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INCOMPATIBILITY-GOVERNED SINGULARITIES IN LINEAR

ELASTICITY WITH DISLOCATIONS

NICOLAS VAN GOETHEM

Abstract. The purpose of this paper is to prove the relation incε = Curl κ relating the

elastic strain ε and the contortion tensor κ, related to the density tensor of mesoscopic

dislocations. Here, the dislocations are given by a finite family of closed Lipschitz curves
in Ω ⊂ R3. Moreover the fields are singular at the dislocations, and in particular the

strain is non square integrable. Moreover, the displacement fields shows a constant jump
around each isolated dislocation loop. This relation is called after E. Kröner who first

derived the same formula for smooth fields at the macroscale.

1. Introduction

Let Ω be a simply-connected smooth and bounded subset of R3. Let L be a set of
dislocation lines in Ω, and the dislocation density ΛL ∈ M(Ω,M3) be given as a Radon
measure concentrated in L, defined as

ΛL := τ ⊗BH1
bL,

with τ , the tangent vector to L andH1
bL the one-dimensional Hausdorff measure concentrated

in L, and where B stand for the Burgers vector of the line, constant for a given line.
It is well known that as soon as dislocations are present, i.e. as soon as their density is

nonvashing, the strain can not be a symmetric gradient of a vector field.

At the macroscopic scale, that is, at a scale where the fields are assumed smooth, Kröner
has indeed shown that the incompatibility of the elastic strain ε is related to the curl of the
contortion tensor κ. Here the contortion is a symmetric tensor related to the dislocation
density Λ by the relation κ = Λ− I2

2 trΛ, with Λ the macroscopic dislocation density. Kröner’s
identity reads

incε = Curl κ.

This relation was to the knowledge of the author first introduced in [7] though it strictly
spoken appeared first in [11] in a simple geometrical setting. The geometrical meaning of
the contortion tensor in a differential geometry approach to dislocations is also to be em-
phasized, as discussed in e.g., [5, 7, 8, 10,15].

However, the concept of dislocation line is related to another scale of matter description,
namely the mesoscale, where it appears as the set of singularity for the elastic strain ε and
stress field σ = Aε, with A = 2µI4 + λI2, the elasticity tensor. It is indeed well known
that these fields are not square intagrable at this scale. Proving a Kröner identity at the
mesoscale such as

incε = Curl κL, κL :=:= ΛL −
I2
2

trΛL,

was carried on by the author in a series of works [16–18] for some simple families of lines.
Though, a proof of such relations for general lines was still missing. It is the purpose of this
paper to propose a proof by studying pointwise and distributional properties of fields which
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posses a jump around dislocation lines, and are thus understood by means of functions of
bounded variation.

Notations and conventions. Let M3 denote the space of square 3-matrices, and S3 that
of symmetric 3-matrices. Let E ∈ S3 and β ∈M3.

E = E(σ)⇔ div(AE) = 0, σ = AE, (1)

E = D(κL)⇔ incE = Curl κL, (2)

β = B(ΛL)⇔ Curl β = ΛtL. (3)

The divergence and curl of a tensor E are defined componentwise as ( divE)i := ∂jEij and
( Curl E)ij := εjkl∂kEil, respectively. The incompatibility of a tensor E is the symmetric1

tensor defined componentwise as follows:

( incE)ij := ( Curl Curlt E)ij = εikmεjln∂k∂lEmn, (4)

where subscript t stands for the transpose of a matrix.
The symmetric and skew-symmetrci parts of a tensor M are denoted by MS and MA, re-

spectively. Similarly, the symmetric and skew-symmetrci parts of a gradient ∇u are denoted
by ∇Su and ∇Au, respectively.

The functional space of (finite) vector-valued Radon measures, M(Ω,R3), is defined as
the dual space of Cc(Ω,R3), that of tensor-valued Radon measures, M(Ω,M3), as the dual
space of Cc(Ω,M3). A function u is said of bounded variation if u ∈ L1(Ω) and if its
distributional gradient Du is a Radon measure. Moreover, one writes

u ∈ SBV (Ω)

to mean that u is of bounded variation and that Du is decomposed additively in two terms,
the first which is absolutely continus w.r.t. Lebesgue measure on Ω, and the second which
is concentrated on the jump set of u. Moreover,

‖Λ‖M := sup
ϕ∈Cc(Ω):

‖ϕ‖∞≤1

|〈Λ, ϕ〉M|,

where 〈Λ, ·〉M stands for the duality pairing. We refer to [1] for an introduction to the
mathematical properties of these functions.

