
HAL Id: hal-01203044
https://hal.science/hal-01203044v1

Submitted on 22 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A global Riemann-Hilbert problem for two-dimensional
inverse scattering at fixed energy

Evgeny Lakshtanov, Roman Novikov, Boris Vainberg

To cite this version:
Evgeny Lakshtanov, Roman Novikov, Boris Vainberg. A global Riemann-Hilbert problem for two-
dimensional inverse scattering at fixed energy. Rendiconti dell’Istituto di Matematica dell’Universita
di Trieste: an International Journal of Mathematics, 2016, 48, pp.21-47. �hal-01203044�

https://hal.science/hal-01203044v1
https://hal.archives-ouvertes.fr


A global Riemann-Hilbert problem for

two-dimensional inverse scattering at �xed energy

Evgeny L. Lakshtanov,∗ Roman G. Novikov†, Boris R. Vainberg‡

Abstract

We develop the Riemann-Hilbert problem approach to inverse scattering for the

two-dimensional Schrodinger equation at �xed energy. We obtain global or generic

versions of the key results of this approach for the case of positive energy and com-

pactly supported potentials. In particular, we do not assume that the potential

is small or that Faddeev scattering solutions do not have singularities (i.e. we al-

low the Faddeev exceptional points to exist). Applications of these results to the

Novikov-Veselov equation are also considered.

Key words: two-dimensional inverse scattering, Faddeev functions, generalized Riemann-
Hilbert-Manakov problem, Novikov-Veselov equation.

1 Introduction

We consider the two-dimensional Schrodinger equation

(−∆+ v)ψ(x) = Eψ(x), x ∈ R2, E > 0, (1.1)

where

v is a real-valued su�ciently regular function on R2 with su�cient decay at in�nity.
(1.2)

Actually, in the present work the assumptions (1.2) are speci�ed in the sense that v is a
real-valued, bounded, compactly supported function on R2.
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For equation (1.1) we consider the classical scattering solutions ψ+(x, k), k ∈ R2, k2 =
E, speci�ed by the following assymptotics

ψ+(x, k) = eikx + iπ
√
2πe−iπ/4 ei|k||x|√

|k||x|
f

(
k, |k| x

|x|

)
+ o

(
1√
|x|

)
, |x| → ∞, (1.3)

for some a priori unknown f . Function f = f(k, l) on

ME = {k, l ∈ R2 : k2 = l2 = E} (1.4)

arising in (1.3) is the classical scattering amplitude for equation (1.1).
In order to determine ψ+ and f from v one can use the Lipmann-Schwinger integral

equation (2.1) and the integral formula (2.2) in section 2; see e.g. [19].
In this work we continue, in particular, studies on the following inverse scattering

problem for equation (1.1) under assumptions (1.2):

Problem 1.1. Given scattering amplitude f on ME at �xed E > 0, �nd the potential v
on R2.

When v is compactly supported, that is

supp v ⊂ D, (1.5)

where D is an open bounded domain in R2, we consider also the Dirichlet-to-Neumann
map Φ(E) for equation (1.1) in D. We recall that this map is de�ned via the relation

∂

∂ν
ψ

∣∣∣∣
∂D

= Φ(E) (ψ|∂D) (1.6)

ful�lled for all su�ciently regular solutions ψ of (1.1) in D ∪ ∂D, where ν is the external
normal vector to ∂D. Considering Φ(E), we assume also that

E is not a Dirichlet eigenvalue for the operator −∆+ v in D. (1.7)

It is well known (see [18]) that, under assumptions (1.2), (1.5), problem 1.1 is closely
related with the following inverse boundary value problem for equation (1.1) in D:

Problem 1.2. Given Φ(E) at �xed E > 0, �nd v.

Problems 1.1, 1.2 have a long history and there are many important results on these
problems; see [6], [14], [19], [21], [23] and references therein in connection with problem
1.1 and [5], [18], [23], [25] in connection with problem 1.2.

The approach of the present work to problems 1.1, 1.2 is based, in particular, on
properties of the Faddeev exponentially increasing solutions for equation (1.1). We recall
that the Faddeev solutions ψ(x, k), k ∈ C2\R2, k2 = E, of equation (1.1) are speci�ed by

ψ(x, k) = eikx(1 + o(1)), |x| → ∞; (1.8)
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see e.g. [18].
In order to determine ψ from v one can use the Lipmann-Schwinger-Faddeev integral

equation (2.10) in section 2.
In the present work, under assumptions (1.2), (1.5), we reduce problems 1.1,1.2 to

some global generalized Riemann-Hilbert-Manakov problem for the classical scattering
solutions ψ+ and the Faddeev solutions ψ for equation (1.1); see problem 3.2 in section
3. A prototype of this global Riemann-Hilbert-Manakov problem for the case of equation
(1.1) with E < 0 was considered in section 8 of [19].

The term "global" means, in particular, that the kernels of our Riemann-Hilbert-
Manakov problem have no singularities, even if there are the Faddeev exceptional points
at �xed E. After that we reduce our Riemann-Hilbert problem to a Fredholm linear
integral equation of the second type; see theorem 4.1 and proposition 4.1 in section 4.

As a result we obtain, in particular, a new generic reconstruction method for problems
1.1, 1.2; see proposition 4.2 and remarks 4.1, 4.2 in section 4.

In particular, our reconstruction from the Faddeev generalized scattering data is re-
duced to formulas (3.9), (3.11), (4.3), (4.4), (4.9), (4.22), (4.23), integral equations (4.6)-
(4.8), (4.24),(4.25) and formulas (3.12),(4.14),(4.15),(4.18),

Note that the approach of the present work goes back to the soliton theory, see [1],
[9], [12], [13], [15]. The �rst applications of this approach to problems (1.1), (1.2) were
given in [11], [17], [18], [19]. Actually, the main result of the present work consists in a
globalization of this approach to problems (1.1), (1.2).

The reconstruction method of the present work uses properly generalized scattering
data for small and large values of the complex spectral parameter at �xed energy and,
therefore, is considerably more stable, generically, than the reconstruction method of [5]
based exclusively on properties of some generalized scattering data for large values of
complex spectral parameter. Generically, stability estimates of [22] obtained using ideas
of [2], [5] can be improved using results of the present work to estimates like in [25], but
without the assumptions that some norm of potential v is su�ciently small in comparison
with �xed E. This issue will be presented in detail elsewhere.

In addition, in contrasts with [5], results of the present work admit application to
solving the Cauchy problem for the Novikov-Veselov equation ([16], [24])

∂tv = 4ℜ(4∂3zv + ∂z(vw)− E∂zw), (1.9)

∂z̄w = −3∂zv, v = v̄, E > 0,

v = v(x, t), w = w(x, t), x = (x1, x2) ∈ R2, t ∈ R,

with compactly supported v(x, t = 0). Here, we used the following notations:

∂t =
∂

∂t
, ∂z =

1

2

(
∂

∂x1
− i

∂

∂x2

)
, ∂z̄ =

1

2

(
∂

∂x1
+ i

∂

∂x2

)
. (1.10)

These applications are indicated in section 6 of the present work and will be presented in
detail elsewhere.
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2 Preliminary results of direct scattering

2.1 Classical scattering functions

We recall that for the classical scattering functions ψ+ and f for equation (1.1) the
following Lipmann-Schwinger integral equation (2.1) and the integral formula (2.2) hold:

ψ+(x, k) = eikx +

∫
y∈R2

G+(x− y,
√
E)v(y)ψ+(y, k)dy, (2.1)

G+(x,
√
E) = − 1

(2π)2

∫
R2

eiξxdξ

|ξ|2 − E − i0
= − i

4
H1

0 (|x|
√
E),

f(k, l) =
1

(2π)2

∫
R2

e−ilyv(y)ψ+(y, k)dy, (2.2)

where x, k, l ∈ R2, k2 = l2 = E > 0, H1
0 is the Hankel function of the �rst type; see

e.g. [19]. In addition, it is known that equation (2.1) is uniquely solvable with respect
to ψ+(·, k) ∈ L∞(R2) at �xed k, under conditions (1.2) and, in particular, under the
conditions that

v = v ∈ L∞(R2), supp v ⊂ D, (2.3)

where D is an open bounded domain in R2; see e.g. [4] for a proof of a similar result in
three dimensions.

