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Abstract—Image dehazing aims at estimating the image infor-
mation lost caused by the presence of fog, haze and smoke in the
scene during acquisition. Degradation causes a loss in contrast
and color information, thus enhancement becomes an inevitable
task in imaging applications and consumer photography. Color
information has been mostly evaluated perceptually along with
quality, but no work addresses specifically this aspect. We
demonstrate how dehazing model affects color information on
simulated and real images. We use a convergence model from
perception of transparency to simulate haze on images. We
evaluate color loss in terms of angle of hue in IPT color space,
saturation in CIE LUV color space and perceived color difference
in CIE LAB color space. Results indicate that saturation is
critically changed and hue is changed for achromatic colors and
blue/yellow colors, where usual image processing space are not
showing constant hue lines. we suggest that a correction model
based on color transparency perception could help to retrieve
color information as an additive layer on dehazing algorithms.

Index Terms—dehazing; perception; colorimetry; color fidelity;
contrast enhancement; saturation; hue;

I. INTRODUCTION

Image enhancement becomes a highly recommended task
in all imaging domains. For over a decade, researchers have
been searching for an optimal method to get rid of degradation
by light scattering along aerosols. A number of methods have
been proposed and compared to each other. Moreover, each
method is based on a specific hypothesis that may fail on
some images, or when haze intensity increases.
We meet two types of dehazing methods, one with single input
image and one with multiple input images. Researchers tried
first to improve the variance between two different images of
the same scene [6], [7]. Since then, they realized the utility
to develop methods that restore images as well as extracting
other quantities with minimal requirements of input data and
user interaction: i.e. a single image. Thus, few methods have
been developed. They are all based on the same model of haze.
However, each one adopts a particular assumption. The results
are more or less good depending on whether the processed
image fits with the hypothesis or not. For each approach,
modifications have been proposed to improve the performance
in terms of restoration evaluation and computational time. The
evaluation of restoration quality was limited to rate the number
of recovered edges after processing, like by Hautiére et al.
[12] or perceptual evaluation, like by Liu and Hardeberg [9].
These evaluation methods do not take into consideration the
colorimetric aspect of restoration and they do not include it
within the more general concept of perceptual quality as well.

Fig. 1. Hazed input image and dehazed output image

Despite of the wide number of proposed approaches, the
optimal result still far to be reached. Maintaining color fidelity
remains a critical issue that was ignored in elder methods.
Lately, researchers realized the importance to control its influ-
ence by associating non physical based methods to physical
based methods because they assumed that the latter is not
suitable for color correction [5]. Although color inaccuracy has
been noticed, the problem has not been well quantified, neither
solved. First methods focused on contrast/intensity rather than
color fidelity.
Today, many application domains require to maintain color
fidelity, where real color represents a fundamental property of
objects as mentioned by Helmholtz.“Colors have their greatest
significance for us in so far as they are properties of bodies and
can be used as marks of identification of bodies” [19]. Figure
I shows a hazed image and the result we get when a dehazing
method is applied. Dehazing enhances scene visibility by
increasing contrast and saturating pixels. Does dehazing only
saturate colors without affecting hue? How far color fidelity
is maintained when haze increases? If the color is critically
modified, how such shift could be adjusted, especially when
original clear image is not available?

This paper addresses these questions by demonstrating how
dehazing methods fail to preserve accurately original colors.
Next sections are organized as follows. In section II, we review
the existing works on image restoration and haze removal
through common assumption and the most used model of
color retrieval. In section III we point out the most important
elements, which are potentially used to originate images and
estimate their color alteration and we propose a method to
test the fidelity of color recovering. In section IV we discuss
how much color fidelity is maintained, and how far results do



match color transparency expectations. Finally, we suggest that
a correction based on color transparency perception models
could be implemented.

II. DEHAZING MODEL

A. State of the art

Dehazing methods are divided into two categories: methods
with single input image and methods with multiple input
images. Methods belonging to the first category are currently
more improved because they require less user interaction,
and they do not need additional images captured under other
conditions, which are often unavailable, to optimize rendering.
Although, when we talk about methods with multiple images,
a special equipment (like polarizers) is required, or some
scenes under different weather conditions, or maybe various
image types. These methods utilize dissimilarities between
input images to boost haze-free image retrieval based on haze
model.

