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REFLECTIVE FILTERED BACKPROJECTION

JEAN-BAPTISTE BELLET AND GÉRARD BERGINC

Abstrat. This note introdues re�etive tomography in a mathematial framework. The e�et

of the �ltered bakprojetion on re�etive-kind projetions is studied: a re�etive projetion is

de�ned, tomographi �ltering of suh a projetion is analysed, and so is the �ltered bakprojetion.

The results emphasize the role of the ontrasts: we get a deomposition in whih the ontributions

of the disontinuities and of the tangential variations are enlightened.

1. Introdution

There is a onsiderable interest in the development of new optial imaging systems that are

able to give three-dimensional images. Potential appliations range aross the �eld of defense

and seurity for the reognition of targets, the medial �eld for the detetion of subutaneous and

utaneous tumors or the �eld of miro-eletronis for the observation of hardware omponents during

their manufature. Identifying targets or objets onealed by foliage or amou�age is a ritial

requirement for operations in publi safety, law enforement and defense. The most promising

tehniques for these tasks are 3D laser imaging tehniques. In this �eld, 3D reonstrutions are

obtained through a tomographi algorithm taking into aount 2D images with di�erent angles

of view [1�6℄. This algorithm is derived from the �ltered bakprojetion (FBP), whih is among

the most famous inversion algorithms from transmission tomography by X-Ray [9℄. The suess

of 3D laser imagery shows that FBP provides relevant results from intensity images resulting from

baksattering by rough surfaes.

3D laser imagery enters in the framework of re�etive tomography [8℄ and introdues some math-

ematial hallenge. Indeed the standard mathematial result states that FBP inverts the Radon

transform. That is the justi�ation of transmission tomography under the omplete view assump-

tion - san over 360 degrees. Here the previous omments suggest that FBP works also for re�etive

images, and does not require the omplete view assumption. This heuristially extends the domain

of validity of FBP: FBP an reonstrut the boundaries of opaque objets from a partial set of

projetions of the sene. Nevertheless, aording to the authors' knowledge, FBP on re�etive data

has never been studied in a mathematial framework. This is the objet of this Note: we give a

meaning to a re�etive �ltered bakprojetion (RFBP), we link RFBP with the objets of the sene,

and we identify di�erent kinds of ontributions in RFBP.

The �rst part of the work is de�ning a notion of re�etive projetion, whih is inspired from the

appliations. Some information is projeted along rays from opaque objets to a sreen, and for

several angles of view. These informations an vary with the angle; and the angle does not neessary

san a full irle. They ould represent baksattered intensities, emitted by the surfaes of the sene

after exterior illuminations. So we all this a re�etive projetion of an emission intensity, even if

the model ould be used for other physial problems. The main assumption that we formulate is

a pieewise smooth deomposition of the projetion; it is relatively weak and enables for example

objets baksattering intensities with jumps at interfaes between di�erent materials. With this

regularity assumption, it is then possible to de�ne and to analyse standard tomographi �ltering [9℄

on re�etive projetions, due to the distribution theory [7℄. Filtered projetions are written in

funtion of the variations of the intensity: its tangential derivative on the objets, and its jumps. The

next step is de�ning and applying the �ltered bakprojetion, whih applies the adjoint of the Radon

transform on the �ltered projetions. We get a deomposition of the �ltered bakprojetion in whih

we distinguish the ontribution of the jumps and the ontribution of the tangential derivative. We

investigate the ase of a onvex objet as a orollary: the ontribution of the shapes is distinguished

from the ontribution of the tangential variations of intensity. To onlude, we provide a numerial

reonstrution in whih we distinguish the two types of ontributions. In a word this note shows
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Figure 1. Re�etive projetion: the opaque objets Σi are projeted along the

diretion θ⊥. On the left, the dashed lines represent two rays, from a visible point

y(θ, s) to the assoiated sreen point sθ −Rθ⊥. On the right, the pieewise smooth

projetion s 7→ Fθ(s) is represented.

that RFBP is some kind of sensitivity analysis: an operator whih onerns variations is applied;

it aims at produing high values near the objets of the sene, and espeially near portions whih

generate oherent ontrasts in the projetions.

2. Refletive projetion

We onsider that an objet is a pieewise C 1
simple losed urve Σ in the plane. A pieewise

C 1
funtion f : Σ → R is alled an emission intensity of the objet Σ. If σ is a ounterlokwise

parametrization of Σ, then on a piee where σ and f ◦ σ are smooth, the tangential derivative ∂τf
of the emission intensity satis�es: (f ◦ σ)′ = (∂τf) ◦ σ · |σ′|. We now onsider a set of n objets:

Σi, 1 6 i 6 n, suh that every urve Σi is in the exterior domain of the other urves Σj , j 6= i: see
Figure 1. Let R be suh that all the urves are inside the open disk |x| < R. Then, we onsider an
objet Σ0 whose interior domain ontains the open disk |x| < R

√
2; Σ0 is the wall of the experiment.

