow 
starts to approach a steady state and the grid is correctly 
adapted to this state according to the refinement criterion, 
then the refinement procedure keeps being called, but it no 
longer changes the grids. 

3.1 Data structure 

The refinement is cell-based. At this moment, it is limited to 
unstructured hexahedral cells, but the code is written such, 
that other cell types can be easily included. The grid data 
structure of ISIS-CFD, that uses node coordinates and 
pointers between cells, faces, and nodes, is used as the basis 
for the grid refinement. The number of extra pointers is 
limited; the main addition is a system of cell family ties. 
These stores the history of the refinement, so refined cells 
can be derefined again to recover the original grid. When a 
cell is refined, all the new small cells get a ‘mother’ pointer 
to the old big cell and ‘sister’ pointers to each other. Thus, 
the group can be found again later and derefined back into 
the single large cell. The large cell is saved as a ‘dead’ cell, 
that has no faces nor a state vector, only family ties. Thus, it 
conserves its own sisters and mother (probably ‘dead’ as 
well), in case it has to be derefined itself, after being 
restored. 

3.2 Refinement decision 

For maximum flexibility, the code is divided in three 
separate parts: the calculation of the refinement criterion, 
the refinement decision, and the actual (de)refinement. To 
permit the user choice of refinement criteria and the easy 
incorporation of new refinement criteria in the code, the 
criterion is computed as a field variable (comparable to the 
velocity or the pressure). It does not depend explicitly on 
the type or the orientation of the cells. 

In the second step, this refinement criterion is 
transformed into the decision of which cells to refine or to 
derefine. While this decision may depend on the type of the 
cells, it does not depend on the specific way in which the 
refinement criterion is calculated. It remains the same for 
any refinement criterion. 

During the refinement decision step, the decision in each 
cell is adapted to its neighbour cells. To guarantee the 
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quality of the mesh, extra cells may need to be refined, or 
derefinement of cells may be prevented. The most important 
quality criteria are given in Figure 1. A face of a cell may 
not be divided two times, which would cause too great 
differences in the sizes of its neighbour cells. And the angle 
between face normals and lines cell centre – face centre may 
not be too great: this reduces the quality of the state 
reconstruction at the faces, as indicated by Queutey and 
Visonneau (2007). At the end of the decision step, before a 
single cell is refined, the refinement of the whole mesh is 
known; this makes the actual refinement much easier. 

Figure 1 Grid quality criteria. Forbidden are (a) faces that are 
divided twice (b) too large angles between face 
normals and lines cell centre – face centre. 

(a) (b) 

Note: The images represent 2D examples. 

3.3 Refinement 

The actual (de)refinement is done cell by cell. Care is taken, 
after the treatment of each individual cell, to leave a valid 
mesh with all the pointers between cells, faces, and nodes in 
place, even if one knows that certain pointers will be 
changed again when a neighbour cell is refined later on. 
This guarantees that, when a cell is refined, it does not have 
to distinguish between neighbour cells that are refined, that 
will be refined, or that remain unchanged. The added 
flexibility and robustness of the code are well worth the 
extra work this represents. Furthermore, in the code, the 
refinement of cells and faces is completely decoupled. 
These parts exchange only minimal information; a face does 
not need to know all the details of the refinement of its 
neighbour cells. This greatly facilitates unstructured-grid 
and directional refinement. Finally, the derefinement and 
refinement procedures are separated. Derefinement is 
performed first. 

3.4 Parallel redistribution 

For efficient parallel flow computation, automatic 
redistribution of the cells over the processes is included in 
the grid adaptation procedure. This redistribution is 
completely integrated, it is performed between the 
derefinement and refinement steps; at that moment, the grid 
is at its smallest. Due to the preceding calculation of the 

refinement decision, the final topology of the grid is already 
known then. Using this information, the grid is first 
repartitioned in parallel with the ParMeTiS library, see 
ParMeTiS (2009). 

The next step is the actual displacement of cells between 
the processes. This step is complicated by the strictly local 
numbering used in each block. To solve this problem, each 
block is domain-decomposed itself into sub-blocks to be 
dealt with by specific processes. The data structure for each 
sub-block is the same as the structure of the blocks and each 
individual sub-block gets its own local numbering. These 
sub-blocks are exchanged between the processes by 
message passing interface (MPI) and then concatenated to 
produce the new blocks. 

