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We develop the Riemann-Hilbert problem approach to inverse scattering for the two-dimensional Schrodinger equation at xed energy. We obtain global or generic versions of the key results of this approach for the case of positive energy and compactly supported potentials. In particular, we do not assume that the potential is small or that Faddeev scattering solutions do not have singularities (i.e. we allow the Faddeev exceptional points to exist). Applications of these results to the Novikov-Veselov equation are also considered.

Introduction

We consider the two-dimensional Schrodinger equation

(-∆ + v)ψ(x) = Eψ(x), x ∈ R 2 , E > 0, (1.1) 
where v is a real-valued suciently regular function on R 2 with sucient decay at innity.

(1.2) Actually, in the present work the assumptions (1.2) are specied in the sense that v is a real-valued, bounded, compactly supported function on R 2 .

For equation (1.1) we consider the classical scattering solutions ψ + (x, k), k ∈ R 2 , k 2 = E, specied by the following assymptotics

ψ + (x, k) = e ikx + iπ √ 2πe -iπ/4 e i|k||x| √ |k||x| f ( k, |k| x |x| ) + o ( 1 √ |x| )
, |x| → ∞, (1.3) for some a priori unknown f . Function f = f (k, l) on

M E = {k, l ∈ R 2 : k 2 = l 2 = E} (1.4)
arising in (1.3) is the classical scattering amplitude for equation (1.1).

In order to determine ψ + and f from v one can use the Lipmann-Schwinger integral equation (2.1) and the integral formula (2.2) in section 2; see e.g. [START_REF] Novikov | The inverse scattering problem on a xed energy level for the two-dimensional Schr odinger operator[END_REF].

In this work we continue, in particular, studies on the following inverse scattering problem for equation (1.1) under assumptions (1.2): Problem 1.1. Given scattering amplitude f on M E at xed E > 0, nd the potential v on R 2 .

When v is compactly supported, that is

supp v ⊂ D, (1.5) 
where D is an open bounded domain in R 2 , we consider also the Dirichlet-to-Neumann map Φ(E) for equation (1.1) in D. We recall that this map is dened via the relation

∂ ∂ν ψ ∂D = Φ(E) (ψ| ∂D ) (1.6)
fullled for all suciently regular solutions ψ of (1.1) in D ∪ ∂D, where ν is the external normal vector to ∂D. Considering Φ(E), we assume also that E is not a Dirichlet eigenvalue for the operator -∆ + v in D.

(1.7)

It is well known (see [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ+(v (x)Eu (x)) ψ= 0[END_REF]) that, under assumptions (1.2), (1.5), problem 1.1 is closely related with the following inverse boundary value problem for equation (1.1) in D: see e.g. [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ+(v (x)Eu (x)) ψ= 0[END_REF].

In order to determine ψ from v one can use the Lipmann-Schwinger-Faddeev integral equation (2.10) in section 2.

In the present work, under assumptions (1.2), (1.5), we reduce problems 1.1,1.2 to some global generalized Riemann-Hilbert-Manakov problem for the classical scattering solutions ψ + and the Faddeev solutions ψ for equation (1.1); see problem 3.2 in section 3. A prototype of this global Riemann-Hilbert-Manakov problem for the case of equation (1.1) with E < 0 was considered in section 8 of [START_REF] Novikov | The inverse scattering problem on a xed energy level for the two-dimensional Schr odinger operator[END_REF].

The term "global" means, in particular, that the kernels of our Riemann-Hilbert-Manakov problem have no singularities, even if there are the Faddeev exceptional points at xed E. After that we reduce our Riemann-Hilbert problem to a Fredholm linear integral equation of the second type; see theorem 4.1 and proposition 4.1 in section 4.

As a result we obtain, in particular, a new generic reconstruction method for problems 1.1, 1.2; see proposition 4.2 and remarks 4.1, 4.2 in section 4.

In particular, our reconstruction from the Faddeev generalized scattering data is reduced to formulas (3.9), (3.11), (4.3), (4.4), (4.9), (4.22), (4.23), integral equations (4.6)-(4.8), (4.24), (4.25) and formulas (3.12),(4.14),(4.15), (4.18), Note that the approach of the present work goes back to the soliton theory, see [START_REF] Ablowitz | On the inverse scattering transform for the Kadomtsev-Petviashvili equation[END_REF], [START_REF] Fokas | On the inverse scattering on the timedependent Schr odinger equation and the associated Kadomtsev-Petviashvili equation[END_REF], [START_REF] Grinevich | Analogs of multisoliton potentials for the two-dimensional Schr odinger operator[END_REF], [START_REF] Grinevich | Analogs of multisoliton potentials for the two-dimensional Schroedinger operator and the nonlocal Riemann problem[END_REF], [START_REF] Manakov | The inverse scattering transform for the time-dependent Schrodinger equation and Kadomtsev-Petviashvili equation[END_REF]. The rst applications of this approach to problems (1.1), (1.2) were given in [START_REF] Grinevich | Inverse scattering problem for the twodimensional Schr odinger operator, the-method and nonlinear equations[END_REF], [START_REF] Novikov | Construction of two-dimensional Schrodinger operator with given scattering amplitude at xed energy[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ+(v (x)Eu (x)) ψ= 0[END_REF], [START_REF] Novikov | The inverse scattering problem on a xed energy level for the two-dimensional Schr odinger operator[END_REF]. Actually, the main result of the present work consists in a globalization of this approach to problems (1.1), (1.2).

The reconstruction method of the present work uses properly generalized scattering data for small and large values of the complex spectral parameter at xed energy and, therefore, is considerably more stable, generically, than the reconstruction method of [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the twodimensional case[END_REF] based exclusively on properties of some generalized scattering data for large values of complex spectral parameter. Generically, stability estimates of [START_REF] Novikov | A global stability estimate for the Gel'fand-Calder on inverse problem in two dimensions[END_REF] obtained using ideas of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the twodimensional case[END_REF] can be improved using results of the present work to estimates like in [START_REF] Santacesaria | A H older-logarithmic stability estimate for an inverse problem in two dimensions[END_REF], but without the assumptions that some norm of potential v is suciently small in comparison with xed E. This issue will be presented in detail elsewhere.

In addition, in contrasts with [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the twodimensional case[END_REF], results of the present work admit application to solving the Cauchy problem for the Novikov-Veselov equation ( [START_REF] Manakov | The method of the inverse scattering problem, and twodimensional evolution equations[END_REF], [START_REF] Veselov | Finite-gap two-dimensional potential Schr odinger operators. Explicit formulas and evolution equations[END_REF])

∂ t v = 4ℜ(4∂ 3 z v + ∂ z (vw) -E∂ z w), (1.9) ∂ z w = -3∂ z v, v = v, E > 0, v = v(x, t), w = w(x, t), x = (x 1 , x 2 ) ∈ R 2 , t ∈ R,
with compactly supported v(x, t = 0). Here, we used the following notations:

∂ t = ∂ ∂t , ∂ z = 1 2 ( ∂ ∂x 1 -i ∂ ∂x 2 ) , ∂ z = 1 2 ( ∂ ∂x 1 + i ∂ ∂x 2
) .

(1.10)

These applications are indicated in section 6 of the present work and will be presented in detail elsewhere.