In the following part, methods dealing with two input images
are presented: Dehazing method using the dissimilarity be-
tween RGB and infrared images [7] [8], and the one using the
sum of images with different polarizing angles [6]. Perhaps
these methods are not suitable for many applications since
they require more user interaction, but they could be more
efficient in specific cases.
The first method is dealing with near-infrared light (NIR),
which has stronger penetration capability than visible light
due to its long wavelength. So, this light is less scattered
by particles in the air. The advantage of deep penetration of
NIR makes it possible to unveil the details, which could be
completely lost in the visible range. The dissimilarity between
RGB and NIR is exploited to estimate airlight characteristics.
The problem of having a joint acquisition of visible and NIR
light components in a single image was a problem up to
today. However, we see emerging a new generation of sensors
that permits the joint acquisition of visible and NIR light
component in a single shot [23].
The second one employs different light polarizations. One of
the causes of light polarization is the scattering. Scattered
airlight intensity is divided into two components: A⊥ and A‖

that are perpendicular and parallel to the plan defined by the
camera, the scatterer and the sun. Only when the light source is
normal to the viewing direction, the airlight is totally polarized
perpendicular to the plane of incidence. It can be eliminated
if the image is captured through a polarizing filter oriented
parallel to this plane. The polarization decreases as the direc-
tion of illumination deviates from 90 degrees and approaches
to the viewing direction. Since that, the scattering of the
directly transmitted light is unpolarized. Thus the polarization
of the direct transmission is insignificant. In order to recover
transmission, two images taken with different orientations of
the polarizer have to be compared, and then airlight will be
removed. This analysis is performed for each channel of RGB
image.

Methods with single input image are gaining in interest, since
they fit better automatic applications needs. Tan et al.[2]
observe that haze-free images have larger local contrast and
that the airlight is smooth. The corresponding results, after
maximizing local contrast, tend to be oversaturated and can
yield halo artifacts. The goal of this approach is not to fully
recover the scene’s original colors or albedo, it is just to
enhance the contrast of the input image. Since the airlight,
which is estimated by optimizing the data cost function is far
from the actual value, the resulting images tend to have larger
saturation values (of hue-saturation-intensity). This leads to
unnatural restored images. Fattal [3] obtains, after assuming
that the transmission and surface shading are uncorrelated,
physically correct dehazed images, but his assumption might
fail in cases of very dense haze. He et al. [1] introduce
the simple and elegant dark channel prior, based on the
observation that usually one channel by pixel is very dark
in natural scenes. In other words, some pixels have very low
intensity in at least one color (RGB) channel. The additive
airlight, which increases with distance brightens these dark
pixels. A depth map can thus be obtained and it is then used
to recover the scene radiance.
Dark channel prior is the most popular approach. It provides
comparable results with other approaches. It provides com-
parable results with other approaches, in terms of improving
contrast, removing haze and maintaining natural colors. There
are many attempts to optimize its performance (Like [16] and
[17]).
Referred to [5], Zhang et al. tried to overcome color issue by
grouping physics model based and non-physics model based
methods (Retinex algorithm), which represent a subjective pro-
cess that aims to improve the quality of the image according to
the visual experience by enhancing the image contrast. This
method adopts the same techniques of Dark Channel Prior,
but when estimating transmission, non-physics model methods
are introduced, namely, two bilateral filters to construct a new
Retinex algorithm, which not only can enhance contrast and
chroma, but also can reduce the halo phenomenon and noise.
Retinex algorithm replaces the Dark Channel Prior to estimate
the transmission, which is equivalent to the brightness image
with less computational cost. Another way to separate image
from haze veil is done by dividing image into illumination and
reflectance by applying Retinex algorithm [4]. The haze veil
is generated by computing the mean of illumination. It is then
multiplied by the original image to get the depth map. Then
luminance is transformed from RGB to the YCbCr color space,
and the intensity component of haze veil is extracted to get
the final haze veil. And then, the illumination is subtracted
from the original image in the logarithmic domain. Finally,
enhanced image seems dark, thus a post-processing of image
enhancement is applied like dynamic range compression or
histogram equalization. This process still reduces strongly the
resolution in intensity. Tarel et al. [18] proposed a method
characterized by its speed that allows it to be applied within
real time processing applications. It consists on atmospheric
veil inference by applying an original filter Median of Median



Fig. 2. Weather conditions and associated particles types, sizes and concen-
trations (adopted from McCartney (1975))

Along Lines, which preserves not only edges as median filter
but corners as well (on gray level or RGB). Then a local
smoothing is applied to soften the noise and artifacts. For an
accurate visibility comparison between original and corrected
images, a tone mapping is applied because corrected image is
usually with a higher dynamic than the original one.