Let
S1
r = {ζ ∈ R2 : ζ2 = r2}, r > 0, (2.4)

ΣE = {ζ ∈ C2 : ζ2 = E}, E > 0, (2.5)

ΣE,ρ = {ζ ∈ ΣE : |ℑζ| ≥ ρ}, E > 0, ρ > 0, (2.6)

and let
χE,ρ be the characteristic function of ΣE,ρ in ΣE. (2.7)

Note that ME = S1√
E
× S1√

E
, where ME is de�ned by (1.4).

It is well known that, under conditions (1.2), (1.5),

ψ+(x, k) admits a holomorphic extension in k from S1√
E
to ΣE at �xed x (2.8)

and

f(k, l) admits a holomorphic extension in (k, l) from ME to ΣE × ΣE (2.9)

with possible exponential increasing at in�nity in complex domain.
As a corollary, f on ME uniquely determines f on ΣE ×ΣE, under assumptions (1.2),

(1.5).
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2.2 Faddeev functions

We recall also that the Faddeev solutions ψ(x, k) for (1.1) satisfy the following generalized
Lipmann-Schwinger integral equation

ψ(x, k) = eikx +

∫
y∈R2

G(x− y, k)v(y)ψ(y, k)dy, (2.10)

G(x, k) = g(x, k)eikx, (2.11)

g(x, k) = − 1

(2π)2

∫
ξ∈R2

eiξx

|ξ|2 + 2kξ
dξ, (2.12)

where x ∈ R2, k ∈ C2\R2, k2 = E > 0; see e.g. [7], [19]. In addition, we consider (2.10)
as an equation for ψ = eikxµ(x, k), where µ(·, k) ∈ L∞(R2) at �xed k. Note that equation
(2.10) can be rewritten as

µ(x, k) = 1 +

∫
y∈R2

g(x− y, k)v(y)µ(y, k)dy, (2.13)

where x ∈ R2, k ∈ C2\R2, k2 = E > 0; see e.g. [19].
Under assumptions (1.2) and, in particular, under assumptions (2.3), equations (2.10),

(2.13) are uniquely solvable for µ(·, k) ∈ L∞(R2) at �xed k if k ∈
(
ΣE\S1√

E

)
\EE, where

EE is the set of the Faddeev exceptional points on ΣE\S1√
E
; see e.g. [19].

Note also that, due to estimates (3.16)-(3.18) of [19], the following estimates hold for
some constant c0 > 0 :

|G+(x,
√
E)| ≤ c0|x|−1/2E−1/4, (2.14)

|g(x, k)| ≤ c0|x|−1/2|ℜk|−1/2, (2.15)

where G+, g are de�ned in (2.1), (2.11), x ∈ R2, k ∈ C2\R2, k2 = E > 0.
In addition, under assumptions (2.3), as a corollary of (2.14), (2.15), in a similar way

to proposition 4.1 in [19], we have that

∥A(k)∥L∞(R2)→L∞(R2) ≤M(∥v∥L∞(D), D,E, ρ), (2.16)

k ∈ C2, k2 = E > 0, |ℑk| = ρ > 0,

ΣE,ρ ∩ EE = ∅ if ρ > ρ1(∥v∥L∞(D), D,E), E > 0, (2.17)

where A(k) is the linear integral operator of equation (2.13),

M(q,D,E, ρ) =
c0qI1(D)

(E + ρ2)1/4
, (2.18)
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ρ1 =
[
max([c0qI1(D)]4 − E, 0)

]1/2
, (2.19)

q ≥ 0, I1(D) = max
x∈R2

∫
D

dy

|x− y|1/2
.

In addition to ψ, we consider also the generalized Faddeev scattering amplitude h(k, l)
de�ned by the formula

h(k, l) =
1

(2π)2

∫
R2

e−ilyv(y)ψ(y, k)dy, (2.20)

where (k, l) ∈
(
ΣE\S1√

E

)
× ΣE; see e.g. [8], [19]. Here we assume also that ℑk = ℑl if

(1.5) is not assumed.
Note that, under assumption (2.3),

h is (complex-valued) real-analytic on
((

ΣE\S1√
E

)
\EE

)
× ΣE, (2.21)

h(k, ·) is holomorphic on ΣE at �xed k.

We say that a complex-valued function is real-analytic if its real and imaginary parts are
real-analytic.

2.3 ∂-equation on the Faddeev eigenfunctions

We recall that the following isomorphic relations are valid:

ΣE ≈ C\0, S1√
E
≈ T = {λ ∈ C : |λ| = 1}. (2.22)

More precisely:

k = (k1, k2) ∈ ΣE ⇒ λ = λ(k) :=
k1 + ik2√

E
∈ C\0, (2.23)

k = (k1, k2) ∈ S1√
E
⇒ λ(k) ∈ T;

λ ∈ C\0 ⇒ k = k(λ,E) ∈ ΣE, λ ∈ T ⇒ k = k(λ) ∈ S1√
E
, (2.24)

where

k(λ,E) = (k1(λ,E), k2(λ,E)), k1 =

(
λ+

1

λ

) √
E

2
, k2 =

(
1

λ
− λ

)
i
√
E

2
. (2.25)

Note also that

|ℜk(λ,E)| =
√
E

2

(
|λ|+ |λ|−1

)
, |ℑk(λ,E)| =

√
E

2
|
∣∣λ| − |λ|−1

∣∣ , λ ∈ C\0, E > 0.

(2.26)
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Let

Lp,ν(C) be the function space on C consisting of the functions u such that (2.27)

u, uν ∈ Lp(D1) with the norm ∥u∥Lp,ν = ∥u∥Lp(D1) + ∥uν∥Lp(D1),

where p ≥ 1, ν ≥ 0,
uν(λ) := |λ|−νu(λ−1) , (2.28)

D1 = {λ ∈ C : |λ| ≤ 1}. (2.29)

It is known that the function ψ of subsection 2.2 has, in particular, the following
properties, under assumptions (1.2) and, in particular, under assumptions (2.3):

ψ(x, k(λ)) = eik(λ)x(1 + o(1)), if λ→ 0 or λ→ ∞, (2.30)

∂

∂λ
ψ(x, k(λ)) =

sgn(|λ|2 − 1)

λ
b(k(λ))ψ

(
x, k

(
−1

λ

))
, (2.31)

ψ

(
x, k

(
−1

λ

))
= ψ(x, (k(λ))), k(λ) ∈

(
ΣE\S1√

E

)
\EE,

where x ∈ R2, k(λ) = k(λ,E) is de�ned by (2.25),

b(k) := h(k,−k), (2.32)

where h is de�ned by (2.20); see e.g. [11], [19].
Note that ∂−equations like (2.31) go back to [1], [3].