2 Preliminary results of direct scattering

Classical scattering functions

We recall that for the classical scattering functions ψ + and f for equation (1.1) the following Lipmann-Schwinger integral equation (2.1) and the integral formula (2.2) hold:

ψ + (x, k) = e ikx + ∫ y∈R 2 G + (x -y, √ E)v(y)ψ + (y, k)dy, ( 2.1 
)

G + (x, √ E) = - 1 (2π) 2 ∫ R 2 e iξx dξ |ξ| 2 -E -i0 = - i 4 H 1 0 (|x| √ E), f (k, l) = 1 (2π) 2 ∫ R 2 e -ily v(y)ψ + (y, k)dy, (2.2) where x, k, l ∈ R 2 , k 2 = l 2 = E > 0, H 1 0
is the Hankel function of the rst type; see e.g. [START_REF] Novikov | The inverse scattering problem on a xed energy level for the two-dimensional Schr odinger operator[END_REF]. In addition, it is known that equation (2.1) is uniquely solvable with respect to

ψ + (•, k) ∈ L ∞ (R 2 ) at xed k, under conditions (1.2) and, in particular, under the conditions that v = v ∈ L ∞ (R 2 ), supp v ⊂ D, (2.3) 
where D is an open bounded domain in R 2 ; see e.g. [START_REF] Berezin | The Schr odinger Equation[END_REF] for a proof of a similar result in three dimensions.

Let S 1 r = {ζ ∈ R 2 : ζ 2 = r 2 }, r > 0, (2.4 
)

Σ E = {ζ ∈ C 2 : ζ 2 = E}, E > 0, (2.5 
)

Σ E,ρ = {ζ ∈ Σ E : |ℑζ| ≥ ρ}, E > 0, ρ > 0, (2.6) 
and let χ E,ρ be the characteristic function of Σ E,ρ in Σ E .

(2.7)

Note that M E = S 1 √ E × S 1 √ E ,
where M E is dened by (1.4). It is well known that, under conditions (1.2), (1.5),

ψ + (x, k) admits a holomorphic extension in k from S 1 √ E to Σ E at xed x (2.8)
and

f (k, l) admits a holomorphic extension in (k, l) from M E to Σ E × Σ E (2.9)
with possible exponential increasing at innity in complex domain.

As a corollary, f on M E uniquely determines f on Σ E × Σ E , under assumptions (1.2), (1.5).

Faddeev functions

We recall also that the Faddeev solutions ψ(x, k) for (1.1) satisfy the following generalized Lipmann-Schwinger integral equation

ψ(x, k) = e ikx + ∫ y∈R 2 G(x -y, k)v(y)ψ(y, k)dy, (2.10) G(x, k) = g(x, k)e ikx , (2.11) g(x, k) = - 1 (2π) 2 ∫ ξ∈R 2 e iξx |ξ| 2 + 2kξ
dξ, (2.12) 

where x ∈ R 2 , k ∈ C 2 \R 2 , k 2 = E > 0;
(•, k) ∈ L ∞ (R 2 ) at xed k if k ∈ ( Σ E \S 1 √ E ) \E E ,
where E E is the set of the Faddeev exceptional points on Σ E \S 1 √ E ; see e.g. [START_REF] Novikov | The inverse scattering problem on a xed energy level for the two-dimensional Schr odinger operator[END_REF]. Note also that, due to estimates (3.16)-(3.18) of [START_REF] Novikov | The inverse scattering problem on a xed energy level for the two-dimensional Schr odinger operator[END_REF], the following estimates hold for some constant c 0 > 0 :

|G + (x, √ E)| ≤ c 0 |x| -1/2 E -1/4 , (2.14) |g(x, k)| ≤ c 0 |x| -1/2 |ℜk| -1/2 , ( 2.15) 
where G + , g are dened in (2.1), (2.11)

, x ∈ R 2 , k ∈ C 2 \R 2 , k 2 = E > 0.
In addition, under assumptions (2.3), as a corollary of (2.14), (2.15), in a similar way to proposition 4.1 in [START_REF] Novikov | The inverse scattering problem on a xed energy level for the two-dimensional Schr odinger operator[END_REF], we have that

∥A(k)∥ L ∞ (R 2 )→L ∞ (R 2 ) ≤ M (∥v∥ L ∞ (D) , D, E, ρ), (2.16) k ∈ C 2 , k 2 = E > 0, |ℑk| = ρ > 0, Σ E,ρ ∩ E E = ∅ if ρ > ρ 1 (∥v∥ L ∞ (D) , D, E), E > 0, (2.17) 
where A(k) is the linear integral operator of equation (2.13),

M (q, D, E, ρ) = c 0 qI 1 (D) (E + ρ 2 ) 1/4 , ( 2.18 
)

ρ 1 = [ max([c 0 qI 1 (D)] 4 -E, 0) ] 1/2 , (2.19) q ≥ 0, I 1 (D) = max x∈R 2 ∫ D dy |x -y| 1/2 .
In addition to ψ, we consider also the generalized Faddeev scattering amplitude h(k, l) dened by the formula

h(k, l) = 1 (2π) 2 ∫ R 2 e -ily v(y)ψ(y, k)dy, ( 2.20) 
where (k, l) ∈

( Σ E \S 1 √ E )
× Σ E ; see e.g. [START_REF] Faddeev | The inverse problem in the quantum theory of scattering, II[END_REF], [START_REF] Novikov | The inverse scattering problem on a xed energy level for the two-dimensional Schr odinger operator[END_REF]. Here we assume also that ℑk = ℑl if (1.5) is not assumed.

Note that, under assumption (2.3), h is (complex-valued) real-analytic on

(( Σ E \S 1 √ E ) \E E ) × Σ E , (2.21) h(k, •) is holomorphic on Σ E at xed k.
We say that a complex-valued function is real-analytic if its real and imaginary parts are real-analytic.

∂-equation on the Faddeev eigenfunctions

We recall that the following isomorphic relations are valid:

Σ E ≈ C\0, S 1 √ E ≈ T = {λ ∈ C : |λ| = 1}. (2.22)
More precisely:

k = (k 1 , k 2 ) ∈ Σ E ⇒ λ = λ(k) := k 1 + ik 2 √ E ∈ C\0, (2.23 
)

k = (k 1 , k 2 ) ∈ S 1 √ E ⇒ λ(k) ∈ T; λ ∈ C\0 ⇒ k = k(λ, E) ∈ Σ E , λ ∈ T ⇒ k = k(λ) ∈ S 1 √ E , ( 2.24) 
where

k(λ, E) = (k 1 (λ, E), k 2 (λ, E)), k 1 = ( λ + 1 λ ) √ E 2 , k 2 = ( 1 λ -λ ) i √ E 2 . (2.25)
Note also that ,

|ℜk(λ, E)| = √ E 2 ( |λ| + |λ| -1 ) , |ℑk(λ, E)| = √ E 2 | λ| -|λ| -1 , λ ∈ C\0, E > 0. ( 2 
where p ≥ 1, ν ≥ 0, u ν (λ) := |λ| -ν u(λ -1
) , (2.28)

D 1 = {λ ∈ C : |λ| ≤ 1}. (2.29)
It is known that the function ψ of subsection 2.2 has, in particular, the following properties, under assumptions (1.2) and, in particular, under assumptions (2.3):

ψ(x, k(λ)) = e ik(λ)x (1 + o(1)), if λ → 0 or λ → ∞,
(2.30)

∂ ∂λ ψ(x, k(λ)) = sgn(|λ| 2 -1) λ b(k(λ))ψ ( x, k ( - 1 λ 
)) , (2.31) ψ ( x, k ( - 1 λ 
)) = ψ(x, (k(λ))), k(λ) ∈ ( Σ E \S 1 √ E ) \E E , where x ∈ R 2 , k(λ) = k(λ, E) is dened by (2.25), b(k) := h(k, -k), (2.32) 
where h is dened by (2.20); see e.g. [START_REF] Grinevich | Inverse scattering problem for the twodimensional Schr odinger operator, the-method and nonlinear equations[END_REF], [START_REF] Novikov | The inverse scattering problem on a xed energy level for the two-dimensional Schr odinger operator[END_REF]. Note that ∂-equations like (2.31) go back to [START_REF] Ablowitz | On the inverse scattering transform for the Kadomtsev-Petviashvili equation[END_REF], [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial dierential equations[END_REF].