4 Refinement criteria 

The refinement criterion has to be carefully chosen 
depending on the flow problem that is simulated. Several 
criteria, for different ship flow problems, have been 
developed or are currently under study. 

4.1 Free-surface criterion 

Refinement in the neighbourhood of the water surface, for 
water-air two-phase flow, has been chosen as a first 
refinement criterion. Directional refinement is achieved by 
refining the grid in the direction normal to the water surface 
only. Where the free surface is diagonal with respect to the 
grid directions, isotropic refinement is used, but where the 
surface is horizontal, directional refinement is chosen to 
keep the total number of cells low. The zone of directional 
refinement includes the undisturbed water surface, as well 
as smooth wave crests and troughs. Figure 2 gives an 
illustration of this refinement principle; an image of a 
refined ship grid can be found further on in Figure 6. 

Figure 2 Isotropic and directional refinement at the free surface 

Note: The curves represent volume fraction isolines. 

4.2 Gradient criteria 

Recently, initial tests have been performed with criteria that 
are based on the absolute values of the gradients of solution 
quantities in each cell. These criteria detect the regions 
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where the flow field changes rapidly; they react to most 
features of a flow and are thus more general than the 
free-surface criterion. Initially, these criteria have been 
applied to single-fluid flows. 

Three criteria are chosen, one based on the gradient of 
the pressure: 

22 2

Crit ,∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
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one on the gradients of the three velocity components: 
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and one on the vorticity: 

2 22
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v w w u u v
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Effectively, the vorticity can also be seen as a norm of the 
velocity gradients. For each criterion, a cell is refined when 
the product of the criterion and the cell size exceeds a given 
threshold. 

The main difference between the pressure gradient 
criterion and the two velocity-gradient based criteria is their 
effect on boundary layers. There, the pressure varies little, 
while the velocity gradients are very strong. Thus, the 
velocity-gradient based criteria refine everywhere in 
boundary layers, but the pressure gradient criterion only 
there where the external flow creates a pressure gradient. In 
those cases where the flow outside the boundary layers is 
the main interest of the computation, costly and unnecessary 
refinement in all boundary layer cells can be prevented by 
using the pressure gradient criterion. An example will be 
shown in Section 5.4. 

4.3 Error estimation 

Earlier work on grid adaptation and refinement criteria has 
been performed within EMN by Hay et al. (2004) and Hay 
and Visonneau (2006). One of the refinement criteria that 
they studied is an error-indicating criterion based on the 
second spatial derivatives of flow quantities. Also, they 
developed a sophisticated estimation of the error production, 
derived from the residual obtained when a high-order 
accurate discretisation of the flow equations is applied to the 
solution. Both of these criteria proved to be highly 
successful, producing accurate solutions on grids with a 
small number of cells. 

Currently, these techniques are being parallelised and 
adapted to the type of grids produced by the present grid 
refinement method. 

5 Test cases 

Four test cases are presented which show that the grid 
refinement improves free-surface wave and viscous flow 
computations, and that it is able to handle unsteady flow and 
interaction with moving bodies. 

5.1 Virtue Container ship 

The first case is the Virtue Container ship, a test case in the 
European project VIRTUE (VIRtual Tank Utility in Europe) 
in which EMN participated. The test case concerns a typical 
modern container ship with a bulbous bow. Model tests for 
this ship have been performed by the Hamburg ship model 
basin HSVA. The computations are performed at 

0.272,=Fr  both at the model scale 71.84 10= ⋅Re  and at 
the full ship scale 92.89 10 .= ⋅Re  Results on adaptively 
refined grids are compared with results on unrefined 
original grids. 

The interest of this test case is the simulation of the 
water surface and the waves generated by the ship. This 
particular ship generates a complex wave pattern, consisting 
of sharp breaking bow and stern waves and many small, 
secondary waves. Thus, good grid resolution near the water 
surface is essential for this case. 