2.4 Some estimates related with ∂−equation (2.31)

In particular, as a corollary of (2.30),

ψ(x, (k(λ))) ̸= 0 if |λ| is su�ciently small or if |λ| is su�ciently large. (2.33)

In addition, under assumptions (2.3), as a corollary of (2.16), we have

|µ(x, k(λ))| ≤ (1−M(q,D,E, ρ))−1, (2.34)

x ∈ R2, k(λ) = k(λ,E) ∈ ΣE,ρ, ρ > ρ1(q,D,E), ∥v∥L∞(D) < q,

where M is de�ned by (2.18), ρ1 is de�ned by (2.19).
In connection with equation (2.31) we consider also

uE,ρ(λ) =
1

λ
χE,ρ(k(λ))b(k(λ)), (2.35)

where χE,ρ is de�ned by (2.7).
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Under assumptions (2.3), we have:

uE,ρ ∈ Lp,2(C), 2 < p < 4, (2.36)

where ρ > ρ1(∥v∥L∞(D), D,E);

∥uE,ρ∥Lp,2 ≤ qc1(D, p,E)(1−M(q,D,E, ρ))−1, (2.37)

∥uE,ρ∥Lp,2 = O (q) as q → 0, (2.38)

for �xed E > 0, ρ > ρ1(q,D,E), D and p, where ∥v∥L∞(D) ≤ q, M is de�ned by (2.18), c1
is a positive constant, 2 < p < 4;

|λuE,ρ(λ)| ≤ q(2π)−2(1−M(q,D,E, ρ))−1

∫
D

dx, λ ∈ C, (2.39)

where ∥v∥L∞(D) ≤ q, M is de�ned by (2.18), ρ > ρ1(∥v∥L∞(D), D,E); see formulas (4.4),
(4.12), (4.18), (4.19) of [19]. In connection with (2.36)-(2.38) we recall that Lp,2(C) is
de�ned in (2.27).

2.5 Final remarks

We recall also that, under the assumptions (1.7), (2.3), at �xed E, the scattering amplitude
f uniquely determines the Dirichlet-to-Neumann map Φ and vice versa; see proposition
4 in [18].

In turn, Φ(E) uniquely determines h on
((

ΣE\S1√
E

)
\EE

)
× ΣE; see [18].

Note also that f at �xed E uniquely determines h on
((

ΣE\S1√
E

)
\EE

)
× ΣE via a

two-dimensional analogue of the construction given in [20].
As a corollary, problems 1.1, 1.2 of section 1 are reduced to problem 3.1 of section 3.

3 Global generalized Riemann-Hilbert problem

Let

Λ = ΛE,ρ =

{
λ ∈ C :

√
E

2

∣∣|λ| − |λ|−1
∣∣ < ρ

}
, E > 0, ρ > 0, and (3.1)

∂Λ = ∂ΛE,ρ be the boundary of Λ in C with the standard orientation.

Note that
ΣE,ρ ≈ C\ΛE,ρ, (3.2)

where this isomorphism is given by formulas (2.23), (2.24).
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Let

W (λ, ς) =
i

2
sgn(|λ|2 − 1)

[
1

ς
lnw1(λ, ς) + ς lnw2(λ, ς)

]
+

∫
|η|=1

1

2(ς − η)
θ

[
sgn(|λ|2 − 1)i

(
|λ|η
λ

− λ

|λ|η

)]
|dη|, λ, ς ∈ ∂Λ, (3.3)

where

w1 =
ς − λ

ς − λ
|λ|
, w2 =

−1
ς
− λ

−1
ς
− λ

|λ|

,

θ is the standard Heaviside step function.

Remark 3.1. Note that

| argwi(λ, ς)| < π, λ, ς ∈ ∂Λ, i = 1, 2, (3.4)

and the logarithms in (3.3) are well de�ned by the condition |ℑ lnwi| < π.

In particular, we have

W ∈ Lp(∂Λ× ∂Λ), p ≥ 1, ∂Λ = ∂ΛE,ρ, E > 0, ρ > 0. (3.5)

Lemma 3.1. Let v satisfy (2.3) and let ρ ≥ ρ1(∥v∥L∞(D), D,E), where ρ1 is the constant
in (2.17). Let ψ+, ψ be the eigenfunctions of subsections 2.1, 2.2. Then the following
relation holds:

ψ(x, k(λ)) = ψ+(x, k(λ)) +

∫
∂Λ

W (λ, ς)h(k(λ), k(ς))ψ+(x, k(ς))dς, λ ∈ ∂Λ. (3.6)

where k(λ) = k(λ,E) is given by (2.25), W (λ, ς) = W (λ, ς, E) is given by (3.3), h is
de�ned by (2.20) and the integration is taken according to the standard orientation of the
∂Λ.

Lemma 3.1 is proved in section 6.
Note that, under assumptions (2.3), as a corollary of (2.20), (2.34), we have

|h(k(λ), k(ς))| ≤ q(2π)−2e2ρL(1−M(q,D,E, ρ))−1

∫
D

dx, (3.7)

λ, ς ∈ ∂Λ = ∂ΛE,ρ, ρ > ρ1(q,D,E), ∥v∥L∞(D) ≤ q,

where M,ρ1 are de�ned by (2.18), (2.19),

L = max
x∈∂D

|x|. (3.8)

As a corollary of properties (2.8), (2.30), (2.31), (3.6) of the functions ψ+ and ψ (and
using (2.36), (2.39)), we obtain the following proposition:
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Proposition 3.1. Let v satisfy (2.3) and let ρ ≥ ρ1(∥v∥L∞(D), D,E), where ρ1 is the
constant in (2.17). Let ψ, ψ+ be the eigenfunctions of subsections 2.1, 2.2. Then at �xed
x ∈ R2:

1. ψ+(x, k(λ)) is holomorphic in λ ∈ Λ and is continuous in λ ∈ Λ ∪ ∂Λ;

2. ψ(x, k(λ)) has the properties (2.30), (2.31) for λ ∈ (C\0)\(Λ∪∂Λ) and is continuous
in λ ∈ (C\0)\Λ;

3. ψ+, ψ are related on ∂Λ via (3.6).

Now we consider the following generalized inverse scattering problem for equation
(1.1).

Problem 3.1. Given the Faddeev functions h on ∂Λ×∂Λ and b on (C\0)\Λ, �nd potential
v on D.

The approach of the present work for solving problems 1.1, 1.2 and 3.1 is based on the
reduction of problem 3.1 to the following generalized Riemann-Hilbert problem.

Problem 3.2. Given functions h on ∂Λ × ∂Λ and b on (C\0)\Λ, �nd functions ψ+ on
Λ and ψ on (C\0)\Λ satisfying the properties of the items 1,2,3 of proposition 3.1.

Note that in problems 3.1, 3.2 we consider h, b and ψ+, ψ as

h = h(λ, ζ, E) = h(k(λ), k(ζ)), λ, ζ ∈ ∂Λ, (3.9)

ψ+ = ψ+(x, λ, E) = ψ+(x, k(λ)), λ ∈ Λ, (3.10)

ψ = ψ(x, λ, E) = ψ(x, k(λ)), b = b(λ,E) = b(k(λ)), λ ∈ (C\0)\Λ, (3.11)

where k(λ) = k(λ,E) is de�ned by (2.25), Λ = ΛE,ρ, ∂Λ = ∂ΛE,ρ are de�ned in (3.1), h
is de�ned by (2.20) and b is de�ned by (2.32).