Some estimates related with ∂-equation (2.31)

In particular, as a corollary of (2.30),

ψ(x, (k(λ))) ̸ = 0 if |λ| is suciently small or if |λ| is suciently large. (2.33)
In addition, under assumptions (2.3), as a corollary of (2.16), we have

|µ(x, k(λ))| ≤ (1 -M (q, D, E, ρ)) -1 , (2.34) x ∈ R 2 , k(λ) = k(λ, E) ∈ Σ E,ρ , ρ > ρ 1 (q, D, E), ∥v∥ L ∞ (D) < q,
where M is dened by (2.18), ρ 1 is dened by (2.19).

In connection with equation (2.31) we consider also

u E,ρ (λ) = 1 λ χ E,ρ (k(λ))b(k(λ)), (2.35) 
where χ E,ρ is dened by (2.7).

Under assumptions (2.3), we have:

u E,ρ ∈ L p,2 (C), 2 < p < 4, (2.36) 
where

ρ > ρ 1 (∥v∥ L ∞ (D) , D, E); ∥u E,ρ ∥ L p,2 ≤ qc 1 (D, p, E)(1 -M (q, D, E, ρ)) -1 , (2.37) ∥u E,ρ ∥ L p,2 = O (q) as q → 0, (2.38) 
for xed E > 0, ρ > ρ 1 (q, D, E), D and p, where ∥v∥

L ∞ (D) ≤ q, M is dened by (2.18), c 1 is a positive constant, 2 < p < 4; |λu E,ρ (λ)| ≤ q(2π) -2 (1 -M (q, D, E, ρ)) -1 ∫ D dx, λ ∈ C, (2.39) 
where 

∥v∥ L ∞ (D) ≤ q, M is dened by (2.18), ρ > ρ 1 (∥v∥ L ∞ (D) , D,

Final remarks

We recall also that, under the assumptions (1.7), (2.3), at xed E, the scattering amplitude f uniquely determines the Dirichlet-to-Neumann map Φ and vice versa; see proposition 4 in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ+(v (x)Eu (x)) ψ= 0[END_REF].

In turn, Φ(E) uniquely determines h on

(( Σ E \S 1 √ E ) \E E )
× Σ E ; see [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ+(v (x)Eu (x)) ψ= 0[END_REF].

Note also that f at xed E uniquely determines h on

(( Σ E \S 1 √ E ) \E E )
× Σ E via a two-dimensional analogue of the construction given in [START_REF] Novikov | The inverse scattering problem at xed energy for the three-dimensional Schr odinger equation with an exponentially decreasing potential[END_REF].

As a corollary, problems 1.1, 1.2 of section 1 are reduced to problem 3.1 of section 3.

Global generalized Riemann-Hilbert problem

Let

Λ = Λ E,ρ = { λ ∈ C : √ E 2 |λ| -|λ| -1 < ρ } , E > 0, ρ > 0, and (3.1 
)

∂Λ = ∂Λ E,ρ be the boundary of Λ in C with the standard orientation. Note that Σ E,ρ ≈ C\Λ E,ρ , (3.2) 
where this isomorphism is given by formulas (2.23), (2.24).

Let

W (λ, ς) = i 2 sgn(|λ| 2 -1) [ 1 ς ln w 1 (λ, ς) + ς ln w 2 (λ, ς) ] + ∫ |η|=1 1 2(ς -η) θ [ sgn(|λ| 2 -1)i ( |λ|η λ - λ |λ|η )] |dη|, λ, ς ∈ ∂Λ, ( 3.3) 
where

w 1 = ς -λ ς -λ |λ| , w 2 = -1 ς -λ -1 ς -λ |λ| ,
θ is the standard Heaviside step function.

Remark 3.1. Note that

| arg w i (λ, ς)| < π, λ, ς ∈ ∂Λ, i = 1, 2, (3.4) 
and the logarithms in (3.3) are well dened by the condition |ℑ ln w i | < π.

In particular, we have

W ∈ L p (∂Λ × ∂Λ), p ≥ 1, ∂Λ = ∂Λ E,ρ , E > 0, ρ > 0. (3.5) Lemma 3.1. Let v satisfy (2.3) and let ρ ≥ ρ 1 (∥v∥ L ∞ (D) , D, E),
where ρ 1 is the constant in (2.17). Let ψ + , ψ be the eigenfunctions of subsections 2.1, 2.2. Then the following relation holds:

ψ(x, k(λ)) = ψ + (x, k(λ)) + ∫ ∂Λ W (λ, ς)h(k(λ), k(ς))ψ + (x, k(ς))dς, λ ∈ ∂Λ. (3.6)
where k(λ) = k(λ, E) is given by (2.25), W (λ, ς) = W (λ, ς, E) is given by (3.3), h is dened by (2.20) and the integration is taken according to the standard orientation of the ∂Λ.

Lemma 3.1 is proved in section 6. Note that, under assumptions (2.3), as a corollary of (2.20), (2.34), we have

|h(k(λ), k(ς))| ≤ q(2π) -2 e 2ρL (1 -M (q, D, E, ρ)) -1 ∫ D dx, (3.7) λ, ς ∈ ∂Λ = ∂Λ E,ρ , ρ > ρ 1 (q, D, E), ∥v∥ L ∞ (D) ≤ q,
where M, ρ The approach of the present work for solving problems 1.1, 1.2 and 3.1 is based on the reduction of problem 3.1 to the following generalized Riemann-Hilbert problem. Problem 3.2. Given functions h on ∂Λ × ∂Λ and b on (C\0)\Λ, nd functions ψ + on Λ and ψ on (C\0)\Λ satisfying the properties of the items 1,2,3 of proposition 3.1.

Note that in problems 3.1, 3.2 we consider h, b and ψ + , ψ as

h = h(λ, ζ, E) = h(k(λ), k(ζ)), λ, ζ ∈ ∂Λ, ( 3.9 
)

ψ + = ψ + (x, λ, E) = ψ + (x, k(λ)), λ ∈ Λ, (3.10) 
ψ = ψ(x, λ, E) = ψ(x, k(λ)), b = b(λ, E) = b(k(λ)), λ ∈ (C\0)\Λ, (3.11) 
where 

k(λ) = k(λ,
v(x) = (∆ x + E)ψ(x, k(λ)) ψ(x, k(λ)) for all x ∈ R 2 (3.12)
if |λ| is suciently small or if |λ| is suciently large.

Prototypes of problems 3.1, 3.2 for the case of equation (1.1) with E < 0 were considered in section 8 of [START_REF] Novikov | The inverse scattering problem on a xed energy level for the two-dimensional Schr odinger operator[END_REF].

Generalized Riemann-Hilbert problems like problem 3.2 go back to [START_REF] Manakov | The inverse scattering transform for the time-dependent Schrodinger equation and Kadomtsev-Petviashvili equation[END_REF] and to [START_REF] Fokas | On the inverse scattering on the timedependent Schr odinger equation and the associated Kadomtsev-Petviashvili equation[END_REF], [START_REF] Grinevich | Analogs of multisoliton potentials for the two-dimensional Schr odinger operator[END_REF], [START_REF] Grinevich | Inverse scattering problem for the twodimensional Schr odinger operator, the-method and nonlinear equations[END_REF].