2. Preliminary results

The aim of this section is to prove that in the presence of a dislocation line in linear
elasticity, there exists a strain E such that (2) and (3) are satisfied. To this aim, a series of
results about fields of bounded variation and deformation must be proved.

Lemma 1. Let L be a Lipschitz closed curve in R3 and S a bounded Lipschitz surface with
boundary L and unit normal N . Let B ∈ R3. The solution of

div(A∇w) = 0 in R3 \ S
[[w]] := w+ − w− = B on S

[[(A∇w)N ]] := ((A∇w)N)
+ − ((A∇w)N)− = 0 on S

(5)

is given componentwise by

wi(x) = −Bj
∫
S

(A∇Γ(y − ·)N(y))ij dH
2(x′), (6)

for x ∈ R3 \ S, where Γ is the solution in R3 of div(A∇Γ) = δ0I.

1Symmetry is intended with ( incE) seen as a distribution tenor.
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Proof. Let S ⊂ Ω̂ be a smooth surface of discontinuity bounded by L. Let S− 6= S be
another smooth surface bounded by L and staying below S. Let V be the volume comprised
between S and S− and SV := S ∪ S− with outer unit normal N be such that ∂V := SV .
Supposing that w is smooth enough, we have the following identities in V :∫

V

∂′k(∂′lwj(x
′)Γip(x

′ − x))dx′ =

∫
SV

∂′lwj(x
′)Γip(x

′ − x)Nk(x′)dH2(x′)

and ∫
V

∂′l(wj(x
′)∂′kΓip(x

′ − x))dx′ =

∫
SV

wj(x
′)∂′kΓip(x

′ − x)Nl(x
′)dH2(x′).

Thus by subtraction it holds∫
V

∂′k∂
′
lwj(x

′)Γip(x
′ − x))dx′ −

∫
V

wj(x
′)∂′k∂

′
lΓip(x

′ − x))dx′

=

∫
SV

(∂′lwj(x
′))
−

Γip(x
′ − x)Nk(x′)dH2(x′)−

∫
SV

w−j (x′)∂′kΓip(x
′ − x)Nl(x

′)dH2(x′).

Moreover, the same identities in R3 \ V̄ yield∫
R3\V̄

∂′k∂
′
lwj(x

′)Γip(x
′ − x))dx′ −

∫
R3\V̄

wj(x
′)∂′k∂

′
lΓip(x

′ − x))dx′

= −
∫
SV

(∂′lwj(x
′))

+
Γip(x

′ − x)Nk(x′)dH2(x′) +

∫
SV

w+
j (x′)∂′kΓip(x

′ − x)Nl(x
′)dH2(x′),

and hence, by summing,∫
R3\SV

∂′k∂
′
lwj(x

′)Γip(x
′ − x))dx′ −

∫
R3\SV

wj(x
′)∂′k∂

′
lΓip(x

′ − x))dx′

= −
∫
SV

[[∂′lwj(x
′)]]Γip(x

′ − x)Nk(x′)dH2(x′) +

∫
SV

[[wj(x
′)]]∂′kΓip(x

′ − x)Nl(x
′)dH2(x′).

Contracting with Aljki yields∫
R3\SV

( div(A∇w)i(x
′)Γ(x′ − x))dx′ −

∫
R3\SV

wj(x
′)( div(A∇Γ)jp(x

′ − x))dx′

= −
∫
SV

[[A∇′w(x′)N ]]iΓip(x
′ − x)dH2(x′) +

∫
SV

[[wj(x
′)]] (A∇′Γ(x′ − x)N)jp dH

2(x′),

(7)

that is, for x ∈ R3 \ SV , ∫
R3\SV

( div(A∇w)i(x
′)Γip(x

′ − x))dx′ − wp(x)

= −
∫
SV

[[A∇′w(x′)N ]]iΓip(x
′ − x)dH2(x′)

+

∫
SV

[[wj(x
′)]] (A∇′Γ(x′ − x)N)jp dH

2(x′).

(8)

Taking the particular

w =

∫
S

(A∇Γ(y − ·))N(y)BdH2(y),
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w satisfies div(A∇w)(x) = 0 for x ∈ R3 \ S, and hence, by (8) and for x ∈ R3 \ SV ,

wp(x) =

∫
SV

[[A∇′w(x′)N ]]iΓip(x
′ − x)dH2(x′)

−
∫
SV

[[wj(x
′)]] (A∇′Γ(x′ − x)N)jp dH

2(x′)H2(x′).

