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REFLECTIVE FILTERED BACKPROJECTION

JEAN-BAPTISTE BELLET AND GÉRARD BERGINC

Abstrat. We propose a study about the �ltered bakprojetion on re�etive-kind projetions.

A re�etive projetion is de�ned, tomographi �ltering of suh a projetion is analysed, and so is

the �ltered bakprojetion. The results emphasize the role of the ontrasts of the projetions and

show what the ontribution of the original sene is.

1. Introdution

The Radon transform enounters a great suess in transmission tomography by X-Ray: sine

transmission models involve the Radon transform, numerial reonstrution of media are provided

by inversion of the Radon transform [9℄. The �ltered bakprojetion (FBP) methods are among

the most famous inversion algorithms. The use of FBP has been extended to other kind of imaging

modalities by several authors [4, 8, 10℄. In partiular, altough one of the main omponents of laser

images omes from baksattering by opaque surfaes, whih di�ers from transmission, the FDK

algorithm is at the heart of a 3D laser imaging tehnique whih is emerging [1�6℄. The suess of

this laser FDK algorithm suggests that FBP works also in re�etion imaging, and does not require

a omplete view (san over 360 degrees) to provide interesting reonstrutions using suh data.

Nevertheless, aording to the authors' knowledge, FBP on re�etion data has never been studied

in a mathematial framework. This is the objet of this Note: we give a meaning to this re�etive

�ltered bakprojetion (RFBP), we link RFBP with the objets of the sene, and we identify the

omponents of RFBP.

So we �rst de�ne a notion of re�etive projetion, whih is inspired from the appliation that

is mentionned above. Some intensity is projeted from opaque objets to a sreen, along parallel

rays, and for several angles of view. The emission intensity an vary with the angle; and the angles

do not neessary san a full irle. Then, with some regularity assumptions that we formulate,

it is possible to de�ne and to analyse standard tomographi �ltering [9℄ on re�etive projetions,

due to the distribution theory [7℄. Filtered projetions are written in funtion of the variations

of the intensity: its tangential derivative on the objets, and its jumps. The next step is de�ning

and applying the �ltered bakprojetion, whih applies the adjoint of the Radon transform on the

�ltered projetions. We get a deomposition of the �ltered bakprojetion in whih we show how

the points of the original objets ontribute. We also investigate the ase of a onvex objet as a

orollary: the ontribution of the shapes is distinguished from the ontribution of the tangential

variations of intensity.

2. Refletive projetion

We onsider that an objet is a pieewise C 1
simple losed urve Σ in the plane. A pieewise

C 1
funtion f : Σ → R is alled an emission intensity of the objet Σ. If σ is a ounterlokwise

parametrization of Σ, then on a piee where σ and f ◦ σ are smooth, the tangential derivative ∂τf
of the emission intensity satis�es: (f ◦ σ)′ = (∂τf) ◦ σ · |σ′|. We now onsider a set of n objets:

Σi, 1 6 i 6 n, suh that every urve Σi is in the exterior domain of the other urves Σj , j 6= i: see
Figure 1. Let R be suh that all the urves are inside the open disk |x| < R. Then, we onsider an

objet Σ0 whose interior domain ontains the open disk |x| < R
√
2; Σ0 is the wall of the experiment.

This onvention for the wall allows to treat the bakground exatly as the objets of the sene.

Let θ ∈ S1 be a �xed angle. Every objet Σi, 0 6 i 6 n, is assumed to have an emission intensity

y ∈ Σi 7→ fi(y, θ). The index i denotes the number of the objet, the �rst variable y ∈ Σi is the

emission point, whereas the seond variable θ indiates that the intensity emission may depend on

the angle θ. We measure on a sreen the projetion of the sene along lines whih are orthogonal to

θ = (θ1, θ2), or parallel to θ⊥ = (−θ2, θ1). For all s ∈ [−R,R], the sene is projeted on the sreen,
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Σ1

Σ2

sθ −Rθ⊥
θ⊥

y(θ, s) = sθ + (d−R)θ⊥

|x| = R
Σ0

θ s 7→ Fθ(s)

Figure 1. Re�etive projetion: the opaque objets Σi are projeted along the

diretion θ⊥. On the left, the dashed lines represent two rays, from a visible point

y(θ, s) to the assoiated sreen point sθ −Rθ⊥. On the right, the pieewise smooth

projetion s 7→ Fθ(s) is represented.

into the point sθ−Rθ⊥. The visible point is y(θ, s), whih is the �rst intersetion point of the line

L(θ, s) = {x·θ = s} with the objets: y(θ, s) = argmin{y·θ⊥ : y·θ⊥−R > 0, y ∈ L(θ, s)∩∪06i6nΣi}.
The measurement is the emission intensity of the point y(θ, s): Fθ(s) = fi(θ,s)(y(θ, s), θ), where
i(θ, s) ∈ [0, n] denotes the objet number of y(θ, s). The funtion s 7→ Fθ(s) is a one-dimensionnal

image that we all the re�etive projetion, assoiated with the angle θ. The proess of re�etive

projetion is illustrated on Figure 1; this Figure also ontains an example of a one-dimensionnal

image Fθ.