We say that problem 3.2 is a generalized Riemann-Hilbert-Manakov problem. We say that the results of lemma 3.1 and proposition 3.1 are global and that the related problem 3.2 is global, since these results and problem are formulated for general v satisfying (2.3) and, in particular, without the assumption that E E = ∅, where E E is the set of Faddeev exceptional points at xed E.

The reduction of problem 3.1 to problem 3.2 follows from proposition 3.1 and, for example, from formula (3.12). [START_REF] Berezin | The Schr odinger Equation[END_REF] Integral equations for solving problem 3.2

Formulas and equations

Let µ + (λ) := e -ik(λ)x ψ + (x, λ, E), λ ∈ Λ, (4.1 
)

µ(λ) := e -ik(λ)x ψ(x, λ, E), λ ∈ C\Λ, (4.2) r(x, λ, E) = e i(-k(λ)+k(-1/λ))x sgn(|λ| 2 -1) λ χ(λ)b(λ, E) = (4.3) e -2iℜk(λ)x u(λ), λ ∈ C\0, R(x, λ, ζ, E) = e i(k(ζ)-k(λ))x W (λ, ζ, E)h(λ, ζ, E), λ, ζ ∈ ∂Λ, ( 4.4) 
where ψ + , ψ and

h = h(λ, ς, E) = h(k(λ), k(ς)), b = b(λ, E) = b(k(λ)) are the functions of Problem 3.2, χ(λ) = χ E,ρ (k(λ)) is dened via (2.7), u(λ) = u E,ρ (λ) is dened via (2.35), k(λ) = k(λ, E) is dened by (2.25), W is given by (3.3), Λ = Λ E,ρ is dened by (3.1). Let e(λ) = e(x, λ, E), X j (λ, ζ) = X j (x, λ, ζ, E), j = 1, 2, λ, ζ ∈ C, (4.5) 
be dened as the solutions of the following linear integral equations:

e(λ) = 1 - 1 π ∫ C r(x, ζ, E)e(ζ) dℜζdℑζ ζ -λ , ( 4.6 
)

X 1 (λ, ζ) + 1 π ∫ C r(x, η, E)X 1 (η, ζ) dℜζdℑζ η -λ = 1 2(ζ -λ) , (4.7) X 2 (λ, ζ) + 1 π ∫ C r(x, η, E)X 2 (η, ζ) dℜζdℑζ η -λ = 1 2i(ζ -λ) . ( 4.8) 
In addition, we consider also

Ω 1 (λ, ζ) := X 1 (λ, ζ) + iX 2 (λ, ζ), Ω 2 (λ, ζ) := X 1 (λ, ζ) -iX 2 (λ, ζ), λ, ζ ∈ C. (4.9)
Note that if (2.36) is fullled, then equation (4.6) for e(•) and equations (4.7), (4.8) for X j (•, ζ), j = 1, 2, are uniquely solvable in L q,0 (C), p/(p -1) ≤ q < 2, where L p,ν is dened in (2.27). In addition:

e(•) ∈ C(C ∪ ∞), e(∞) = 1, (4.10 
)

|e(λ) -1| ≤ c 2 (r 0 , p), Ω 1 (λ, ζ) - 1 ζ -λ < c 2 (r 0 , p) 1 2|ζ -λ| 2/p , (4.11) |Ω 2 (λ, ζ)| < c 2 (r 0 , p) 1 2|ζ -λ| 2/p , ( 4.12) 
where

r 0 = ∥r(x, •, E)∥ L p,2 , lim r 0 →0 c 2 (r 0 , p) = 0. (4.13) Note that r 0 is independent of x ∈ R 2 .
In connection with the functions e, X 1 , X 2 , Ω 1 , Ω 2 and related results we refer to chapter 3 of [START_REF] Vekua | Generalized analytic functions[END_REF] and to section 6 of [START_REF] Novikov | The inverse scattering problem on a xed energy level for the two-dimensional Schr odinger operator[END_REF].

We dene

ψ ′ (λ) = { ψ + (λ), λ ∈ Λ ∪ ∂Λ, ψ(λ), λ ∈ (C\0)\Λ, (4.14) 
where ψ + , ψ are the functions of problem 3.2. In addition, we consider µ ′ , µ + , µ, where

ψ ′ (λ) = e ik(λ)x µ ′ (λ) = e ik(λ)x { µ + (λ), λ ∈ Λ ∪ ∂Λ, µ(λ), λ ∈ (C\0)\Λ. (4.15) 
Theorem 4.1. Let the data h and b of problem 3.2 satisfy the following conditions:

u E,ρ ∈ L p,2 (C), 2 < p < 4, (4.16 
)

h(•, •, E) ∈ C(∂Λ × ∂Λ), (4.17) 
where u E,ρ is dened by (2.35), W is dened by

(3.3), ∂Λ = ∂Λ E,ρ is dened in (3.1), ρ > 0.
Let ψ ′ be a solution of problem 3.2. Then for µ ′ dened by (4.15) the following formula holds:

µ ′ (λ) = e(λ) + 1 2πi ∫ ∂Λ Ω 1 (λ, ζ)K(ζ)dζ - 1 2πi ∫ ∂Λ Ω 2 (λ, ζ)K(ζ)dζ, λ ∈ C\∂Λ, (4.18)
where the integration is taken according to the standard orientation of ∂Λ,

K(λ) := µ + (λ) -µ(λ), λ ∈ ∂Λ. (4.19)
In addition, this K = K(x, λ, E) satises the following linear integral equation

K(λ) + ∫ ∂Λ R(x, λ, λ ′ , E) ( e(λ ′ )+ 1 2πi ∫ ∂Λ Ω 1 (λ ′ (1 -0(|λ ′ | -1)), ζ)K(ζ)dζ -1 2πi ∫ ∂Λ Ω 2 (λ ′ , ζ)K(ζ)dζ ) dλ ′ = 0, λ ∈ ∂Λ, ( 4.20) 
where R is dened by (4.4), Ω 1 , Ω 2 are dened by (4.9) and the integrations are taken according to the standard orientation of ∂Λ.

Note also that

∫ ∂Λ Ω 1 (λ ′ (1 -0(|λ ′ | -1)), ζ)K(ζ)dζ = (4.21) lim 0<ε→0 ∫ ∂Λ Ω 1 (λ ′ (1 -ε(|λ ′ | -1)), ζ)K(ζ)dζ, λ ′ ∈ ∂Λ.
Formula (4.18) is similar to formula (6.7) of [START_REF] Novikov | The inverse scattering problem on a xed energy level for the two-dimensional Schr odinger operator[END_REF]. Equation (4.20) is similar to equation (6.11) of [START_REF] Novikov | The inverse scattering problem on a xed energy level for the two-dimensional Schr odinger operator[END_REF].

Theorem 4.1 is proved in section 7. Consider

I(λ) = I(x, λ, E) = - ∫ ∂Λ R(x, λ, λ ′ , E)e(λ ′ )dλ ′ , λ ∈ ∂Λ, (4.22) A 1 (λ, ζ) = A 1 (x, λ, ζ, E) = 1 2πi ∫ ∂Λ R(x, λ, λ ′ , E)Ω 1 (λ ′ (1 -0(|λ ′ | -1)), ζ)dλ ′ , (4.23) A 2 (λ, ζ) = A 2 (x, λ, ζ, E) = -1 2πi ∫ ∂Λ R(x, λ, λ ′ , E)Ω 2 (λ ′ , ζ)dλ ′ , λ, ζ ∈ ∂Λ,
where R, e, Ω 1 , Ω 2 are the functions of (4.4), (4.5), (4.9).