Consider now any smooth tensor test fuction ϕ with compact support in place of the
tensor Γ. By (7), it holds∫

R3\SV

wj(x
′)( div(A∇ϕ)jp(x

′))dx′ =

∫
R3

wj(x
′)( div(A∇ϕ)jp(x

′))dx′

=

∫
SV

[[A∇′w(x′)N ]]iϕip(x
′)dH2(x′)−

∫
SV

[[wj(x
′)]] (A∇′ϕ(x′)N)jp dH

2(x′).

(9)

Define the distribution γB concentrated on S as

〈γB , ϕ〉 := −
∫
S

∂NϕB(y)dH2(y).

By definition, w(x) = −
∫
S
∂NΓ(x− y)BdH2(y) = −〈γB ,Γ(x− ·)〉. Observe that

div(A∇w) = −γB (10)

holds in the distribution sense, since for any smooth test function with compact support ϕ,
by definition of the convolution between distributions [14], one has

〈div(A∇w), ϕ〉 = 〈w, div(A∇ϕ)〉 = −〈〈γB ,Γ(x− ·)〉, div(A∇ϕ)(x)〉
= −〈γB , 〈div(A∇Γ)(x− ·), ϕ(x)〉〉
= −〈γB , ϕ〉. (11)

Substracting (11) from (9) yields

0 =

∫
SV

[[A∇′w(x′)N ]]iϕip(x
′)dH2(x′)−

∫
S

[[wj(x
′)−B]] (A∇′ϕ(x′)N)jp dH

2(x′)

−
∫
S−

[[wj(x
′)]] (A∇′ϕ(x′)N)jp dH

2(x′), (12)

which since it holds for any test function ϕ, yields (5) by (10), achieving the proof. �

Remark that taking an arbitrary ∂Nϕ on S− while ∂Nϕ = ϕ = 0 on S in (12) yields the
continuity of w on S−. By (6), it holds

∂kwi(x) = −Bj
∫
S

∂k (A∇Γ(y − ·)N(y))ij dH
2(x′). (13)

More results on this topic can be found in [4].

Lemma 2. Let L ⊂ Ω be the union of a finite number of smooth dislocation (i.e., Lipschitz
and closed curves) and S ⊂ Ω a smooth surface enclosed by L. Referring to Lemma 1, let
w be the solution of

−div(A∇w) = 0 in R3 \ S, [[w]] = B, [[(A∇w)N ]] = 0 on S.

Then w ∈ SBV (Ω,R3), ∇w ∈ Lp(Ω,R3) for 1 ≤ p < 2 and

−Curl ∇w = ΛtL,
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in the distribution sense, where ∇w is the absolutely continuous part of the distributional
derivative Dw in Ω (that is, ∇w = ∇w almost everywhere). Moreover −div(A∇w) = 0 in
R3 \ L, w ∈ C∞(Ω \ L,R3) and it holds

∇w(x)| ≤ c|B|(‖cL‖2L∞(L)|L|+
1

d(x,L)
), (14)

with cL the line curvature, and |L| its length.

Proof. The second part of the statement, namely (14), is proven as in Lemma 4 of [13]
by estimating |∂iu(x)| by means of formula (13), and up to a positive factor given by the
uniform bound of A. Let us now prove the first part of the statement in the case of a smooth
L. Let u be a solution to (5). By (14), ∇w ∈ Lp(Ω,R3×3) for p < 2. It has been shown that
w is smooth outside S where it has a jump of amplitude b := |B|. In particular w belongs
to SBV (Ω,R3) and its distributional derivative is given by

〈Dw,ϕ〉 := −〈w, divϕ〉 = S(ϕ) + 〈∇w,ϕ〉, (15)

for all ϕ ∈ D(Ω,R3×3), where S denotes the distribution S(ϕ) = −
∫
S
NjBiϕijdH2.

Let us prove that −Curl ∇w = L⊗B. To this aim let us take ψ ∈ D(Ω,R3×3) and write

−〈Curl ∇w,ψ〉 := −〈∇w, Curl ψ〉 = −〈Dw, Curl ψ〉+ S( Curl ψ)

=

∫
C

τjBiψijdH1, (16)

where the second equality follows from (15) with ϕ = Curl ψ, and the third one by Stokes

theorem. We now prove that Div ∇w = 0. Let Ŝ ⊃ S such that Ŝ separates Ω in two parts
Ω− and Ω+. Then for every test function ϕ ∈ C∞c (Ω,R3) it holds∫

Ω

∇w∇ϕdx =

∫
Ω+

∇w∇ϕdx+

∫
Ω−
∇w∇ϕdx =

−
∫

Ω+

Div ∇wϕdx−
∫

Ω−
Div ∇wϕdx+

∫
Ŝ+

∂Nw
+ϕdx−

∫
Ŝ−

∂Nw
−ϕdx = 0,

achieving the proof.
�

3. Main result: Kröner relation

In the following theorem we first prove Kröner relation incε = Curl κL. The condition
ε ∈ Lp(Ω), with 1 ≤ p < 2, yields a-priori that incε ∈ W−2,p(Ω). We also prove that the
sharper result incε ∈ W−2,p(Ω), 1 ≤ p < 3/2 holds true, due to the regularity of κL and
Kröner’s relation.