Therefore, the free-surface refinement criterion is 
used for the computations. The results in Figure 3 show the 
great increase in solution accuracy obtained with 
refined grids, both for the model scale and the full-scale 
case. The bow wave is higher and more sharply defined; it 
suffers less from numerical diffusion as it moves away from 
the ship. The strong breaking stern wave is resolved in 
much greater detail near the ship hull and, like the bow 
wave, it is damped out less as it moves out. Between the 
bow and stern waves, more small flow details can be 
observed. 

For the model scale, a comparison with the HSVA 
experiments is given in Figure 4. This figure confirms the 
better resolution of the larger waves and the presence of 
more small wave details. In most places, the experiments 
are reproduced well on the refined grid; even in those places 
where differences remain, the shape of the waves is 
reproduced better. At the stern, the breaking of the wave 
system is resolved notably better, which improves the entire 
wave field behind the ship. 

One of the major advantages of CFD for ship flow 
computations is that full-scale flows can be computed, 
enabling an evaluation of the difference with the model 
scale flows and thus a better interpretation of model tests. 
Due to the greater resolution of the solutions on the refined 
grids, these scale effects can be observed more precisely 
there. An example is given in Figure 5 that shows the stern 
wave of the Virtue Container ship. On the refined grids, a 
small breaking wave is observed just behind the stern for the 
model scale computation; this wave disappears at full scale. 
On the original grids, it is impossible to detect this scale 
effect. 
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Figure 3 Improvement in solution quality on a refined grid, compared with the non-refined original grid, for the Virtue Container ship 
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Figure 4 Improvement in solution quality for the Virtue Container ship 
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Figure 5 Scale effects in the breaking waves at the stern, for the Virtue Container ship 
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The grid refinement requires only a small increase in the 
number of cells. For the model scale computation, the 
refined grid has 3.88 M cells and the original grid 3.07 M 
cells: an increase of 26%. For the full-scale computation 
with its further developed boundary layers, the refined grid 
has 4.92 M cells and the original grid 3.87 M cells, which 
represents an increase of 27%. This good efficiency is 
mainly due to the use of directional refinement. 

5.2 Series 60 

The second test case is the Series 60 ( 0.6)=bC  ship at 

0.316=Fr  and 65.3 10 .= ⋅Re  This is a slender ship that 
generates a strong but quite regular wave pattern. 
Measurements for this case have been performed at IIHR, 
University of Iowa, by Longo and Stern (2002). Here, the 
case is used to test the possibility of accelerating 
computations by changing the discretisation of the volume 
fraction equation. 

Initially, like for the Virtue Container ship, 
computations have been performed using the compressible 
blended reconstructed interface capturing scheme (BRICS) 
for the volume fraction of water, a further development of 
the schemes described by Queutey and Visonneau (2007). 
This scheme keeps the water surface very sharp, but it 
imposes a limitation on the Courant number that requires 
the use of small time steps. Then this scheme is replaced by 
the  
non-compressive Gamma difference scheme (GDS) of Jasak 
(1996). While this scheme allows the water-air interface to 
diffuse more, reducing the accuracy of the solution, it 
imposes no restriction whatsoever on the time step. Here, 
we shall see if, using the GDS scheme and more grid 
refinement, converged steady solutions can be obtained with 
the same accuracy as the BRICS solutions, in less 
computation time. 

Relatively coarse grids are used, to observe changes in 
the solution due to the grid refinement as clearly as possible. 
Computations are started from an original grid with 330 k 
cells. In all cases, the free-surface refinement criterion is 
used. 

For the BRICS computation, the refinement criterion is 
set to give a desired cell size normal to the surface of 

0.001 ,=d L  which is half the cell size of the original grid. 
Figure 6 gives a cut through this refined grid that 
shows isotropic refinement in the bow wave region and 
directional refinement around the undisturbed surface. This 
grid has 506 k cells. The solution on the refined grid has 
clearly improved, as shown in Figure 7: the bow and stern 
wave are sharper, steeper and less damped out far away 
from the ship. The agreement with measurements is much 
better. 