In addition, if ψ is the function of subsections 2.2, 2.3, 2.4, then it determines the
potential easily. Indeed, due to (1.1), (2.33), we have

v(x) =
(∆x + E)ψ(x, k(λ))

ψ(x, k(λ))
for all x ∈ R2 (3.12)

if |λ| is su�ciently small or if |λ| is su�ciently large.

Prototypes of problems 3.1, 3.2 for the case of equation (1.1) with E < 0 were consid-
ered in section 8 of [19].

Generalized Riemann-Hilbert problems like problem 3.2 go back to [15] and to [9],
[12], [11].

We say that problem 3.2 is a generalized Riemann-Hilbert-Manakov problem.
We say that the results of lemma 3.1 and proposition 3.1 are global and that the

related problem 3.2 is global, since these results and problem are formulated for general v
satisfying (2.3) and, in particular, without the assumption that EE = ∅, where EE is the
set of Faddeev exceptional points at �xed E.

The reduction of problem 3.1 to problem 3.2 follows from proposition 3.1 and, for
example, from formula (3.12).
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4 Integral equations for solving problem 3.2

4.1 Formulas and equations

Let
µ+(λ) := e−ik(λ)xψ+(x, λ, E), λ ∈ Λ, (4.1)

µ(λ) := e−ik(λ)xψ(x, λ, E), λ ∈ C\Λ, (4.2)

r(x, λ, E) = ei(−k(λ)+k(−1/λ))x sgn(|λ|2 − 1)

λ
χ(λ)b(λ,E) = (4.3)

e−2iℜk(λ)xu(λ), λ ∈ C\0,

R(x, λ, ζ, E) = ei(k(ζ)−k(λ))xW (λ, ζ, E)h(λ, ζ, E), λ, ζ ∈ ∂Λ, (4.4)

where ψ+, ψ and h = h(λ, ς, E) = h(k(λ), k(ς)), b = b(λ,E) = b(k(λ)) are the functions of
Problem 3.2, χ(λ) = χE,ρ(k(λ)) is de�ned via (2.7), u(λ) = uE,ρ(λ) is de�ned via (2.35),
k(λ) = k(λ,E) is de�ned by (2.25), W is given by (3.3), Λ = ΛE,ρ is de�ned by (3.1).

Let
e(λ) = e(x, λ, E), Xj(λ, ζ) = Xj(x, λ, ζ, E), j = 1, 2, λ, ζ ∈ C, (4.5)

be de�ned as the solutions of the following linear integral equations:

e(λ) = 1− 1

π

∫
C
r(x, ζ, E)e(ζ)

dℜζdℑζ
ζ − λ

, (4.6)

X1(λ, ζ) +
1

π

∫
C
r(x, η, E)X1(η, ζ)

dℜζdℑζ
η − λ

=
1

2(ζ − λ)
, (4.7)

X2(λ, ζ) +
1

π

∫
C
r(x, η, E)X2(η, ζ)

dℜζdℑζ
η − λ

=
1

2i(ζ − λ)
. (4.8)

In addition, we consider also

Ω1(λ, ζ) := X1(λ, ζ) + iX2(λ, ζ), Ω2(λ, ζ) := X1(λ, ζ)− iX2(λ, ζ), λ, ζ ∈ C. (4.9)

Note that if (2.36) is ful�lled, then equation (4.6) for e(·) and equations (4.7), (4.8)
for Xj(·, ζ), j = 1, 2, are uniquely solvable in Lq,0(C), p/(p − 1) ≤ q < 2, where Lp,ν is
de�ned in (2.27). In addition:

e(·) ∈ C(C ∪∞), e(∞) = 1, (4.10)

|e(λ)− 1| ≤ c2(r0, p),∣∣∣∣Ω1(λ, ζ)−
1

ζ − λ

∣∣∣∣ < c2(r0, p)
1

2|ζ − λ|2/p
, (4.11)

|Ω2(λ, ζ)| < c2(r0, p)
1

2|ζ − λ|2/p
, (4.12)
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where
r0 = ∥r(x, ·, E)∥Lp,2 , lim

r0→0
c2(r0, p) = 0. (4.13)

Note that r0 is independent of x ∈ R2.
In connection with the functions e,X1, X2,Ω1,Ω2 and related results we refer to chapter

3 of [26] and to section 6 of [19].
We de�ne

ψ′(λ) =

{
ψ+(λ), λ ∈ Λ ∪ ∂Λ,
ψ(λ), λ ∈ (C\0)\Λ, (4.14)

where ψ+, ψ are the functions of problem 3.2. In addition, we consider µ′, µ+, µ, where

ψ′(λ) = eik(λ)xµ′(λ) = eik(λ)x
{
µ+(λ), λ ∈ Λ ∪ ∂Λ,
µ(λ), λ ∈ (C\0)\Λ. (4.15)

Theorem 4.1. Let the data h and b of problem 3.2 satisfy the following conditions:

uE,ρ ∈ Lp,2(C), 2 < p < 4, (4.16)

h(·, ·, E) ∈ C(∂Λ× ∂Λ), (4.17)

where uE,ρ is de�ned by (2.35), W is de�ned by (3.3), ∂Λ = ∂ΛE,ρ is de�ned in (3.1),
ρ > 0. Let ψ′ be a solution of problem 3.2. Then for µ′ de�ned by (4.15) the following
formula holds:

µ′(λ) = e(λ) +
1

2πi

∫
∂Λ

Ω1(λ, ζ)K(ζ)dζ − 1

2πi

∫
∂Λ

Ω2(λ, ζ)K(ζ)dζ, λ ∈ C\∂Λ, (4.18)

where the integration is taken according to the standard orientation of ∂Λ,

K(λ) := µ+(λ)− µ(λ), λ ∈ ∂Λ. (4.19)

In addition, this K = K(x, λ, E) satis�es the following linear integral equation

K(λ) +
∫
∂Λ
R(x, λ, λ′, E)

(
e(λ′)+

1
2πi

∫
∂Λ

Ω1(λ
′(1− 0(|λ′| − 1)), ζ)K(ζ)dζ − 1

2πi

∫
∂Λ

Ω2(λ
′, ζ)K(ζ)dζ

)
dλ′ = 0, λ ∈ ∂Λ,

(4.20)
where R is de�ned by (4.4), Ω1,Ω2 are de�ned by (4.9) and the integrations are taken
according to the standard orientation of ∂Λ.

Note also that ∫
∂Λ

Ω1(λ
′(1− 0(|λ′| − 1)), ζ)K(ζ)dζ = (4.21)

lim
0<ε→0

∫
∂Λ

Ω1(λ
′(1− ε(|λ′| − 1)), ζ)K(ζ)dζ, λ′ ∈ ∂Λ.
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Formula (4.18) is similar to formula (6.7) of [19]. Equation (4.20) is similar to equation
(6.11) of [19].

Theorem 4.1 is proved in section 7.
Consider

I(λ) = I(x, λ, E) = −
∫
∂Λ

R(x, λ, λ′, E)e(λ′)dλ′, λ ∈ ∂Λ, (4.22)

A1(λ, ζ) = A1(x, λ, ζ, E) =
1

2πi

∫
∂Λ

R(x, λ, λ′, E)Ω1(λ
′(1− 0(|λ′| − 1)), ζ)dλ′, (4.23)

A2(λ, ζ) = A2(x, λ, ζ, E) =
−1

2πi

∫
∂Λ

R(x, λ, λ′, E)Ω2(λ
′, ζ)dλ′, λ, ζ ∈ ∂Λ,

where R, e,Ω1,Ω2 are the functions of (4.4), (4.5), (4.9).