All of these methods are based on one haze model. Regardless
of the adopted method, airlight and transmission are first
estimated. Then, image radiance is deducted, thanks to haze
model formula. Although, it is important to put the spotlight on
the evaluation procedure, which compares methods regarding
the computational time, the rate of new visible edges and the
geometric mean ratios of visibility levels, and it uses as well
the average gradient, which reflects the clarity of the image,
the entropy that denotes the abundance of information included
in the image, and the standard deviation, which represents the
quality index that measures the contrast of the image.

B. Definition

Dehazing methods are developed in such a way to get rid
of the veil and to enhance the global image quality. For that
matter, physical based and non physical based approaches are
joined to reach this aim. Physical based approaches handle is-
sues from the physical aspect based on the hypothesis adopted
to describe the original scene. These approaches achieve good
results. However, they require additional assumptions of the
scene like scene depth and multiple images. Non physical
based approaches include image enhancing techniques such as
the applying of bilateral and guided filter for image smoothing,
histogram equalisation for contrast adjustment, etc. They suffer
from less effectiveness on maintaining color fidelity.
Scattering that causes image disturbance, is mainly caused by
a set of sparse atmospheric particles. The nature of scattering
depends on the material properties, the shape and the size of
particles. Thus, each weather condition scatters differently the
emitted light. The exact form and intensity of scattering pattern
varies dramatically with particle size.
All dehazing methods are dealing with haze and fog condi-
tions. Haze is constituted of aerosol (small particles suspended
in gas). Haze particles are larger than air molecules but
smaller than fog droplets. It produces a distinctive gray or
bluish hue and affects visibility. Fog has same origins as haze

(volcanic ashes, foliage exudation, combustion products, sea
salt) associated with an increase in relative humidity of an
air. The size of water droplets is larger than the one of haze.
It reduces visibility more than haze. Haze can turn into fog
(transition state: mist).
For both conditions, haze and fog, it is Mie scattering, which is
predominant. It is non-wavelength dependent. All wavelengths
behave identically against scattering. Referring to Figure 2, the
smallest radius haze particle is 10−2µm. Assuming that 380
nm is the lowest visible wavelength. In order to apply Rayleigh
scattering approach, particle size has to be up to about tenth
of the wavelength of the light. A small part of haze particles
satisfies this condition. Therefore, light wavelengths assumed
to be similarly scattered according to Mie’s theory.
A common model on which all hypothesis are based is the
model of haze:

I(x) = J(x)t(x) +A(1 − t(x)) (1)

I(x) is the perceived intensity of the hazed image, J(x)
is the scene radiance of the original free-haze image and
t(x) = e−βz is the direct transmission, which represents
the non scattered light emanating from the object and
is attenuated by the scattering along the line of sight. It
describes the exponential attenuation of the scene radiance.
β is the scattering coefficient of the atmosphere and z is
the scene depth. The airlight corresponding to an object
at an infinite distance is called atmospheric light A∞.
Atmospheric light is always assumed to be isotropic. Airlight
A(1 − t(x)) is the light coming from an illuminant (sun)
and scattered by the atmospheric particles towards the camera.

According to Mie scattering, which is non-wavelength
dependent, all light wavelengths are identically scattered.
Unlike underwater degradation, where colors go off
successively throughout distance [10]. Therefore, haze
model is not dependent on wavelength. It is only dependent
on the distance between object and camera (represented by z),
and the amount of haze covering the scene (represented by A).
This means also, that there is no shift in hue of the original
scene point color when passing through the haze. Therefore,
we try to address this topic from the perceptual side. Even
hue does not physically change while applying a scattering
layer, perceptual hue could be differently interpreted.
According to MacAdam’s paper [15], besides luminance
contrast reduction, haze displaces chromaticities towards
the white point. Consequently, it reduces the purity and the
colorfulness of the scene. Because of chromatic adaptation,
this effect is independent of the color of haze. It depends
on the amount and depth of the haze. The reduction fraction
of luminance contrast is approximately the same of purity
reduction.

III. EVALUATION OF COLOR SHIFT

As we mentioned above, dehazing methods are all based
on the same model, thus their impact on color would be the



same. Therefore, we select only one to evaluate its perfor-
mance. The popular dark channel prior approach is applied in
order to calculate the elements we are searching for: airlight,
transmission and image radiance. A colorimetric comparison
study is conducted between original clear image and enhanced
image. Some points located by different depths on hazed image
are placed in adequate color spaces to identify the nature of
color shifting.