For the GDS scheme, to compensate for the more 
diffused interface, the refinement criterion is set to give 

0.0005 ,=d L  or half the size of the BRICS grid. The 
resulting grid has 1.15 M cells. As shown in the wave cuts 

of Figure 8, this solution has about the same accuracy as the 
BRICS solution: the forms of the waves are reproduced 
better and the waves are less damped out. The remaining 
difference with the experiments is mostly due to the coarse 
initial grid. 

The GDS solution, however, is computed with a time 
step that is ten times larger than the one for the BRICS 
solution. Thus, even though the refined grid has more cells, 
the computation time has been reduced by a factor of about 
four. Therefore, the combination of non-compressive 
schemes with grid refinement forms an attractive alternative 
for the usual compressive schemes. 

Figure 6 Cross-section at / 0.1=x L  (i.e., bow-to-stern view) 
through a refined grid for a Series 60 ship, showing 
refinement around the bow wave 

Figure 7 Wave profiles for the Series 60 ship 
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Figure 8 Series 60, x  = constant wave cuts for non-compressive 
(GDS) versus compressive (BRICS) volume fraction 
discretisations 
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5.3 DTMB 5415 

The third test case is the DTMB (David Taylor model basin) 
5415 frigate in still water with free trim and sinkage, 

0.280,=Fr  the case 1.3 of the CFD Workshop Tokyo 
2005, see Hino (2005). The computation is performed to test 
the combination of the refinement procedure with the mesh 
deformation capability of ISIS-CFD as described by 
Leroyer and Visonneau (2005), to resolve the free ship 
motion. The free-surface refinement criterion is used. Like 
for the Virtue Container ship, the bow and stern waves are 
resolved better on the 2.03 M cell refined grid (Figure 9). 
However, as this wave train is less complex, it is already 
resolved well on the 570 k cell original grid, especially near 
the ship hull; therefore, the refinement does not change the 
solution much on the hull (Figure 10). This is also indicated 
by the ship’s motion (Figure 11), which remains close to the 
one on the original grid. 

Figure 9 DTMB 5415 with free trim and sinkage 
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Figure 10 DTMB 5415 with free trim and sinkage: wave cut on 
the hull and the symmetry plane 
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The important point of this test case is that the grid 
refinement procedure (called every 0.5 s) does not disturb 
the ship motion. Thus, its combination with the resolved 
motion capability of ISIS-CFD is successful. 

5.4 KVLCC2 

Finally, the flow around the KRISO very large crude carrier 
(KVLCC2) tanker is computed. This model scale 
computation at 64.6 10= ⋅Re  was one of the test cases in 
the Gothenburg 2000 workshop, see Larsson et al. (2000). It 
is a double model test, so the water surface motion is 
not taken into account. The computations are performed 
with a single fluid (water) and a symmetry boundary 
condition is imposed at the position of the undisturbed water 
surface. 
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Figure 12 KVLCC2 tanker, cuts in the propeller plane at / 0.0175=x L  
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Figure 13 KVLCC2 tanker with the EASM turbulence model 
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Note: Grid cross-sections and axial velocity / ∞u U  isolines are shown on the original coarse grid (58 k cells) and the refined grid 
for the pressure gradient criterion (1.07 M cells). 

The main interest of this case is the computation of the flow 
in the propeller plane at the rear of the ship. The flow in this 
plane is strongly influenced by the vorticity that is generated 
on the ship hull and shed into the fluid at the rear of the 
ship, where the hull tapers into the stern. This vorticity 
generates a non-uniform flow field. Good prediction of this 
field is essential for ship design, on one hand, because it 
must be known as an input for the propeller design, on the 
other hand, because a more uniform propeller plane flow 
improves the performance of the propeller and is thus an 
important target for the optimisation of the ship hull shape. 

To accurately compute this flow field, locally refined 
grids can be generated by hand, using fine cells at the rear 
of the ship. In practice, it is known where these fine cells 
must be placed, but generating the grids is a specialist job 
that requires experience. It is our goal for this test case to 
start the computation from a very coarse mesh, to see if an 
effective fine mesh can be created entirely by grid 
refinement. For the tests, the gradient criteria are used. 