This onvention for the wall allows to treat the bakground exatly as the objets of the sene. Let

θ ∈ S1 be a �xed angle. Every objet Σi, 0 6 i 6 n, is assumed to have an emission intensity

y ∈ Σi 7→ fi(y, θ). The index i denotes the number of the objet, the �rst variable y ∈ Σi is the

emission point, whereas the seond variable θ indiates that the intensity emission may depend on

the angle θ. We measure on a sreen the projetion of the sene along lines whih are orthogonal to

θ = (θ1, θ2), or parallel to θ⊥ = (−θ2, θ1). For all s ∈ [−R,R], the sene is projeted on the sreen,

into the point sθ−Rθ⊥. The visible point is y(θ, s), whih is the �rst intersetion point of the line

L(θ, s) = {x·θ = s} with the objets: y(θ, s) = argmin{y·θ⊥ : y·θ⊥−R > 0, y ∈ L(θ, s)∩∪06i6nΣi}.
The measurement is the emission intensity of the point y(θ, s): Fθ(s) = fi(θ,s)(y(θ, s), θ), where
i(θ, s) ∈ [0, n] denotes the objet number of y(θ, s). The funtion s 7→ Fθ(s) is a one-dimensionnal

image that we all the re�etive projetion, assoiated with the angle θ. The proess of re�etive

projetion is illustrated on Figure 1; this Figure also ontains an example of a one-dimensionnal

image Fθ.

Notation. We denote by E the spae of funtions g : [−R,R] 7→ R that are pieewise C 1
and

whose piees an be extended by ontinuity: g ∈ E if, and only if, there exists a (�nite) subdivision

−R = s0 < · · · < sj < · · · < sN+1 = R and there exist a family of funtions gj ∈ C 1((sj , sj+1)) ∩
C 0([sj , sj+1]), 0 6 j 6 N , suh that ∀s /∈ {sj, j}, g(s) =

∑N
j=0 gj(s)11(sj ,sj+1)(s). For onveniene

we extend g ∈ E by zero: g(s) = 0 for |s| > R.

We assume that the projetion Fθ belongs to the spae E, with the following pieewise smooth

deomposition:

Fθ(s) =

nθ
∑

j=0

fi(θ,j)(y(θ, s), θ)11(s(θ,j),s(θ,j+1))(s), (2.1)

with −R = s(θ, 0) < · · · < s(θ, j) < s(θ, j+1) < · · · < s(θ, nθ+1) = R. On the piee (s(θ, j), s(θ, j+
1)), the visible part of the sene is Σ(θ, j), subset of the objet number i(θ, j) : Σ(θ, j) := {y(θ, s), s ∈
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(s(θ, j), s(θ, j+1))} ⊂ Σi(θ,j). The piee Σ(θ, j) is furthermore assumed to be C 1
. As in the Figure 1,

the following reasons explain the apparition of jumps in the projetion Fθ:

• geometrial jump: the onseutive visible piees Σ(θ, j) and Σ(θ, j+1) are not linked: y(θ, s)
jumps from one objet to another objet, or jumps from one part of a non-onvex objet to

another part of the same objet;

• tangential jump: the piees Σ(θ, j) and Σ(θ, j + 1) are inluded in the same objet Σi and

are linked, and so y(θ, s) is ontinuous, but the emission intensity of the objet fi jumps.

Finally, we hange the aquisition angle and we restart: this experiment is repeated for θ moving

in a �nite set of angles Θ ⊂ S1. Juxtaposing the di�erent images, we get at the end a re�etive

sinogram (s, θ) 7→ Fθ(s). In the sinogram, eah emission point y ∈ ∪06i6nΣi is seen partially (or

eventually not seen) on the sinusoid y · θ = s; its intensity level depends on θ.

3. From tomographi filtering to refletive filtered bakprojetion

De�nition 3.1. A regularized kernel of the Hilbert transform is ϕ = F−1(−i sign(σ) · ĥ(σ)), where
F is the Fourier transform and ĥ(σ) is an even windowing funtion with ompat support (σ is the

frequeny).

Proposition 3.2. Suh a kernel ϕ is odd and belongs to C∞
(with low growing derivatives).