Proposition 4.1. Let the assumptions of theorem 4.1 be fullled and K be the function of (4.19), (4.20). Then K, K satisfy the following system of linear integral equations

K(λ) + ∫ ∂Λ A 1 (λ, ζ)K(ζ)dζ + ∫ ∂Λ A 2 (λ, ζ)K(ζ)dζ = I(λ), λ ∈ ∂Λ, (4.24) K(λ) + ∫ ∂Λ A 2 (λ, ζ)K(ζ)dζ + ∫ ∂Λ A 1 (λ, ζ) K(ζ)dζ = I(λ), λ ∈ ∂Λ, (4.25) 
where I, A 1 , A 2 are dened by (4.22), (4.23). In addition,

I ∈ L 2 (∂Λ), A j ∈ L 2 (∂Λ × ∂Λ), j = 1, 2, (4.26 
)

∥A j ∥ L 2 → 0 for ∥h∥ C → 0, r 0 ≤ r fixed , j = 1, 2, (4.27) 
where |x| < c for xed c > 0, r 0 is dened in (4.13) Proposition 4.1 is proved in section 6.

Analysis of equations

Due to estimates (4.26), the system (4.24), (4.25) can be considered as a Fredholm linear integral equation of the second type for the vector-function

(K, K) ∈ L 2 (∂Λ, C 2 ) with parameters x ∈ R 2 and E > 0.
The modied Fredholm determinant detA for system (4.24), (4.25) can be dened by means of the formula:

ln detA = Tr(ln(Id + A) -A), (4.28) 
where system (4.24), (4.25) is written as

(Id + A) ( K K ) = ( I I ) . ( 4 

.29)

For the precise denition of detA, see [START_REF] Gokhberg | Introductory to the Theory of Linear Nonselfadjoint Operators[END_REF].

In addition, we have the following lemmas: 

∥A j ∥ L 2 (∂Λ×∂Λ) → 0, ∥I∥ L 2 (∂Λ) → 0, for ∥v∥ L ∞ (D) → 0, j =
= q/∥v∥ L ∞ (D) .
And let detA = detA(x, s), x ∈ R 2 , s ∈] -s 1 , s 1 [, be the modied Fredholm determinant of the related system (4.24), (4.25) (where detA depends also on v, E and ρ). Then: 3) and ∥v∥ L ∞ (D) = q 1 for xed q 1 , where 0 < q 1 < q, then for almost each s ∈] -s 1 , s 1 [, where s 1 = q/q 1 , the system (4.24), (4.25) corresponding to sv is uniquely solvable for almost each x ∈ R 2 .

detA(x, 0) = 1, x ∈ R 2 , (4.31) detA ∈ C(R 2 ×]-s 1 , s 1 [, C), (4.32) 
detA(x, •) is real-analytic on ]-s 1 , s 1 [ for xed x ∈ R 2 . ( 4 
Remark 4.2. If the assumptions of proposition 4.2 are fullled, ∥v∥ L ∞ (D) < q, and system (4.24), (4.25) corresponds to v, then, as a corollary of (4.32), the set of x, where the system (4.24), (4.25) is uniquely solvable, is an open set in R 2 .

Proposition 4.2 is proved in section 8.

Applications to the Novikov-Veselov equation

In this section we suppose that v and ρ satisfy the assumptions of lemma 4.2 for xed D, E and q. We dene 

f s (k, l, t) = f s (k, l) exp[2it(k 3 1 -3k 1 k 2 2 -l 3 1 + 3l 1 l 2 2 )], (k, l) ∈ M E , (5.1) h s (k, l, t) = h s (k, l) exp[2it(k 3 1 -3k 1 k 2 2 -l 3 1 + 3l 1 l 2 2 )], (k, l) ∈ ∂Σ E,ρ × ∂Σ E,ρ , b s (k, t) = b s (k) exp[2it(k 3 1 + k 3 1 -3k 1 k 2 2 -3k 1 k 2 2 )], k ∈ Σ E,ρ , where t ∈ R, s ∈]-s 1 , s 1 [,
h s (k(λ), k(ς), t) = h s (k(λ), k(ς)) exp[iE 3/2 t(λ 3 + λ -3 -ς 3 -ς -3 )] (5.2) =: h s,t (λ, ς, E), (λ, ς) ∈ ∂Λ × ∂Λ, b s (k(λ), t) = b s (k(λ)) exp[itE 3/2 (λ 3 + λ -3 + λ 3 + λ -3 )] =: b s,t (λ, E), λ ∈ (C\0)\Λ, where t ∈ R, s ∈] -s 1 , s 1 [, k(λ) = k(λ, E) is dened by (2.25), Λ = Λ(E, ρ) is dened by (2.

31).

We consider problem 3.2 of section 3 with h = h s,t , b = b s,t , ψ + = ψ + s,t . As in section 4.1, we consider the reduction of this generalized Riemann-Hilbert-Manakov problem to formulas (4.14), (4.15), (4.18), (4.19) and the system of equations (4.24), (4.25), where µ ′ = µ ′ s,t , e = e s,t , Ω j = Ω j,s,t , j = 1, 2, K = K s,t , I = I s,t , A j = A j,s,t , j = 1, 2. In addition, as in section 4.2, we consider det A(x, s, t) for the aforementioned system (4.24), (4.25).

We expect that using ideas of [START_REF] Grinevich | Analogs of multisoliton potentials for the two-dimensional Schr odinger operator[END_REF], [START_REF] Grinevich | Analogs of multisoliton potentials for the two-dimensional Schroedinger operator and the nonlocal Riemann problem[END_REF], [START_REF] Grinevich | Inverse scattering problem for the twodimensional Schr odinger operator, the-method and nonlinear equations[END_REF], [START_REF] Novikov | The inverse scattering problem on a xed energy level for the two-dimensional Schr odinger operator[END_REF] and of the present work one can obtain the following result: Suppose that det A(x, s, t)

̸ = 0 for x ∈ X , t ∈ T at xed s ∈] -s 1 , s 1 [, where X is an open domain in R 2 , T is an open interval in R, 0 ∈ T , s 1 is dened in lemma 4.2.
Then there is a real valued v s (•, t) such that:

v s (•, 0) = sv, (5.3)
where sv is the potential of lemma 4.2;

-∆ x ψ + s,t + v s (x, t)ψ + s,t = Eψ + s,t , -∆ x ψ s,t + v s (x, t)ψ s,t = Eψ s,t , (x, t) ∈ X × T , (5.4)
where ψ + s,t = ψ + s,t (x, λ), λ ∈ Λ, and ψ s,t = ψ s,t (x, λ), λ ∈ (C\0)\Λ, solve the aforementioned problem 3.2; v = v s (x, t) solves the Novikov-Veselov equation (1.9) in X × T with appropriate w = w s (x, t) (and satises (5.3) on X ). These studies will be given in detail elsewhere.

Note that, actually, the zeroes of det A(x, s, t) describe the blow-up points of the potential v s (x, t).