Proposition 4.1. Let the assumptions of theorem 4.1 be ful�lled and K be the function
of (4.19), (4.20). Then K,K satisfy the following system of linear integral equations

K(λ) +

∫
∂Λ

A1(λ, ζ)K(ζ)dζ +

∫
∂Λ

A2(λ, ζ)K(ζ)dζ = I(λ), λ ∈ ∂Λ, (4.24)

K(λ) +

∫
∂Λ

A2(λ, ζ)K(ζ)dζ +

∫
∂Λ

A1(λ, ζ) K(ζ)dζ = I(λ), λ ∈ ∂Λ, (4.25)

where I, A1, A2 are de�ned by (4.22), (4.23). In addition,

I ∈ L2(∂Λ), Aj ∈ L2(∂Λ× ∂Λ), j = 1, 2, (4.26)

∥Aj∥L2 → 0 for ∥h∥C → 0, r0 ≤ rfixed, j = 1, 2, (4.27)

where |x| < c for �xed c > 0, r0 is de�ned in (4.13)

Proposition 4.1 is proved in section 6.

4.2 Analysis of equations

Due to estimates (4.26), the system (4.24), (4.25) can be considered as a Fredholm linear
integral equation of the second type for the vector-function (K,K) ∈ L2(∂Λ,C2) with
parameters x ∈ R2 and E > 0.

The modi�ed Fredholm determinant detA for system (4.24), (4.25) can be de�ned by
means of the formula:

ln detA = Tr(ln(Id + A)− A), (4.28)

where system (4.24), (4.25) is written as

(Id+ A)

(
K
K

)
=

(
I
I

)
. (4.29)

For the precise de�nition of detA, see [10].
In addition, we have the following lemmas:
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Lemma 4.1. Let v satisfy (2.3) for �xed D and Λ = ΛE,ρ be de�ned by (3.1) for �xed E
and ρ. Let A1, A2, I correspond to v according to formulas (2.10)-(2.13), (2.20), (2.32),
(3.9), (3.11), (4.3), (4.4), (4.22), (4.23). Let |x| < c for �xed c > 0. Then:

∥Aj∥L2(∂Λ×∂Λ) → 0, ∥I∥L2(∂Λ) → 0, for ∥v∥L∞(D) → 0, j = 1, 2; (4.30)

system (4.24), (4.25) for (K,K) ∈ L2(∂Λ,C2) is uniquely solvable by the method of
successive approximations when ∥v∥L∞(D) is su�ciently small (for �xed D,E,ρ and c).

Actually, lemma 4.1 follows from estimates (2.38), (3.7), (4.10)-(4.12), (4.27).

Lemma 4.2. Let v satisfy (2.3) for �xed D and Λ = ΛE,ρ be de�ned by (3.1) for �xed
E and ρ, where ρ > ρ1(q,D,E), ∥v∥L∞(D) < q, ρ1 is de�ned by (2.19). Let A1, A2, I
correspond to sv according to formulas (2.10)-(2.13), (2.20), (2.32), (3.9), (3.11), (4.3),
(4.4), (4.22), (4.23) (with sv in place of v), where s ∈]− s1, s1[, where s1 = q/∥v∥L∞(D).
And let detA = detA(x, s), x ∈ R2, s ∈]− s1, s1[, be the modi�ed Fredholm determinant of
the related system (4.24), (4.25) (where detA depends also on v, E and ρ). Then:

detA(x, 0) = 1, x ∈ R2, (4.31)

detA ∈ C(R2×]− s1, s1[,C), (4.32)

detA(x, ·) is real-analytic on ]− s1, s1[ for �xed x ∈ R2. (4.33)

Lemma 4.2 is proved in section 8.
Using lemma 4.2 we obtain, in particular, the following result:

Proposition 4.2. Let Λ = ΛE,ρ be de�ned by (3.1) for �xed E and ρ, where ρ >
ρ1(q,D,E), ρ1 is de�ned by (2.19), D is a �xed open bounded domain in R2, q is a
�xed positive number. Then for almost each v satisfying (2.3) with ∥v∥L∞(D) ≤ q the sys-
tem (4.24), (4.25) corresponding to v (according to formulas (2.20), (2.32), (3.9), (3.11),
(4.3), (4.4), (4.22), (4.23)) is uniquely solvable for almost each x ∈ R2.

Remark 4.1. We understand the statement of proposition 4.2 in the sense that if v
satis�es (2.3) and ∥v∥L∞(D) = q1 for �xed q1, where 0 < q1 < q, then for almost each
s ∈] − s1, s1[, where s1 = q/q1, the system (4.24), (4.25) corresponding to sv is uniquely
solvable for almost each x ∈ R2.

Remark 4.2. If the assumptions of proposition 4.2 are ful�lled, ∥v∥L∞(D) < q, and system
(4.24), (4.25) corresponds to v, then, as a corollary of (4.32), the set of x, where the
system (4.24), (4.25) is uniquely solvable, is an open set in R2.

Proposition 4.2 is proved in section 8.
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5 Applications to the Novikov-Veselov equation

In this section we suppose that v and ρ satisfy the assumptions of lemma 4.2 for �xed D,
E and q.

We de�ne

fs(k, l, t) = fs(k, l) exp[2it(k
3
1 − 3k1k

2
2 − l31 + 3l1l

2
2)], (k, l) ∈ ME, (5.1)

hs(k, l, t) = hs(k, l) exp[2it(k
3
1 − 3k1k

2
2 − l31 + 3l1l

2
2)], (k, l) ∈ ∂ΣE,ρ × ∂ΣE,ρ,

bs(k, t) = bs(k) exp[2it(k
3
1 + k

3

1 − 3k1k
2
2 − 3k1k

2

2)], k ∈ ΣE,ρ,

where t ∈ R, s ∈]−s1, s1[, s1 is de�ned as in lemma 4.2 and fs, hs, bs are de�ned according
to (2.1), (2.2), (2.10)-(2.13), (2.20), (2.32) with sv in place of v. In addition:

hs(k(λ), k(ς), t) = hs(k(λ), k(ς)) exp[iE
3/2t(λ3 + λ−3 − ς3 − ς−3)] (5.2)

=: hs,t(λ, ς, E), (λ, ς) ∈ ∂Λ× ∂Λ,

bs(k(λ), t) = bs(k(λ)) exp[itE
3/2(λ3 + λ−3 + λ

3
+ λ

−3
)]

=: bs,t(λ,E), λ ∈ (C\0)\Λ,

where t ∈ R, s ∈]− s1, s1[, k(λ) = k(λ,E) is de�ned by (2.25), Λ = Λ(E, ρ) is de�ned by
(2.31).

We consider problem 3.2 of section 3 with h = hs,t, b = bs,t, ψ
+ = ψ+

s,t. As in section
4.1, we consider the reduction of this generalized Riemann-Hilbert-Manakov problem to
formulas (4.14), (4.15), (4.18), (4.19) and the system of equations (4.24), (4.25), where
µ′ = µ′

s,t, e = es,t, Ωj = Ωj,s,t, j = 1, 2, K = Ks,t, I = Is,t, Aj = Aj,s,t, j = 1, 2. In
addition, as in section 4.2, we consider detA(x, s, t) for the aforementioned system (4.24),
(4.25).