A. Indicators

It is widely important to choose the adequate color space for
a given processing and the suitable model to represent corre-
spondent colors. Although the majority of dehazing methods
use RGB color space, maybe the performance of dehazing
will be better when using another color space. In this paper,
we use CIE XYZ to embed haze via convergence model.
We use CIE LAB to measure the perceptual color difference
between hazed and dehazed color objects. CIE LUV is used to
evaluate saturation evolution with dehazing process, and IPT
color space to assess hue shift.
Although CIE XYZ is a metrological color space and CIE
LAB is a color appearance space dedicated to the evaluation
of small color differences. Similarly, CIE LUV is conceived
for the same goal, but embeds an analytical expression of color
saturation, which is very convenient here. This is due to the
fact that while CIE LAB performs the chromatic adaptation
by dividing by the illuminant, CIE LUV rather performs a
subtraction of the illuminant. Both of these spaces have the
major limit of curved constant hue lines, thus they are not
suitable for the part of our analysis which considers hue.
Therefore, we used the IPT color space for this aspect.

Many papers have cited that dehazing methods suffer from
a common weakness: color fidelity deficiency [5], [4]. But
this deficiency has never been clearly defined. This ambiguity
pushes us to split up color components in order to precise
how and how much each one is affected. The perceptually
uniformed color space CIELUV clearly defines saturation [22].
This helps to point out how far saturation is affected with
dehazing algorithms.

su,v = 13[(u
′
− u

′

n)2 + (v
′
− v

′

n)2]1/2 (2)

u
′

and v
′

are the chrominance coordinates. u
′

n and v
′

n are
the coordinates of the white point. The white point is the
airlight color components. In synthetic image, airlight is the
haze veil embed via convergence equation, and in real image
it is the atmospheric light estimated by Dark Channel Prior
(pixels with highest intensity of the hazed image among the
top 0.1% brightest pixels in the dark channel).
The IPT space [20] was designed to be a simple approximation
of color appearance specifically designed for image processing
and gamut mapping. It is designed with fixing the hue non-
linearity of CIELAB. It consists on a linear transformations,
along with some non linear processing. The second linear
transformation goes from non linear cone sensitivities to an
opponent color representation. Unlike other color spaces, such
as CIEXYZ, IPT is characterized by having a very well

aligned axis for constant hue [20]. It has a simple formulation
and a hue-angle component with good prediction of constant
perceived hue. I, P and T coordinates represent the lightness
dimension, the red-green dimension and the yellow-blue di-
mension, respectively. Using a converting 3 x 3 matrix, when
I, P and T are computed from LMS, hue angle can than be
computed through the inverse tangent of the ratio of T to P:

hIPT = tan−1(
T

P
) (3)

B. Color Transparency Model

When a color object is viewed simultaneously partly directly
and partly through a transparent filter but still perceived as the
same surface, we talk about “color transparency”. Translation
and convergence in a linear trichromatic color space are sup-
posed to lead to transparency perception. Humans are naturally
able to separate chromatic properties of the transparent filter
and the seen surface.
Referred to Metelli [14], with overlapping surfaces, three
conditions are needed to perceive transparency: the uniformity
of the transparent filter, the continuity of its boundaries and
an adequate stratification.
Haze veil, which is spread along the scene can be considered
as a non uniform transparent filter, because haze density
depends on scene depth. Therefore, attenuation rate is con-
trolled by: the scene depth and the haze intensity. Attenuation
increases exponentially when the scene depth and/or the haze
intensity increase (t(x) = e−βz). However, convergence model
handles transparent filter without depth dimension.
According to D’Zmura et al. [11], translation and convergence
in CIE xy lead to the perception of transparency. Color
constancy revealed in presence of fog can be modelled by
convergence model while taking into consideration shift in
color and contrast. This was confirmed with asymmetric
matching task [13].
Fog is simulated with convergence model as follows:

b = (1 − α)a+ αf (4)

where a = (XaYaZa) represents the tristimulus values of a sur-
face, a convergence application leads to new tristimulus values
b = (XbYbZb). f = (XfYfZf ) is the target of convergence. α
represents the amount of fog covering the surface: no fog if
(α = 0) and opaque fog if (α = 1). Light that reaches the eye
from the surface is the sum of: the original light emanating
from the surface and the light that depends on the chromatic
properties of the fog.
Fog differs from a transparent filter because chromatic effects
of fog increase with depth, as the amount of fog intervening
between surface and viewer increases. Unlike the transparent
filter, fog imposes a chromatic transformation on underlying
surfaces that depends strongly on the depth of a surface behind
the filter. Referring to Hagedorn et. al [13], observers discount
two aspects of the chromatic properties of fog: reduction
in contrast and shift in the colors of lights from surfaces.
Convergence model allows us to recover this shift. How does
dehazing model meet this consideration?. As we mentioned



above, not only haze intensity defined by α has to be taken
into consideration, but also the scene depth. Thus, in this way
the convergence model converges to the haze model.