De�nition 3.3 (Tomographi �ltering). Let f ∈ E (extended by zero). Sine f is in the spae E ′

of distributions with ompat support, it makes sense to de�ne the tomographi ϕ-�ltering ∂sf ⋆ ϕ
of f , and:

∂sf ⋆ ϕ = F−1(|σ| ĥ(σ)F(f)(σ)).

Lemma 3.4. Let f ∈ E, with the following deomposition in E: f(s) =
∑N

j=0 f(s)11(sj ,sj+1)(s).
The tomographi ϕ-�ltering of f is C∞

and satis�es:

∂sf ⋆ ϕ(s) =

N
∑

j=0

∫ sj+1

sj

∂sf(t)ϕ(s− t)dt+

N+1
∑

j=0

[f ]jϕ(s− sj),

where [f ]j := f(sj+)− f(sj−) is the jump of f aross sj.

Proof. This result is a onsequene of the jumps formula in the sense of distributions. It states

that: ∂sf =
∑N

j=0 ∂sf(s)11(sj ,sj+1)(s)+
∑N+1

j=0 [f ]jδsj . As ∂sf ∈ E ′
, it an be onvolved with ϕ ∈ C∞

.

We get the following C∞
funtion:

∂sf ⋆ ϕ(s) = 〈∂sf(t), ϕ(s − t)〉 =
N
∑

j=0

∫ sj+1

sj

∂sf(t)ϕ(s − t)dt+

N+1
∑

j=0

[f ]jϕ(s − sj). �

Theorem 3.5 (Re�etive tomographi �ltering). The tomographi ϕ-�ltering of the re�etive pro-

jetion Fθ ∈ E satis�es:

∂sFθ ⋆ ϕ(s) =

nθ
∑

j=0

∫

Σ(θ,j)
∂τfi(θ,j)(y, θ)ϕ(s − y · θ)dσ(y) +

nθ+1
∑

j=0

[fθ,j]ϕ(s − s(θ, j)),

where ∂τfi(θ,j) is the tangential derivative of the emission intensity on the visible piee Σ(θ, j) and

[fθ,j] is an intensity jump between two piees.

Proof. By assumption, the projetion Fθ ∈ E has the deomposition 2.1. We apply Lemma 3.4:

∂sFθ =

nθ
∑

j=0

∂sfi(θ,j)(y(θ, s), θ)11(s(θ,j),s(θ,j+1)) +

nθ+1
∑

j=0

[fθ,j]δs(θ,j), with

∂sfi(θ,j)(y(θ, s), θ) = ∂τfi(θ,j)(y(θ, s), θ) |∂sy(θ, s)| ,
[fθ,j] := fi(θ,j)(y(θ, s(θ, j)+), θ)− fi(θ,j−1)(y(θ, s(θ, j)−), θ), 1 6 j 6 nθ,

[fθ,0] := fi(θ,0)(y(θ, s(θ, 0)+), θ), [fθ,nθ+1] := −fi(θ,nθ)(y(θ, s(θ, nθ + 1)−), θ).
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Thus the �ltering is:

∂sFθ ⋆ ϕ(s) =

nθ
∑

j=0

∫ s(θ,j+1)

s(θ,j)
∂τfi(θ,j)(y(θ, t), θ) |∂sy(θ, t)|ϕ(s − t)dt+

nθ+1
∑

j=0

[fθ,j]ϕ(s − s(θ, j))

=

nθ
∑

j=0

∫

Σ(θ,j)
∂τfi(θ,j)(y, θ)ϕ(s − y · θ)dσ(y) +

nθ+1
∑

j=0

[fθ,j]ϕ(s − s(θ, j)) (y(θ, t) · θ = t).

�

This theorem shows that a �ltered image ∂sFθ ⋆ ϕ ontains two ontributions. The �rst one is

a ϕ-spreading of the tangential variations ∂τfi(θ,j) of the emission intensity of the visible piees

Σ(θ, j). The other one is a ϕ-spreading of the intensity jumps [fθ,j] between piees. In partiular,

it an be notied that when the support of ϕ is small, the last ontribution is a ontour detetion

(zero-rossing) in the image Fθ. The next step is the bakprojetion, whih is a summation over

sinusoids x · θ = s in the �ltered sinogram:

De�nition 3.6 (Filtered bakprojetion). Let ϕ be a regularized Hilbert kernel and a sinogram

F : θ ∈ Θ 7→ Fθ ∈ E. The �ltered bakprojetion of F is:

x ∈ R
2 7→ R∗[∂sFθ ⋆ ϕ](x) =

∑

θ∈Θ

∂sFθ ⋆ ϕ(x · θ).