Theorem 1. Under the hypotheses of Lemma 2, there exists ū ∈ SBV (Ω,R3) such that

∇̄ū ∈ Lp(Ω,M3) for 1 ≤ p < 2 and satisfying ∇S ū = E(σ) ∈ Lp(Ω,S3) and ∇ū = B(ΛL).

As a consequence, ∇S ū = D(κL). It also holds that κL ∈W−1,p(Ω) with 1 < p ≤ 3/2.

Proof. Let w be the vector of Lemma 2. Then

−Curl ∇w = ΛtL.

Let v ∈W 1,p(Ω,R3) solution to

−div(A∇Sv) = −f in Ω, (A∇v)N = −g − (A∇w)N on ∂Ω.

Then, ū := −(v + w) satisfies

− div(A∇̄S ū) = f in Ω \ S, (A∇̄ūS)N = g on ∂Ω \ S. (17)
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Remark that if instead, one poses v = −w on ∂Ω, then ū = 0 on ∂Ω. Since [[ū]] = −B on
S and

[
[(A∇̄ū)N

]
] = 0, one has

Curl ∇̄ū = −Curl ∇̄w = ΛtL,

with ∇̄ū ∈ L1(Ω) by virtue of Theorem 2, and recalling that ∇v = Dv is intended in
the distribution sense, and [[v]] = 0. Moreover, ∇̄S ū ∈ Lp(Ω). Now, by identity ∇̄ū =
∇̄S ū+ ∇̄Aū, one has

Curl ∇̄S ū = ΛtL − Curl ∇̄Aū = ΛtL −∇tω + Idivω,

where one has componentwise (∇̄Aū)ij = εijkωk and ωi = − 1
2εikl(∇̄ū)kl. Note that ωi ∈

L1(Ω,R3)) and hence ∇ω = Dω is intended in the distribution sense. Moreover, divω =
− 1

2 tr Curl ∇̄ū = − 1
2 trΛL. Thus,

Curl ∇̄S ū = κtL −∇tω (18)

and hence

inc∇̄S ū = Curl Curl t∇̄S ū = Curl (κL −Dω) = Curl κL.

Let ϕ ∈ W 2,p′

0 (Ω) with p′ ≥ 3. Then by Sobolev embedding, ∇ϕ ∈ C0(Ω). Let r be
the radial variable such that r = 0 corresponds to points of L, and θ the azimuthal angle
in the planar section at x ∈ L. Then, taking ϕ ∈ W 2,p′(Ω) ∩ C∞0 (Ω), it holds for some
K ∈ L∞(L,M3), that

|〈κL,∇ϕ〉| = |
∫
L
K∇ϕ(ξ)dH1(ξ)| = |

∫
L
KdH1(ξ)

∫ R

0

∂r∇ϕ(r, θ, ξ)dr|

= |
∫
L
KdH1(ξ)| 1

π

∫ π

0

dθ

∫ R

0

1

r
∂r∇ϕ(r, θ, ξ)rdr|

≤ c‖D2ϕ‖Lp′ (Ω)‖d(·,L)−1‖Lp(Ω) ≤ C‖ϕ‖W 2,p′ (Ω),

forR large enought and where the constant in the RHS is finite since p ≤ 3
2 where 1/p+1/p′ =

1 with p′ ≥ 3. By density the result holds in W 2,p′

0 (Ω), and thus it has been established that

divκL ∈W−2,p(Ω), 1 < p ≤ 3

2
. (19)

On the other hand, let ϕ ∈W 2,p′

0 (Ω), then

|〈Curl κL, ϕ〉| = |〈∇̄S ū, incϕ〉| ≤ C‖∇̄S ū‖Lp(Ω)‖ϕ‖W 2,p′ (Ω),

proving that

Curl κL ∈W−2,p(Ω). (20)

We now claim that κL ∈ W−1,p(Ω) for 1 < p ≤ 3
2 . In fact, following [6], for every ϕ ∈