It remains to note that in similar way to proposition 4.2 and remarks 4.1,4.2, for almost each s ∈] -s 1 , s 1 [, we have that det A(x, s, t) ̸ = 0 for almost each (x, t) ∈ R 2 × R; and the nonzero set of detA is open. [START_REF] Eskin | The inverse scattering problem in two dimensions at xed energy[END_REF] Proof of lemma 3.1

Lemma for Green functions

Let z = x 1 + ix 2 , z = x 1 -ix 2 for x = (x 1 , x 2 ) ∈ R 2 . (6.1)
Lemma 6.1. The following formula holds:

G(x, k(λ)) -G + (x, √ E) = 1 (2π) 2 ∫ ∂Λ W (λ, ς, E)e i √ E/2(ςz+z/ς) dς, λ, ς ∈ ∂Λ, (6.2)
where G, G + are dened in (2.11), (2.1), W is dened by

(3.3), k(λ) = k(λ, E) is dened in (2.25), Λ = Λ E,ρ is dened in (3.1).
Proof of lemma 6.1. We recall that

∂ ∂λ G(z, k(λ)) = sgn(|λ| 2 -1)
4πλ e ik(-1/λ)x , λ ∈ (C\0)\T, (6.3)

∂ ∂λ G(z, k(λ)) = sgn(|λ| 2 -1) 4πλ e ik(λ)x , λ ∈ (C\0)\T, (6.4) 
where G is dened by (2.11), (2.12), k(λ) = k(λ, E) is dened by (2.25), T is dened by (2.22); see [START_REF] Novikov | The inverse scattering problem on a xed energy level for the two-dimensional Schr odinger operator[END_REF]. Note that

k(-1/λ)x = - √ E 2 (λz + z/λ), k(λ)x = √ E 2 (λz + z/λ). ( 6.5) 
Using the Cauchy formula for e ik(-1/λ)x /λ and e ik(λ)x /λ we have

e ik(-1/λ)x /λ = 1 2πi ∫ ∂Λ 1 ς e -i √ E/2(ςz+z/ς) dς ς -λ , λ ∈ Λ, (6.6 
)

e ik(λ)x /λ = 1 2πi ∫ ∂Λ 1 ς e i √ E/2(ςz+z/ς) dς ς -λ , λ ∈ Λ. (6.7) 
Due to (6.3), (6.4) and (6.6), (6.7) we have

∂ ∂λ G(x, k(λ)) = sgn(|λ| 2 -1) -1 2πi ∫ ∂Λ 1 4πς e -i √ E/2(ςz+z/ς) dς ς -λ , λ ∈ Λ, |λ| ̸ = 1, (6.8) 
∂ ∂λ G(x, k(λ)) = sgn(|λ| 2 -1) 1 2πi ∫ ∂Λ 1 4πς e i √ E/2(ςz+z/ς) dς ς -λ , λ ∈ Λ, |λ| ̸ = 1. (6.9)
Formulas (6.8), (6.9) remain also valid with G(x, k(λ)) replaced in the left hand side by

G(x, k(λ)) -G + (x, √ E), where G + is dened in (2.

1). Integrating the dierential equation for

G -G + we obtain G(x, k(λ)) -G + (x, √ E) = u(z, λ) + [ G(x, k(λ 0 )) -G + (x, √ E) -u(z, λ 0 ) ] , (6.10) 
for

λ 0 = λ 0 (λ), λ ∈ Λ ∩ D 1 , or for λ 0 (λ), λ ∈ Λ ∩ (C\D 1 ),
where D 1 is dened by (2.29),

λ 0 = λ 0 (λ) = λ |λ| (1 + 0(|λ| 2 -1)), u(z, λ) = sgn(|λ| 2 -1) 2πi ∫ ∂Λ 1 4πς e -i √ E/2(ςz+z/ς) ln(ς -λ)dς (6.11) - sgn(|λ| 2 -1) 2πi ∫ ∂Λ 1 4πς e i √ E/2(ςz+z/ς) ln(ς -λ)dς, λ ∈ Λ\T,
where notation 1 + 0(|λ| 2 -1) is like in (4.21). In the last expression logarithm is chosen such that |ℑ ln(•)| < π.

We change the variable ς → -1/ς in the rst integral on the right and obtain the formula

u(z, λ) = - sgn(|λ| 2 -1) 8π 2 i ∫ ∂Λ e i √ E/2(ςz+z/ς) [ 1 ς ln (ς -λ) + ς ln ( -1 ς -λ )]
dς, λ ∈ Λ\T.

(6.12) In the last expression logarithm is chosen such that |ℑ ln(•)| < π.

We choose λ 0 as λ 0 = λ |λ| (1 ± 0) since the limiting values of G -G + on the unit circle T are given by (see [19, section 3]):

G(x, k(λ 0 )) -G + (x, √ E) = πi (2π) 2 ∫ T e i √ E/2(ςz+z/ς) θ [ sgn(|λ| 2 -1)i ( |λ|ς λ - λ |λ|ς )]
|dς|, (6.13) where θ is the Heaviside step function. Using the Cauchy formula for e i √ E/2(ςz+z/ς) in (6.13), we can rewrite (6.13) as follows:

G(x, λ 0 ) -G + (x, √ E) = 1 8π 2 ∫ ς 1 ∈T ( ∫ ∂Λ e i √ E/2(ςz+z/ς) dς ς -ς 1 ) × (6.14) θ [ sgn(|λ| 2 -1)i ( |λ|ς 1 λ - λ |λ|ς 1 )] |dς 1 |.
In order to complete the proof of lemma 6.1 it remains only to put (6.14), (6.12) into (6.10).

In addition, to justify remark 3.1, we need to prove (3.4). Assume that ς belongs to the part |ς| = C of ∂Λ = ∂Λ E,ρ where

C = ρ/ √ E + √ (ρ/ √ E) 2 + 1.
Since the point λ belongs to the disk |ς| ≤ C and the point λ 0 is strictly inside of the disk, the angle α between vectors ς -λ and ς -λ 0 is strictly less then π. 6.2 Final part of proof of lemma 3.1

Let

ψ 0 = ψ 0 (x, k(λ)) = e ik(λ)x = e i( √ E/2)(λz+z/λ) , λ ∈ (C\0)\T, (6.15) 
where k(λ) = k(λ, E) is dened by (2.25), T is dened by (2.22). We will denote by G + ( √ E), G(k) the convolution operators with kernels G + , G of (2.11), (2.1), and we will denote by G + ( √ E)v, G(k)v the operators of multiplication by the potential v followed by convolution G + ( √ E) or G(k), respectively. Then, under the assumptions of lemma 3.1, equations (2.1), (2.10) can be considered as linear integral equations for ψ + (•, k),ψ(•, k) ∈ L ∞ (D), and can be rewritten as follows:

ψ + (•, k) = (I -G + ( √ E)v) -1 ψ 0 (•, k), ψ(•, k) = (I -G(k)v) -1 ψ 0 (•, k), ( 6.16) 
for xed k ∈ Σ E \Σ E,ρ , where I is the identity operator. Thus

ψ + (•, k) = (I -G + ( √ E)v) -1 (I -G(k)v)ψ(•, k), (6.17) ψ(•, k) = (I -G + ( √ E)v) -1 (I -G + ( √ E)v)ψ(•, k), k ∈ Σ E \Σ E,ρ .
Therefore,

ψ(•, k) -ψ + (•, k) = (I -G + ( √ E)v) -1 (G(k) -G + ( √ E))vψ(•, k) k ∈ Σ E \Σ E,ρ . (6.18)
We take G-G + from Lemma 6.1 and use there that ψ 0 (x-y, k(λ)) = ψ 0 (x, k(λ))ψ 0 (-y, k(λ)). This leads to

(G(k(λ)) -G + ( √ E))vψ(•, k(λ)) = 1 (2π) 2 ∫ D ∫ ∂Λ W (λ, ς)ψ 0 (x, k(ς))ψ 0 (-y, k(ς))dςv(y)ψ(y, k(λ))dy = ∫ ∂Λ W (λ, ς)ψ 0 (x, k(ς))h(k(ς), k(λ))dς, λ ∈ ∂Λ,
where we used also (2.20).

We plug the last relation in (6.18). It remains to note (see (6.16)) that 

(I -G + ( √ Ev)) -1 ψ 0 (•, k(ς)) = ψ + (x, k(ς)).
µ + 0 (λ) = µ + (λ) -e(λ), µ 0 (λ) = µ(λ) -e(λ),
where µ ′ , µ + , µ are the functions of (4.15), e(•) is the function of (4.6).