Using the deomposition of the re�etive tomographi �ltering (theorem 3.5), we get the following

deomposition in the re�etive ase:

Theorem 3.7 (Re�etive �ltered bakprojetion). If F : θ ∈ Θ 7→ Fθ is the re�etive sinogram 2.1,

then its �ltered bakprojetion with the kernel ϕ is:

R∗[∂sFθ ⋆ ϕ](x) =
∑

θ∈Θ





nθ
∑

j=0

∫

Σ(θ,j)
∂τfi(θ,j)(y, θ)ϕ((x− y) · θ)dσ(y) +

nθ+1
∑

j=0

[fθ,j]ϕ(x · θ − s(θ, j))



 .

This theorem shows that the re�etive �ltered bakprojetion (RFBP) ontains two ontributions.

The �rst one is due to the tangential variations of the visible emission intensity, and the seond one is

due to the jumps. Furthermore the RFBP is a superposition of plane waves: x 7→ A(y, θ)ϕ((x−y)·θ),
with (θ, y) ∈ Θ×∪iΣi. At a generial point x, the ontributions from di�erent (θ, y) are generially
inoherent and may ompensate for eah other. But oherene an appear for spei� hoies of x;
more partiularly, when the reeptor x is lose to a soure y, the di�erent (y, θ) an produe terms

that are onstrutively added. This suggests that the highest (absolute) values of the RFBP must

be loated near the objets, and more partiularly near points at the origin of variations or jumps

in the re�etive projetions. Quantifying preisely the proesses of aumulation and ompensation

of the plane waves deomposition ould be subjet to further studies.

Corollary 3.8 (Convex lambertian objet). We onsider a sene with a unique onvex objet Σ.
We assume that its intensity f : y ∈ Σ 7→ f(y) does not depend on θ (lambertian objet). We assume

that the wall Σ0 does not emit: f0 = 0. For eah angle of projetion θ ∈ Θ, the re�etive projetion

Fθ an be deomposed in E under the form:

Fθ(s) =

nθ−1
∑

j=1

f(y(θ, s))11(s(θ,j),s(θ,j+1))(s),

with Σ+(θ) = {y ∈ Σ : τy · θ > 0} = {y(θ, s), s1 < s < snθ
} = (y

θ
, yθ) being the visible part of Σ

under the angle θ, and y
θ
, yθ ∈ Σ being the boundary points of Σ+(θ). We also introdue the �nite

set of boundary points where f jumps: yα, α ∈ A, and the jumps: [fα]. The deomposition of the

RFBP yields: R∗[∂sFθ ⋆ ϕ](x) = Tder + Tjump + Sleft + Sright, with:

Tder =

∫

Σ
∂τf(y)

∑

θ∈Θ:θ·τ>0

ϕ((x− y) · θ)dσ(y); Tjump =
∑

α∈A

[fα]
∑

θ∈Θ:θ·τyα>0,
s(θ,1)<yα·θ<s(θ,nθ)

ϕ((x− yα) · θ);

Sleft =
∑

θ∈Θ

f(y
θ
)ϕ((x − y

θ
) · θ); Sright =

∑

θ∈Θ

−f(yθ)ϕ((x− yθ) · θ).
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The term Tder looks like a onvolution of the tangential derivative of the intensity f with a partial

bakprojetion of the �lter ϕ; for eah soure y ∈ Σ, only the angles θ suh that y is visible under

θ are kept in the bakprojetion. The term Tjump is very similar but is about the tangential jumps

[fα] at the points yα ∈ Σ. The term Sleft, resp. Sright, omes from the jumps at the left, resp. right,

boundaries s(θ, 1), resp. s(θ, nθ), of the objet in the images Fθ. As a result, the RFBP has two

ontributions: Sleft + Sright whih is mainly due to the shapes of Σ, and Tder + Tjump whih is due

to the tangential variations (and jumps) of the intensity f .

4. Example

We onsider a star whose intensity f does not depend on θ (Figure 2). The sene is projeted every

degree: Θ ≡ {i 2π
360 , 0 6 i 6 359}, inside a blak wall: f0 = 0. We observe that the support of the

reonstrution is well loated, up to some artefats. We observe the two ontributions of RFBP. The

verties introdue jumps, in partiular at the interfae star-bakground and at interfaes between

adjaent edges (top right). That is why the reonstrution has peaks loated at verties. Also the

smooth variations (left) produe a ontrasted reonstrution, despite the onavities. Obviously we

also observe that a binary non onvex part is not reovered (bottom right). The key of the method

is indeed jumps and variations.

0

0.5

1

1.5

2

-0.1

-0.05

0

0.05

0.1

Figure 2. The objet f is on the left and FBP of the resulting re�etive sinogram

is on the right.
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