W 1,p′

0 (Ω), one has ϕ = ∇ψ + Curl W with ψ a vector in W 2,p′(Ω) and W a solenoidal

tensor-valued W 2,p′(Ω). Therefore, by (19) and (20), one has

|〈κL, ϕ〉| = |〈κL,∇ψ + Curl W 〉| ≤ |〈 divκL, ψ〉|+ |〈Curl κL,W 〉|

≤ C
(
‖ψ‖W 2,p′ (Ω) + ‖W‖W 2,p′ (Ω)

)
≤ C

(
‖∇ψ‖W 1,p′ (Ω) + ‖Curl W‖W 1,p′ (Ω)

)
≤ C‖ϕ‖W 1,p′ (Ω),

where in the 2nd inequality we made use of Friedrich-Poincaré-type inequalities in bounded
simply connected domains [6], taking into account that ψ = W ×N = 0 on ∂Ω.

The proof is achieved. �
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Corollary 1. Under the hypotheses of Theorem 1, there exists a flux j ∈ Lp(Ω,R3×3×3)
with 1 ≤ p < 2 such that

ΛtL = divj and ‖ΛL‖W−1,p = ‖j‖Lp ≤ ‖ΛL‖M, 1 ≤ p ≤ 3/2. (21)

Moreover, there exists β ∈ Lp(Ω,M3) with 1 ≤ p < 2 such that

ΛtL = Curl β and ‖β‖Lp ≤ C‖ΛL‖M, 1 ≤ p ≤ 3/2. (22)

Proof. One has ΛL = κL + trκL ∈W−1,p(Ω,M3) by Theorem 1. It is a classical result that

by Riesz theorem there exists f ∈ W 1,p
0 (Ω,M3), j := ∇f ∈ Lp(Ω,R3×3×3) such that ΛtL =

f + divj, and satisfying ‖ΛL‖pW−1,p = ‖f‖pLp + ‖j‖pLp . Moreover, letting ϕ ∈ H1
0 (Ω,M3) ∩

C(Ω,M3) be such that its support is away from L and on which ϕ = 1 by a partition of unity,
one has 0 = 〈ΛL, ϕ〉 = 〈f, ϕ〉, since ΛL is concentrated in L, and hence f = 0. Moreover

‖ΛL‖W−1,p = sup
ϕ∈W1,p′

0 (Ω):

‖ϕ‖
W1,p′≤1

|〈ΛL, ϕ〉| ≤ sup
ϕ∈C1(Ω):

‖ϕ‖
W1,p′≤1

|〈ΛL, ϕ〉| ≤ ‖ΛL‖M‖ϕ‖∞ ≤ ‖ΛL‖M,

by Morrey embedding, since 1 ≤ p ≤ 3/2 and hence p′ ≥ 3. This achieves the proof, since
the second claim is proved in Theorem 1 with β = ∇̄ū. Note that the bound in the RHS
of (22) was proved in [12], recalling that ΛtL is divergence free. Another reference for this
bound can be found in [3]. �

4. Concluding remarks

Kröner relation is often mentioned in the literature but a complete proof was missing. By
means of this formula, it was the aim of this paper to make the link between functions of
bounded variation, viz., the displacement field ū, and dislocations at the mesoscopic scale.
This formula shows several important features. First, the role of the contortion, in place, or
in parallel, of the dislocation density. It turns out that the contortion has a clear geometrical
meaning related to the metric torsion in the presence of dislocations [8,15]. Second, it shows
the crucial role of the incompatibility operator. Indeed, this operator is related to the
Beltrami decomposition of symmetric tensors, namely ε = ∇S ū+ incF (see, e.g., [9]), where
incF is the part of the elastic strain, which is incompatible. Note that once such a relation
is proved, the strain satisfies

incε = inc incF = Curl κ,

putting light on a special 4th-order operator, inc inc, whose mathematical properties, among
which coercivity (that is, ellipticity) were studied in [2].

Lastly, this formula teaches us that under the assumption of linearized elasticity, where the
skewsymmetric part of ∇̄ū (recall that ∇̄ū stands for the absolutely continuous part of Dū
w.r.t. Lebesgue measure in Ω) is not taken into account, the relation between deformation
and dislocation density might be given by the incompatibility of ∇S ū, precisely by Kröner’s
formula, in place of the classical Curl ∇̄ū = ΛtL, valid for finite as well as for infinitesimal
elastic strains, which would require to also consider the skewsymmetric part, for which no
Poincaré-Korn-types of bounds do exist.
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