C. Simulation

According to the convergence model, the simulation consists
on embedding haze in CIE XYZ image. We applied the
same model to RGB image in order to perform a cross
validation with two different space basis. As it is shown in
Figure 3, the original haze-free image is initiated as RGB and
XYZ images. Haze was added to both images thanks to the
convergence model with the same parameters values. Dark
Channel Prior dehazing method is then applied to RGBHRGB
and to XYZHRGB hazed images, which are converted from
RGBH . It is applied also to XYZHXY Z and to RGBHXY Z ,
which are converted from XYZH . Four enhanced images are
obtained for different values of α. Three different values were
assigned to α: 0.5, 0.7 and 0.9. These values (XfYfZf ) =
(0.8 0.8 0.8) were randomly assigned to haze layer along
this simulation to represent a transparent gray veil. Although
the same process may be used for a chromatic veil. Result-
ing images were converted to IPT images to evaluate hue
changes by calculating the angle between the hue of the patch
before and after dehazing processing, and to CIE LUV for
saturation estimation. Comparison has been made between
corrected images derived from the same original image type
((RGBDXY Z and XYZDXY Z), (RGBDRGB and XYZDRGB)), and
between the correspondent images derived from RGB and
XYZ ((RGBDXY Z and RGBDRGB), (XYZDXY Z and XYZDRGB)).
Curves that are shown in Figures 7 and 9, are resulting from
hazed image where α = 0.5. The impact of haze intensity on
saturation is shown in Figure 8. We used the Macbeth Color

Fig. 3. Flowchart of the synthetic formation of analysed images

Checker [22] to simulate a flat object at a given distance
from the camera. A synthetic fog image is composed of
Macbeth Color Checker image and haze layer introduced by f
in eq.4. Haze layer thickness is modified with the parameter α.
Distance and fog intensity are implicitly correlated: when fog
intensity rises, it gives the same effect as if distance increases.
Saturation and hue evolutions are calculated for each patch
within three different values of α. When α increases, it brings
the apparent color toward veil color, such as far objects, which

Fig. 4. Original and hazed images

(a) (b)

(c) (d)

(e)

Fig. 5. Original RGB image and corrected images. (b): RGBD
XY Z α = 0.5,

(c): RGBD
XY Z α = 0.7, (d):RGBD

XY Z α = 0.9, (e): RGBD
RGB α = 0.7

are almost undistinguishable from haze.
On the other hand, saturation and hue are evaluated in a
real image (see Figure I), where unlike synthetic image,
transmission light emanating from far objects undergoes a
severe attenuation. We choose two points, which are supposed
to have the same initial color, located different depths and
covered by non uniform haze veil.

IV. RESULTS

Dehazing generally saturates pixels, whether it was applied
to XYZHRGB or RGBHXY Z . However, excluding black patch,
achromatic patches (S, T, U, V, W) are desaturated when
original image is XYZ and they are slightly saturated when
original image is RGB (Figure 7).
When RGB and XYZ are dehazed, if the original image is
XYZ, RGBDXY Z will be more saturated (Figure 7(a)). On the
other side, if the original image is RGB, XYZHRGB will be
more saturated (Figure 7 (b)).
When the amount of haze increases, dehazing algorithms fail
to retrieve accurately the original information. This reflects



Fig. 6. Saturation and IPT angle difference of red and green dots in hazed
and dehazed images