Initially, the flow has been computed using the three 
different criteria. As turbulence model, the −k ω  SST 
model of Menter (1993) is used. For each criterion, the 
computation is started from the converged solution on the 
original 58 k cells grid. To give a good comparison, the 
three criteria are then tuned such that the first refinement 
step, based on this converged solution, gives an equal 
number of refined cells for each criterion. After these first 
steps, the computations and refinement steps are continued 
until the solution and the grid converge. To prevent an 
excessive number of cells due to the isotropic criteria, each 
cell is allowed to be refined at most two times. The resulting 
grid sizes are 630 k cells for the velocity gradient criterion, 

620 k cells for the vorticity criterion and 803 k cells for the 
pressure gradient criterion. 

Results in the propeller plane are shown in Figure 12. 
The ship hull can be seen at the top of these figures, the 
propeller would be placed below the hull. As seen in the 
experimental result, the most striking feature of the flow 
field is the hook-shaped region of low axial velocity near 
the ship’s symmetry plane. On the original grid, this feature 
cannot be observed at all. 

The velocity gradient and vorticity criteria concentrate 
the refinement in the boundary layer, as already mentioned 
in Section 4.2. Some refinement can be observed in the 
high-gradient regions below the hull, but this is not enough 
to create a solution that is significantly better than the one 
on the original grid. It is interesting to see that these two 
criteria, while computed in a different way from the velocity 
gradients, give nearly identical results. 

On the other hand, the pressure criterion reacts much 
less to the boundary layer and more to the rest of the flow 
field. As a result, the flow shows the beginning of a hook 
shape. Also in the region away from the symmetry plane, 
the solution is smoother and closer to the experimental 
results. 

The remaining differences between the computation and 
the experiment are mostly due to the turbulence model. 
When the −k ω  SST model is replaced by the anisotropic 
EASM, the computation improves dramatically (Figure 13). 
For this turbulence model, the solution on the original grid 
has not improved, but the solution on the 1.07 M cell 
refined grid created with the pressure gradient criterion 
clearly shows the hook shape. Generally, it is in good 
agreement with the experimental results. 
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Concluding, the simple gradient criteria are indeed able 
to detect the relevant flow features. For the simulation of 
ship aft-body flows, the pressure gradient criterion is to be 
preferred, because it does not produce unnecessary 
refinement in boundary layers. The flow depends strongly 
on the turbulence model; however, the solutions for both the 
−k ω  SST and the EASM turbulence models are consistent 

with results obtained on equivalent manually generated 
locally refined grids. Yet, with the automatic grid adaptation 
procedure, the expert knowledge needed to manually create 
these grids is not needed. 

6 Conclusions 

An automatic grid refinement method is presented for ship 
flows. The method provides directional refinement on 
unstructured meshes and derefinement of refined meshes for 
unsteady calculation. Refinement criteria can be easily 
exchanged. The method is completely parallel and includes 
automatic dynamic load balancing. 

Different refinement criteria are under development. 
The criteria studied here are the refinement around the free 
surface and refinement based on the velocity gradient, 
pressure gradient or vorticity of the flow. The free-surface 
criterion proves to be very effective for the simulation of 
strong and breaking waves. A ship test case with a complex 
wave field demonstrates the increase in wave accuracy and 
the better resolution of wave details that can be obtained 
using free-surface refinement. An example is given of a 
scale-related flow topology change that was only detected 
with grid refinement. 

A second test case demonstrates the possibility 
to combine free-surface grid refinement with the 
non-compressive GDS discretisation for the volume 
fraction, in order to increase the time steps. While leading to 
finer grids, this combination reduces total computation 
times significantly. 

With the same refinement criterion, a third case with 
free ship motion shows the successful combination of the 
refinement with unsteady mesh deformation. 

Finally, a double model case is computed with the three 
gradient-based criteria. The pressure gradient criterion is the 
most effective, because it refines less in the boundary layer 
than the other two criteria and more in the flow away from 
the body. The solutions are highly dependent on the 
turbulence model used; solutions on refined grids confirm 
the existing result that the anisotropic EASM model 
simulates ship aft-body flow better than the −k ω  SST 
model. The test proves that the refinement procedure can 
effectively generate entire fine grids that are well adapted to 
relevant flow features. 
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