We expect that using ideas of [12], [13], [11], [19] and of the present work one can
obtain the following result:

Suppose that detA(x, s, t) ̸= 0 for x ∈ X , t ∈ T at �xed s ∈]− s1, s1[, where X is an
open domain in R2, T is an open interval in R, 0 ∈ T , s1 is de�ned in lemma 4.2. Then
there is a real valued vs(·, t) such that:

vs(·, 0) = sv, (5.3)

where sv is the potential of lemma 4.2;

−∆xψ
+
s,t + vs(x, t)ψ

+
s,t = Eψ+

s,t, −∆xψs,t + vs(x, t)ψs,t = Eψs,t, (x, t) ∈ X × T , (5.4)

where ψ+
s,t = ψ+

s,t(x, λ), λ ∈ Λ, and ψs,t = ψs,t(x, λ), λ ∈ (C\0)\Λ, solve the aforemen-
tioned problem 3.2;

v = vs(x, t) solves the Novikov-Veselov equation (1.9) in X × T with appropriate
w = ws(x, t) (and satis�es (5.3) on X ).

These studies will be given in detail elsewhere.
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Note that, actually, the zeroes of detA(x, s, t) describe the blow-up points of the
potential vs(x, t).

It remains to note that in similar way to proposition 4.2 and remarks 4.1,4.2, for
almost each s ∈]− s1, s1[, we have that detA(x, s, t) ̸= 0 for almost each (x, t) ∈ R2 ×R;
and the nonzero set of detA is open.

6 Proof of lemma 3.1

6.1 Lemma for Green functions

Let
z = x1 + ix2, z = x1 − ix2 for x = (x1, x2) ∈ R2. (6.1)

Lemma 6.1. The following formula holds:

G(x, k(λ))−G+(x,
√
E) =

1

(2π)2

∫
∂Λ

W (λ, ς, E)ei
√
E/2(ςz+z/ς)dς, λ, ς ∈ ∂Λ, (6.2)

where G,G+ are de�ned in (2.11), (2.1), W is de�ned by (3.3), k(λ) = k(λ,E) is de�ned
in (2.25), Λ = ΛE,ρ is de�ned in (3.1).

Proof of lemma 6.1. We recall that

∂

∂λ
G(z, k(λ)) =

sgn(|λ|2 − 1)

4πλ
eik(−1/λ)x, λ ∈ (C\0)\T, (6.3)

∂

∂λ
G(z, k(λ)) =

sgn(|λ|2 − 1)

4πλ
eik(λ)x, λ ∈ (C\0)\T, (6.4)

where G is de�ned by (2.11), (2.12), k(λ) = k(λ,E) is de�ned by (2.25), T is de�ned by
(2.22); see [19].

Note that

k(−1/λ)x = −
√
E

2
(λz + z/λ), k(λ)x =

√
E

2
(λz + z/λ). (6.5)

Using the Cauchy formula for eik(−1/λ)x/λ and eik(λ)x/λ we have

eik(−1/λ)x/λ =
1

2πi

∫
∂Λ

1

ς
e−i

√
E/2(ςz+z/ς) dς

ς − λ
, λ ∈ Λ, (6.6)

eik(λ)x/λ =
1

2πi

∫
∂Λ

1

ς
ei

√
E/2(ςz+z/ς) dς

ς − λ
, λ ∈ Λ. (6.7)

Due to (6.3), (6.4) and (6.6), (6.7) we have
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∂

∂λ
G(x, k(λ)) = sgn(|λ|2 − 1)

−1

2πi

∫
∂Λ

1

4πς
e−i

√
E/2(ςz+z/ς) dς

ς − λ
, λ ∈ Λ, |λ| ̸= 1, (6.8)

∂

∂λ
G(x, k(λ)) = sgn(|λ|2 − 1)

1

2πi

∫
∂Λ

1

4πς
ei

√
E/2(ςz+z/ς) dς

ς − λ
, λ ∈ Λ, |λ| ̸= 1. (6.9)

Formulas (6.8), (6.9) remain also valid with G(x, k(λ)) replaced in the left hand side by
G(x, k(λ))−G+(x,

√
E), where G+ is de�ned in (2.1).

Integrating the di�erential equation for G−G+ we obtain

G(x, k(λ))−G+(x,
√
E) = u(z, λ) +

[
G(x, k(λ0))−G+(x,

√
E)− u(z, λ0)

]
, (6.10)

for λ0 = λ0(λ), λ ∈ Λ ∩ D1, or for λ0(λ), λ ∈ Λ ∩ (C\D1),

where D1 is de�ned by (2.29), λ0 = λ0(λ) =
λ
|λ|(1 + 0(|λ|2 − 1)),

u(z, λ) =
sgn(|λ|2 − 1)

2πi

∫
∂Λ

1

4πς
e−i

√
E/2(ςz+z/ς) ln(ς − λ)dς (6.11)

−sgn(|λ|2 − 1)

2πi

∫
∂Λ

1

4πς
ei

√
E/2(ςz+z/ς) ln(ς − λ)dς, λ ∈ Λ\T,

where notation 1 + 0(|λ|2 − 1) is like in (4.21). In the last expression logarithm is chosen
such that |ℑ ln(·)| < π.

We change the variable ς → −1/ς in the �rst integral on the right and obtain the
formula

u(z, λ) = −sgn(|λ|2 − 1)

8π2i

∫
∂Λ

ei
√
E/2(ςz+z/ς)

[
1

ς
ln (ς − λ) + ς ln

(
−1

ς
− λ

)]
dς, λ ∈ Λ\T.

(6.12)
In the last expression logarithm is chosen such that |ℑ ln(·)| < π.

We choose λ0 as λ0 =
λ
|λ|(1± 0) since the limiting values of G−G+ on the unit circle

T are given by (see [19, section 3]):

G(x, k(λ0))−G+(x,
√
E) =

πi

(2π)2

∫
T

ei
√
E/2(ςz+z/ς)θ

[
sgn(|λ|2 − 1)i

(
|λ|ς
λ

− λ

|λ|ς

)]
|dς|,

(6.13)

where θ is the Heaviside step function. Using the Cauchy formula for ei
√
E/2(ςz+z/ς) in

(6.13), we can rewrite (6.13) as follows:

G(x, λ0)−G+(x,
√
E) =

1

8π2

∫
ς1∈T

(∫
∂Λ

ei
√
E/2(ςz+z/ς)dς

ς − ς1

)
× (6.14)

θ

[
sgn(|λ|2 − 1)i

(
|λ|ς1
λ

− λ

|λ|ς1

)]
|dς1|.
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In order to complete the proof of lemma 6.1 it remains only to put (6.14), (6.12) into
(6.10).

In addition, to justify remark 3.1, we need to prove (3.4). Assume that ς belongs to
the part |ς| = C of ∂Λ = ∂ΛE,ρ where

C = ρ/
√
E +

√
(ρ/

√
E)2 + 1.

Since the point λ belongs to the disk |ς| ≤ C and the point λ0 is strictly inside of the disk,
the angle α between vectors ς−λ and ς−λ0 is strictly less then π. Thus | argw1| = |α| < π
in this case. If ς belongs to the part |ς| = 1/C of the boundary of ∂Λ, then points λ and
λ0 belong to the part of the ray (emitted from λ = 0) through the point λ. This part
belongs to the region |ς| ≥ 1/C, and | argw1| = |α| < π/2 in this case. After the estimate
(3.4) for w1 is proved, the estimate for w2 becomes obvious if we replace −1/ς by ς.