From formulas (4.3), (4.6) and from items 1 and 2 of proposition 3.1 it follows, in particular, that

∂ ∂λ e(λ) = r(x, λ, E)e(λ), λ ∈ C, (7.2) 
∂ ∂λ µ ′ 0 (λ) = r(x, λ, E)µ ′ 0 (λ), λ ∈ C\∂Λ, (7.3) 
µ ′ 0 (λ) → 0 as λ → ∞.
Proceeding from (7.3) and using the generalized Cauchy formula for µ ′ 0 (see formula (10.6) of chapter 3 of [START_REF] Vekua | Generalized analytic functions[END_REF]) one can obtain

µ ′ 0 (λ) = 1 2πi ∫ ∂Λ Ω 1 (λ, ζ)K 0 (ζ)dζ - 1 2πi ∫ ∂Λ Ω 2 (λ, ζ)K 0 (ζ)dζ, λ ∈ C\∂Λ, (7.4) 
where K 0 (λ) := µ + 0 (λ) -µ 0 (λ), λ ∈ ∂Λ. (7.5) In addition, from (4.19), (7.1) and (7.5) it follows that 

K 0 (λ) = K(λ), λ ∈ ∂Λ. ( 7 
where 

(Ω 0 1 u)(λ) = 1 2πi ∫ ∂Λ u(ς)dς ς -λ(1 -0(|λ| -1)) , λ ∈ ∂Λ, ( 7 
∈ R 2 , |x| ≤ c, at xed s ∈] -s 1 , s 1 [ and continuous dependence of A 1 , A 2 with respect to s ∈]-s 1 , s 1 [ uniformly in x ∈ R 2 , |x| ≤ c, in the sense of ∥ • ∥ L 2 (∂Λ×∂Λ) , for xed c > 0.
In turn, these continuities of A (iii) The following estimates hold:

e -2iℜk(λ)x -e -2iℜk(λ)x ′ ≤ Const•( √ E(|λ|+|λ| -1 )|x-x ′ |) α , λ ∈ C\0, x, x ′ ∈ R 2 , 0 < α ≤ 1, e i(k(ς)-k(λ))x -e i(k(ς)-k(λ))x ′ ≤ 2(E + 2ρ 2 ) 1/2 e 2ρ max(|x|,|x ′ |) |x -x ′ |, ς, λ ∈ ∂Λ, x, x ′ ∈ R 2 ; (iv) If u ∈ L p,2 (C), 2 < p < 4, then (|λ| + |λ -1 |) α u(λ) ∈ L p ′ ,2 (C) (as a function of λ), 2 < p ′ < p(1 + αp/2) -1 , where 0 < α < (p -2)/p; (v) The map (dened via (4.6)) r ∈ L p,2 (C) → e(•) ∈ C(C)
is continuous and the maps (dened via (4.7), (4.8)) 

r ∈ L p,2 (C) → X j ∈ C(C 2 \C ε ), j = 1, 2, C ε = {(λ, ς) ∈ C 2 : |λ -ς| <
e + s,σ (λ) = 1 - 1 π ∫ C r s (x, ζ, E)e - s,σ (ζ) dℜζdℑζ ζ -λ , ( 8.3) 
e - s,σ (λ) = 1 -

1 π ∫ C r σ (x, ζ, E)e + s,σ (ζ) dℜζdℑζ ζ -λ , X + 1,s,σ (λ, ζ) + 1 π ∫ C r s (x, η, E)X - 1,s,σ (η, ζ) dℜζdℑζ η -λ = 1 2(ζ -λ) , (8.4) X - 1,s,σ (λ, ζ) + 1 π ∫ C r σ (x, η, E)X + 1,s,σ (η, ζ) dℜζdℑζ η -λ = 1 2(ζ -λ) , X + 2,s,σ (λ, ζ) + 1 π ∫ C r s (x, η, E)X - 2,s,σ (η, ζ) dℜζdℑζ η -λ = 1 2i(ζ -λ) , (8.5) X - 2,s,σ (λ, ζ) + 1 π ∫ C r σ (x, η, E)X + 2,s,σ (η, ζ) dℜζdℑζ η -λ = -1 2i(ζ -λ) ,
where s, σ ∈ N , r s is dened by (4.3) with b s in place of b. In addition, we consider also

Ω 1,s,σ (λ, ζ) := X + 1,s,σ (λ, ζ)+iX + 2,s,σ (λ, ζ), Ω 2,s,σ (λ, ζ) := X + 1,s,σ (λ, ζ)-iX + 2,s,σ (λ, ζ), (8.6) where λ, ζ ∈ C, s, σ ∈ N . Let S := {(s, σ) ∈ N × N : σ = s ∈] -s 1 , s 1 [ } . (8.7)
Using considerations of section 9 of chapter 3 of [START_REF] Vekua | Generalized analytic functions[END_REF], one can show that systems (8.3), (8.4), (8.5) for e ± s,σ , X ± j,s,σ , j = 1, 2, for (s, σ) ∈ S, are reduced to the equations for e s , X j,s , j = 1, 2, s ∈] -s 1 , s 1 [, are uniquely solvable in L q 0 (C), p/(p -1) ≤ q < 2, where p is the number (8.2). In addition: e s = e + s,s , e s = e - s,s , X j,s = X + j,s,s , X j,s = X - j,s,s , Ω j,s = Ω j,s,s , (

where j = 1, 2, s ∈] -s 1 , s 1 [. Using the denition of r s and holomorphic dependence of u E,ρ,s on s ∈ N in (8.2) one can show that r s (x, •, E) ∈ L p,2 (C), r σ (x, •, E) ∈ L p,2 (C), 2 < p < 4, (8.9) with holomorphic dependence on s, σ ∈ N , for xed x ∈ R 2 , E > 0.

Proceeding from these results and from properties of the integral operators in (8.3) -(8.5) (presented in [START_REF] Vekua | Generalized analytic functions[END_REF]), one can show that there is an open neighbourhood S x of S in N × N (where S x depends also on v, E, ρ) such that: systems (8.3), (8.4), (8.5) for e ± s,σ , X ± j,s,σ , j = 1, 2, are uniqely solvable in L q,0 (C), (8. 

Thus | arg w 1 |

 1 = |α| < π in this case. If ς belongs to the part |ς| = 1/C of the boundary of ∂Λ, then points λ and λ 0 belong to the part of the ray (emitted from λ = 0) through the point λ. This part belongs to the region |ς| ≥ 1/C, and | arg w 1 | = |α| < π/2 in this case. After the estimate (3.4) for w 1 is proved, the estimate for w 2 becomes obvious if we replace -1/ς by ς.
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 11 Proofs of Theorem 4.1 and Proposition 4.Proof of Theorem 4.1 Let µ ′ 0 (λ) = µ ′ (λ) -e(λ), (7.1)

  (C) be the function space on C consisting of the functions u such that (2.27) u, u ν ∈ L p (D 1 ) with the norm ∥u∥ Lp,ν = ∥u∥ Lp(D 1 ) + ∥u ν ∥ Lp(D 1 )

	Let
	L p,ν
	.26)

  Proposition 3.1. Let v satisfy (2.3) and let ρ ≥ ρ 1 (∥v∥ L ∞ (D) , D, E), where ρ 1 is the constant in (2.17). Let ψ, ψ + be the eigenfunctions of subsections 2.1, 2.2. Then at xed x ∈ R 2 : 1. ψ + (x, k(λ)) is holomorphic in λ ∈ Λ and is continuous in λ ∈ Λ ∪ ∂Λ; + , ψ are related on ∂Λ via (3.6). 3.1. Given the Faddeev functions h on ∂Λ×∂Λ and b on (C\0)\Λ, nd potential v on D.