TABLE I
∆E∗

ab BETWEEN RGB IMAGE AND RGBD
XY Z

Patch α = 0.5 α = 0.7 α = 0.9
A 22.7839 18.3615 8.9758
B 18.4932 17.3970 10.7179
C 17.2623 15.5641 12.8754
D 20.8679 17.0614 16.0229
E 21.3950 18.3785 11.6809
F 9.6771 8.2905 11.5722
G 5.8519 12.4668 30.2897
H 25.6762 20.1045 13.0253
I 24.0258 18.9867 4.7013
J 26.8635 19.3133 13.6619
K 17.7130 13.6940 15.0730
L 7.3845 14.2794 32.5890
M 26.7201 19.1785 17.8229
N 17.3591 13.7212 17.4900
O 14.6382 7.1959 16.7396
P 6.8475 10.3081 27.6221
Q 22.8840 17.8182 7.9751
R 9.3494 9.3503 15.0014
S 5.7544 7.9532 10.0632
T 7.9602 9.6492 10.6514
U 11.2635 12.0428 11.3961
V 14.3893 14.2373 12.2938
W 17.0809 16.3471 14.5248
X 21.9177 22.3346 26.4667

a lesser capability to radically get rid of the veil and to
consequently saturate objects color. Referring to Figure 8,
when α increases, enhanced saturations decrease with a non
proportional manner. Table I shows CIE76 (∆E∗ab) calculated
for perceptual difference evaluation between original haze-free
Macbeth Color Checker image and corrected image RGBDXY Z .

(a)

(b)

(c)

(d)

Fig. 7. Saturation evolution curves of rectified images in comparison with
original clear images and other rectified images (normalized images)



Fig. 8. Saturation evolution with α (RGBD
XY Z image)

(a)

(b)

(c)

Fig. 9. Hue evolution curves of rectified images in comparison with original
clear images and other rectified images (normalized images)

But these values would be much smaller when analyzing
RGBDRGB (see Figure 5). These values evaluate the perceptual
difference, which is noticed when we look at these images. Re-
ferring to Hagedorn et al. [13], the results of their experiment
indicate that convergence fits the color matching data better
with perceptual judgements in conditions with relatively more
intervening fog. This can not be the case of photographed far
object, because color information is partly lost along line of
view. Thus, the difference between original haze free image
and corrected image is important. Apparently, color rendering
perception based on color convergence is not affected by haze
intensity.
Unlike saturation, recovered hue of RGBDXY Z and RGBDRGB
fit the recovered hues of XYZDXY Z and XYZDRGB , respectively
(see Figure 9 (a) and (b)). Thus, regardless color space, hue is
identically recovered. But, they do not fit the hue of original
color, especially when original image is XYZ. In this case,
the correspondent achromatic and blue/yellow hues (patches
H, M and P) before and after dehazing are not placed on a
constant hue line. However, when original image is RGB, hue
difference is important only on achromatic colors, except white
(see Figure 9(b)).
The results of saturation and hue evolution of two indicated
points of the real image (Figure I) shown in figure 6, indicate
that they both vary when haze covers the image. Both satura-
tion and hue of the green point converge toward the hue and
the saturation of the red point before dehazing, which initially
have the same color.

V. CONCLUSION

We proposed a simulation based process to evaluate how
hue and saturation are affected by dehazing. Saturation was
evaluated in CIE LUV color space, thanks to saturation
formula. Hue was evaluated in IPT color space, which is
characterized by the location of different points with reason-
ably good constant hue lines. Saturation and hue are both
affected through free-haze image retrieval process. Colors are
globally saturated when dehazing is applied. However, hue is
not affected uniformly over different patches under the studied
color spaces.
Thus, dehazing process achieves haze elimination, which is
created by convergence model without considering attenuation
caused by haze along the line of view. Color shift detected on
hue and saturation could be evaluated and corrected in relation
to attenuation coefficient and scene depth as well. Although
this work narrowly examines dehazing model consequences,
it brings on new questions.
The work described in this paper is only the beginning of
a large project, where the impact of different color spaces
of treated images will be studied, with different simulated
illuminant conditions. Although hazing model in atmospheric
environment is supposed to be a non spectral based, it seems
significant to evaluate hue evolution when the initial informa-
tion is spectral based.
As a continuity of this work, we suggest two methods to
control color during the dehazing process: IPT space or any



constant hue line space might be used as processing space in
order to preserve hue angle. A mean has to be found to retrieve
saturation, and may be based on a convergence model from
perception of transparence. Saturation retrieval should take
into considerations observer preferences. For artistic issue, it is
suitable to increase saturation while maintaining natural colors.
But in other cases, it is mandatory to accurately restore original
saturation.
However, more visual aspects might be considered. Since the
haze image is more likely to be less intense, while increasing
the intensity we could see some adaptation effects such as
Abney effect.This hue shift would not be solved by a space
with constant hue lines.
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