6.2 Final part of proof of lemma 3.1

Let
ψ0 = ψ0(x, k(λ)) = eik(λ)x = ei(

√
E/2)(λz+z/λ), λ ∈ (C\0)\T, (6.15)

where k(λ) = k(λ,E) is de�ned by (2.25), T is de�ned by (2.22).
We will denote by G+(

√
E), G(k) the convolution operators with kernels G+, G of

(2.11), (2.1), and we will denote by G+(
√
E)v,G(k)v the operators of multiplication by

the potential v followed by convolution G+(
√
E) or G(k), respectively. Then, under the

assumptions of lemma 3.1, equations (2.1), (2.10) can be considered as linear integral
equations for ψ+(·, k),ψ(·, k) ∈ L∞(D), and can be rewritten as follows:

ψ+(·, k) = (I −G+(
√
E)v)−1ψ0(·, k), ψ(·, k) = (I −G(k)v)−1ψ0(·, k), (6.16)

for �xed k ∈ ΣE\ΣE,ρ, where I is the identity operator.
Thus

ψ+(·, k) = (I −G+(
√
E)v)−1(I −G(k)v)ψ(·, k), (6.17)

ψ(·, k) = (I −G+(
√
E)v)−1(I −G+(

√
E)v)ψ(·, k), k ∈ ΣE\ΣE,ρ.

Therefore,

ψ(·, k)− ψ+(·, k) = (I −G+(
√
E)v)−1(G(k)−G+(

√
E))vψ(·, k) k ∈ ΣE\ΣE,ρ. (6.18)

We takeG−G+ from Lemma 6.1 and use there that ψ0(x−y, k(λ)) = ψ0(x, k(λ))ψ0(−y, k(λ)).
This leads to

(G(k(λ))−G+(
√
E))vψ(·, k(λ))

=
1

(2π)2

∫
D

∫
∂Λ

W (λ, ς)ψ0(x, k(ς))ψ0(−y, k(ς))dςv(y)ψ(y, k(λ))dy

=

∫
∂Λ

W (λ, ς)ψ0(x, k(ς))h(k(ς), k(λ))dς, λ ∈ ∂Λ,
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where we used also (2.20).
We plug the last relation in (6.18). It remains to note (see (6.16)) that

(I −G+(
√
Ev))−1ψ0(·, k(ς)) = ψ+(x, k(ς)).

7 Proofs of Theorem 4.1 and Proposition 4.1

7.1 Proof of Theorem 4.1

Let

µ′
0(λ) = µ′(λ)− e(λ), (7.1)

µ+
0 (λ) = µ+(λ)− e(λ), µ0(λ) = µ(λ)− e(λ),

where µ′, µ+, µ are the functions of (4.15), e(·) is the function of (4.6).
From formulas (4.3), (4.6) and from items 1 and 2 of proposition 3.1 it follows, in

particular, that

∂

∂λ
e(λ) = r(x, λ, E)e(λ), λ ∈ C, (7.2)

∂

∂λ
µ′
0(λ) = r(x, λ, E)µ′

0(λ), λ ∈ C\∂Λ, (7.3)

µ′
0(λ) → 0 as λ→ ∞.

Proceeding from (7.3) and using the generalized Cauchy formula for µ′
0 (see formula (10.6)

of chapter 3 of [26]) one can obtain

µ′
0(λ) =

1

2πi

∫
∂Λ

Ω1(λ, ζ)K0(ζ)dζ −
1

2πi

∫
∂Λ

Ω2(λ, ζ)K0(ζ)dζ, λ ∈ C\∂Λ, (7.4)

where
K0(λ) := µ+

0 (λ)− µ0(λ), λ ∈ ∂Λ. (7.5)

In addition, from (4.19), (7.1) and (7.5) it follows that

K0(λ) = K(λ), λ ∈ ∂Λ. (7.6)

Formulas (7.1), (7.4), (7.6) imply formula (4.18).
Finally, equation (4.20) follows from the substitution of (4.18) into (3.6) using formulas

(4.4), (4.15), (4.19), estimates (4.10) - (4.12) and the jump properties of the Cauchy
integral.

This completes the scheme of proof of theorem 4.1.
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7.2 Proof of Proposition 4.1

Equation (4.24) follows from equation (4.20) and formulas (4.22), (4.23). Equation (4.25)
follows from (4.24).

Estimates (4.26), (4.27) follow from formulas (4.3), (4.4), (4.22), (4.23), estimates
(3.5), (4.10) - (4.13), (4.16), (4.17) and the estimate

∥Ω0
1u∥Lp(∂Λ) ≤ const(p, ∂Λ)∥u∥Lp(∂Λ), 1 < p <∞, (7.7)

where

(Ω0
1u)(λ) =

1

2πi

∫
∂Λ

u(ς)dς

ς − λ(1− 0(|λ| − 1))
, λ ∈ ∂Λ, (7.8)

u is a test function on ∂Λ.

8 Proofs of lemma 4.2 and proposition 4.2

8.1 Proof of lemma 4.2

Property (4.31) follows from (4.28), (4.30).
Property (4.32) follows from continuous dependence of A1, A2 with respect to x ∈ R2,

|x| ≤ c, at �xed s ∈]− s1, s1[ and continuous dependence of A1, A2 with respect to
s ∈]− s1, s1[ uniformly in x ∈ R2, |x| ≤ c, in the sense of ∥ · ∥L2(∂Λ×∂Λ), for �xed c > 0.

In turn, these continuities of A1, A2 in x and in s follow from formulas (4.11), (4.12),
(4.23) and the following results:

(i) h|∂Λ×∂Λ depends continuously on s ∈]− s1, s1[ in the sense of ∥ · ∥C(∂Λ×∂Λ),
(ii) uE,ρ depends continuously on s ∈] − s1, s1[ in the sense of ∥ · ∥Lp,2(C), 2 < p < 4,

where h = h(k(λ), k(ς)), uE,ρ correspond to sv according to (2.10)-(2.13), (2.20), (2.25),
(2.32), (2.35);

(iii) The following estimates hold:∣∣∣e−2iℜk(λ)x − e−2iℜk(λ)x′
∣∣∣ ≤ Const·(

√
E(|λ|+|λ|−1)|x−x′|)α, λ ∈ C\0, x, x′ ∈ R2, 0 < α ≤ 1,∣∣∣ei(k(ς)−k(λ))x − ei(k(ς)−k(λ))x′

∣∣∣ ≤ 2(E + 2ρ2)1/2e2ρmax(|x|,|x′|)|x− x′|, ς, λ ∈ ∂Λ, x, x′ ∈ R2;

(iv) If u ∈ Lp,2(C), 2 < p < 4, then (|λ| + |λ−1|)αu(λ) ∈ Lp′,2(C) (as a function of λ),
2 < p′ < p(1 + αp/2)−1, where 0 < α < (p− 2)/p;

(v) The map (de�ned via (4.6))

r ∈ Lp,2(C) → e(·) ∈ C(C)

is continuous and the maps (de�ned via (4.7), (4.8))

r ∈ Lp,2(C) → Xj ∈ C(C2\Cε), j = 1, 2,
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Cε = {(λ, ς) ∈ C2 : |λ− ς| < ε},

are continuous for any ε > 0, where Lp,2(C) is considered with the norm of (2.27), 2 <
p < 4, and C(C), C(C2\Cε) are considered with the uniform norms.