	2. ψ(x, k(λ)) has the properties (2.30), (2.31) for λ ∈ (C\0)\(Λ∪∂Λ) and is continuous
	in λ ∈ (C\0)\Λ;		
	3. Now we consider the following generalized inverse scattering problem for equation
	(1.1).		
	1 are dened by (2.18), (2.19),		
	L = max x∈∂D	|x|.	(3.8)
	As a corollary of properties (2.8), (2.30), (2.31), (3.6) of the functions ψ + and ψ (and
	using (2.36), (2.39)), we obtain the following proposition:	

ψ Problem

  Lemma 4.1. Let v satisfy (2.3) for xed D and Λ = Λ E,ρ be dened by (3.1) for xed E and ρ. Let A 1 , A 2 , I correspond to v according to formulas (2.10)-(2.13), (2.20), (2.32), (3.9), (3.11), (4.3), (4.4), (4.22), (4.23). Let |x| < c for xed c > 0. Then:

  ∈ L 2 (∂Λ, C 2 ) is uniquely solvable by the method of successive approximations when ∥v∥ L ∞ (D) is suciently small (for xed D, E,ρ and c). 4.2. Let v satisfy (2.3) for xed D and Λ = Λ E,ρ be dened by(3.1) for xed E and ρ, where ρ > ρ 1 (q, D, E), ∥v∥ L ∞ (D) < q, ρ 1 is dened by(2.19). Let A 1 , A 2 , I correspond to

	1, 2;	(4.30)
	system (4.24), (4.25) for (K, K) Actually, lemma 4.1 follows from estimates (2.38), (3.7), (4.10)-(4.12), (4.27).	

Lemma sv according to formulas (2.10)-(2.13), (2.20), (2.32), (3.9),

(3.11)

, (4.3), (4.4), (4.22), (4.23) (with sv in place of v), where s ∈] -s 1 , s 1 [, where s 1

  s 1 is dened as in lemma 4.2 and f s , h s , b s are dened according to (2.1), (2.2), (2.10)-(2.13), (2.20), (2.32) with sv in place of v. In addition:

  .32) follows from continuous dependence of A 1 , A 2 with respect to x

	.8)
	u is a test function on ∂Λ.
	8 Proofs of lemma 4.2 and proposition 4.2
	8.1 Proof of lemma 4.2
	Property (4.31) follows from (4.28), (4.30).
	Property (4

  ε}, are continuous for any ε > 0, where L p,2 (C) is considered with the norm of (2.27), 2 < p < 4, and C(C), C(C 2 \C ε ) are considered with the uniform norms.In order to prove (4.33) we consider sv, where s ∈ C, and we considerh s = h s (k(λ), k(ς)), λ, ς ∈ ∂Λ, and b s = b s (k(λ)), λ ∈ (C\0)\Λ,where h s , b s correspond to sv according to (2.10)-(2.13), (2.20), (2.25), (2.32) (with sv in place of v). Proceeding from these formulas and equations and from (2.16), (2.17), (3.2), one can show that there is an open neighbourhood N of the real interval] -s 1 , s 1 [ in C (where N depends on D, ∥v∥ L ∞ (D) , E, ρ, q)where u E,ρ,s is dened by (2.35) with b s in place of b.Next, we consider e s , X 1,s , X 2,s , Ω 1,s , Ω 2,s dened via (4.6), (4.7), (4.8), (4.9) with r s in place of r, where r s is dened by (4.3) with b s in place of b, where s ∈] -s 1 , s 1 [. And we consider e ±

	such that	
	N = N , i.e. N is symmetric with respect to R,	(8.1)
	h s (•, •, E) ∈ C(∂Λ × ∂Λ), u E,ρ,s ∈ L p,2 (C), 2 < p < 4,	(8.2)
	with holomorphic dependence on s ∈ N ,	

s,σ , X ± j,s,σ , j = 1, 2, dened via the following systems of equations:

  (8.11) with holomorphic dependence on (s, σ) ∈ S x , where C ε is dened in item (v) in the proof of property(4.32); ∈ S x }, x ∈ R 2 . (8.13) One can see that N x is an open neighbourhood of the real interval ] -s 1 , s 1 [ in C. (x, λ, λ ′ , E)Ω 1,s,s (λ ′ (1-0(|λ ′ | -1)), ζ)dλ ′ ,(8.14) (x, λ, λ ′ , E)Ω 2,s,s (λ ′ , ζ)dλ ′ , λ, ζ ∈ ∂Λ,where R s is dened by (4.4) with h s in place of h, Ω 1,s,σ , Ω 2,s,σ are the functions of (8.6),(8.11), (8.12), λ, ζ ∈ ∂Λ, s ∈ N x .We consider alsoA j,s := A j,s , j = 1, 2, s ∈ N x . (8.15)Using (8.2) for h s and (8.11),(8.12) for Ω j,s,s , j = 1, 2, we obtainA j,s ∈ L 2 (∂Λ × ∂Λ), j = 1, 2,(8.16) with holomorphic dependence on s ∈ N x .Using (8.15),(8.16) we also obtainA j,s ∈ L 2 (∂Λ × ∂Λ), j = 1, 2,(8.17) with holomorphic dependence on s ∈ N x .We consider A(x, s), where s ∈ N x ∩ N x , dened using (8.14),(8.15) in a similar way with A(x, s) for s ∈] -s 1 , s 1 [, but with A j,s in place of A(x, s). Finally, we consider det A(x, s) for s ∈ N x ∩ N x .Using(8.8) for Ω j,s,s , (8.16), (8.17), we obtain thatdet A(x, s) is holomorphic in s ∈ N x ∩ N x for xed x ∈ R 2 . (8.18) Property (8.18) implies property (4.33). Using (4.31), (4.33), we obtain that Z x is a discrete set (maybe empty) without interior accumulation points in interval ] -s 1 , s 1 [. Therefore, we have, in particular, that Meas Z = 0 in R 2 ×] -s 1 , s 1 [. Meas Z s = 0 in R 2 for almost each s ∈] -s 1 , s 1 [.

	Ω 1,s,σ (λ, ζ) -c We consider 1 ζ -λ < ∫ As a corollary, 1 A 1,s (λ, ζ) = A 1,s (x, λ, ζ, E) = 2πi A 2,s (λ, ζ) = A 2,s (x, λ, ζ, E) = -1 Property (8.21) implies the result of proposition 4.2 interpreted according to remark (8.20) (8.21) ∫ 2πi 4.1.
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p/(p -1) ≤ q < 2, for (s, σ) ∈ S x ;

e + s,σ ∈ C(C), Ω j,s,σ ∈ C(C 2 \C ε ), j = 1, 2, for any ε > 0, 3 (s, σ, p) |ζ -λ| 2/p , |Ω 2,s,σ (λ, ζ)| < c 3 (s, σ, p) |ζ -λ| 2/p , (

8.12)

where c 3 depends continuously on (s, σ) ∈ S x and depends also on v.

Let

N x := {s ∈ N : (s, s) ∂Λ R s ∂Λ R s 8.2 Proof of proposition 4.2

Let v be as in remark 4.1 and let det A(x, s) be dened like in lemma 4.2. Let

Z := {(x, s) ∈ R 2 ×] -s 1 , s 1 [ : det A(x, s) = 0 }, (

8.19

)

Z x := {s ∈] -s 1 , s 1 [ : det A(x, s) = 0 }, x ∈ R 2 , Z s := {x ∈ R 2 : det A(x, s) = 0 }, s ∈] -s 1 , s 1 [.
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