In order to prove (4.33) we consider sv, where s ∈ C, and we consider hs = hs(k(λ), k(ς)),
λ, ς ∈ ∂Λ, and bs = bs(k(λ)), λ ∈ (C\0)\Λ, where hs, bs correspond to sv according to
(2.10)-(2.13), (2.20), (2.25), (2.32) (with sv in place of v). Proceeding from these formulas
and equations and from (2.16), (2.17), (3.2), one can show that there is an open neigh-
bourhood N of the real interval ]− s1, s1[ in C (where N depends on D, ∥v∥L∞(D), E, ρ, q)
such that

N = N , i.e. N is symmetric with respect to R, (8.1)

hs(·, ·, E) ∈ C(∂Λ× ∂Λ), uE,ρ,s ∈ Lp,2(C), 2 < p < 4, (8.2)

with holomorphic dependence on s ∈ N ,

where uE,ρ,s is de�ned by (2.35) with bs in place of b.
Next, we consider es, X1,s, X2,s,Ω1,s,Ω2,s de�ned via (4.6), (4.7), (4.8), (4.9) with rs in

place of r, where rs is de�ned by (4.3) with bs in place of b, where s ∈]− s1, s1[. And we
consider e±s,σ, X

±
j,s,σ, j = 1, 2, de�ned via the following systems of equations:

e+s,σ(λ) = 1− 1

π

∫
C
rs(x, ζ, E)e

−
s,σ(ζ)

dℜζdℑζ
ζ − λ

, (8.3)

e−s,σ(λ) = 1− 1

π

∫
C
rσ(x, ζ, E)e

+
s,σ(ζ)

dℜζdℑζ
ζ − λ

,

X+
1,s,σ(λ, ζ) +

1

π

∫
C
rs(x, η, E)X−

1,s,σ(η, ζ)
dℜζdℑζ
η − λ

=
1

2(ζ − λ)
, (8.4)

X−
1,s,σ(λ, ζ) +

1

π

∫
C
rσ(x, η, E)X+

1,s,σ(η, ζ)
dℜζdℑζ
η − λ

=
1

2(ζ − λ)
,

X+
2,s,σ(λ, ζ) +

1

π

∫
C
rs(x, η, E)X

−
2,s,σ(η, ζ)

dℜζdℑζ
η − λ

=
1

2i(ζ − λ)
, (8.5)

X−
2,s,σ(λ, ζ) +

1

π

∫
C
rσ(x, η, E)X

+
2,s,σ(η, ζ)

dℜζdℑζ
η − λ

=
−1

2i(ζ − λ)
,

where s, σ ∈ N , rs is de�ned by (4.3) with bs in place of b. In addition, we consider also

Ω1,s,σ(λ, ζ) := X+
1,s,σ(λ, ζ)+iX

+
2,s,σ(λ, ζ), Ω2,s,σ(λ, ζ) := X+

1,s,σ(λ, ζ)−iX+
2,s,σ(λ, ζ), (8.6)

where λ, ζ ∈ C, s, σ ∈ N .
Let

S := {(s, σ) ∈ N ×N : σ = s ∈]− s1, s1[ } . (8.7)
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Using considerations of section 9 of chapter 3 of [26], one can show that systems (8.3),
(8.4), (8.5) for e±s,σ, X

±
j,s,σ, j = 1, 2, for (s, σ) ∈ S, are reduced to the equations for es,

Xj,s, j = 1, 2, s ∈]− s1, s1[, are uniquely solvable in Lq
0(C), p/(p− 1) ≤ q < 2, where p is

the number (8.2). In addition:

es = e+s,s, es = e−s,s, Xj,s = X+
j,s,s, Xj,s = X−

j,s,s, Ωj,s = Ωj,s,s, (8.8)

where j = 1, 2, s ∈]− s1, s1[.
Using the de�nition of rs and holomorphic dependence of uE,ρ,s on s ∈ N in (8.2) one

can show that

rs(x, ·, E) ∈ Lp,2(C), rσ(x, ·, E) ∈ Lp,2(C), 2 < p < 4, (8.9)

with holomorphic dependence on s, σ ∈ N ,

for �xed x ∈ R2, E > 0.
Proceeding from these results and from properties of the integral operators in (8.3)

-(8.5) (presented in [26]), one can show that there is an open neighbourhood Sx of S in
N ×N (where Sx depends also on v, E, ρ) such that:

systems (8.3), (8.4), (8.5) for e±s,σ, X
±
j,s,σ, j = 1, 2, are uniqely solvable in Lq,0(C), (8.10)

p/(p− 1) ≤ q < 2, for (s, σ) ∈ Sx;

e+s,σ ∈ C(C), Ωj,s,σ ∈ C(C2\Cε), j = 1, 2, for any ε > 0, (8.11)

with holomorphic dependence on (s, σ) ∈ Sx,

where Cε is de�ned in item (v) in the proof of property (4.32);∣∣∣∣Ω1,s,σ(λ, ζ)−
1

ζ − λ

∣∣∣∣ < c3(s, σ, p)

|ζ − λ|2/p
, |Ω2,s,σ(λ, ζ)| <

c3(s, σ, p)

|ζ − λ|2/p
, (8.12)

where c3 depends continuously on (s, σ) ∈ Sx and depends also on v.
Let

Nx := {s ∈ N : (s, s) ∈ Sx }, x ∈ R2. (8.13)

One can see that Nx is an open neighbourhood of the real interval ]− s1, s1[ in C.
We consider

A1,s(λ, ζ) = A1,s(x, λ, ζ, E) =
1

2πi

∫
∂Λ

Rs(x, λ, λ
′, E)Ω1,s,s(λ

′(1− 0(|λ′| − 1)), ζ)dλ′,(8.14)

A2,s(λ, ζ) = A2,s(x, λ, ζ, E) =
−1

2πi

∫
∂Λ

Rs(x, λ, λ
′, E)Ω2,s,s(λ

′, ζ)dλ′, λ, ζ ∈ ∂Λ,

where Rs is de�ned by (4.4) with hs in place of h, Ω1,s,σ,Ω2,s,σ are the functions of (8.6),
(8.11), (8.12), λ, ζ ∈ ∂Λ, s ∈ Nx.
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We consider also

Ãj,s := Aj,s, j = 1, 2, s ∈ Nx. (8.15)

Using (8.2) for hs and (8.11), (8.12) for Ωj,s,s, j = 1, 2, we obtain

Aj,s ∈ L2(∂Λ× ∂Λ), j = 1, 2, (8.16)

with holomorphic dependence on s ∈ Nx.

Using (8.15), (8.16) we also obtain

Ãj,s ∈ L2(∂Λ× ∂Λ), j = 1, 2, (8.17)

with holomorphic dependence on s ∈ Nx.

We consider A(x, s), where s ∈ Nx ∩Nx, de�ned using (8.14), (8.15) in a similar way

with A(x, s) for s ∈] − s1, s1[, but with Ãj,s in place of A(x, s). Finally, we consider
detA(x, s) for s ∈ Nx ∩Nx.

Using (8.8) for Ωj,s,s, (8.16), (8.17), we obtain that

detA(x, s) is holomorphic in s ∈ Nx ∩Nx for �xed x ∈ R2. (8.18)

Property (8.18) implies property (4.33).

8.2 Proof of proposition 4.2

Let v be as in remark 4.1 and let detA(x, s) be de�ned like in lemma 4.2.
Let

Z := {(x, s) ∈ R2×]− s1, s1[ : detA(x, s) = 0 }, (8.19)

Zx := {s ∈]− s1, s1[ : detA(x, s) = 0 }, x ∈ R2,

Zs := {x ∈ R2 : detA(x, s) = 0 }, s ∈]− s1, s1[.

Using (4.31), (4.33), we obtain that Zx is a discrete set (maybe empty) without interior
accumulation points in interval ]− s1, s1[. Therefore, we have, in particular, that

Meas Z = 0 in R2×]− s1, s1[. (8.20)

As a corollary,

Meas Zs = 0 in R2 for almost each s ∈]− s1, s1[. (8.21)

Property (8.21) implies the result of proposition 4.2 interpreted according to remark
4.1.
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