Notation. We denote by E the spae of funtions g : [−R,R] 7→ R that are pieewise C 1
and

whose piees an be extended by ontinuity: g ∈ E if, and only if, there exists a (�nite) subdivision

−R = s0 < · · · < sj < · · · < sN+1 = R and there exist a family of funtions gj ∈ C 1((sj , sj+1)) ∩
C 0([sj , sj+1]), 0 6 j 6 N , suh that ∀s /∈ {sj, j}, g(s) =

∑N
j=0 gj(s)11(sj ,sj+1)(s). For onveniene

we extend g ∈ E by zero: g(s) = 0 for |s| > R.

We assume that the projetion Fθ belongs to the spae E, with the following pieewise smooth

deomposition:

Fθ(s) =

nθ
∑

j=0

fi(θ,j)(y(θ, s), θ)11(s(θ,j),s(θ,j+1))(s), (2.1)

with −R = s(θ, 0) < · · · < s(θ, j) < s(θ, j+1) < · · · < s(θ, nθ+1) = R. On the piee (s(θ, j), s(θ, j+
1)), the visible part of the sene is Σ(θ, j), subset of the objet number i(θ, j) : Σ(θ, j) := {y(θ, s), s ∈
(s(θ, j), s(θ, j+1))} ⊂ Σi(θ,j). The piee Σ(θ, j) is furthermore assumed to be C 1

. As in the Figure 1,

the following reasons explain the apparition of jumps in the projetion Fθ:

• geometrial jump: the onseutive visible piees Σ(θ, j) and Σ(θ, j+1) are not linked: y(θ, s)
jumps from one objet to another objet, or jumps from one part of a non-onvex objet to

another part of the same objet;

• tangential jump: the piees Σ(θ, j) and Σ(θ, j + 1) are inluded in the same objet Σi and

are linked, and so y(θ, s) is ontinuous, but the emission intensity of the objet fi jumps.

Finally, we hange the aquisition angle and we restart: this experiment is repeated for θ moving

in a �nite set of angles Θ ⊂ S1. Juxtaposing the di�erent images, we get at the end a re�etion

sinogram (s, θ) 7→ Fθ(s). In the sinogram, eah emission point y ∈ ∪06i6nΣi is seen partially (or

eventually not seen) on the sinsusoid y · θ = s; its intensity level depends on θ.

3. Refletive tomographi filtering

De�nition 3.1. A regularized kernel of the Hilbert transform is ϕ = F−1(−i sign(σ) · ĥ(σ)), where
F is the Fourier transform and ĥ(σ) is an even windowing funtion with ompat support (σ is the

frequeny).

Proposition 3.2. Suh a kernel ϕ is odd and belongs to C∞
(with low growing derivatives).
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De�nition 3.3 (Tomographi �ltering). Let f ∈ E (extended by zero). Sine f is in the spae E ′

of distributions with ompat support, it makes sense to de�ne the tomographi ϕ-�ltering ∂sf ⋆ ϕ
of f , and:

∂sf ⋆ ϕ = F−1(|σ| ĥ(σ)F(f)(σ)).

Lemma 3.4. Let f ∈ E, with the following deomposition in E: f(s) =
∑N

j=0 f(s)11(sj ,sj+1)(s).
The tomographi ϕ-�ltering of f is C∞

and satis�es:

∂sf ⋆ ϕ(s) =
N
∑

j=0

∫ sj+1

sj

∂sf(t)ϕ(s− t)dt+
N+1
∑

j=0

[f ]jϕ(s− sj),

where [f ]j := f(sj+)− f(sj−) is the jump of f aross sj.

Proof. This result is a onsequene of the jumps formula in the sense of distributions. It states that:

∂sf =
∑N

j=0 ∂sf(s)11(sj ,sj+1)(s)+
∑N+1

j=0 [f ]jδsj . As ∂sf ∈ E ′
, it an be onvolved with ϕ ∈ C∞

. We

get the following C∞
funtion:

∂sf ⋆ ϕ(s) = 〈∂sf(t), ϕ(s− t)〉 =
N
∑

j=0

∫ sj+1

sj

∂sf(t)ϕ(s− t)dt+

N+1
∑

j=0

[f ]jϕ(s− sj).

�

Theorem 3.5 (Re�etive tomographi �ltering). The tomographi ϕ-�ltering of the re�etive pro-

jetion Fθ ∈ E satis�es:

∂sFθ ⋆ ϕ(s) =

nθ
∑

j=0

∫

Σ(θ,j)
∂τfi(θ,j)(y, θ)ϕ(s − y · θ)dσ(y) +

nθ+1
∑

j=0

[fθ,j]ϕ(s − s(θ, j)),

where ∂τfi(θ,j) is the tangential derivative of the emission intensity on the visible piee Σ(θ, j) and

[fθ,j] is an intensity jump between two piees.

Proof. By assumption, the projetion Fθ ∈ E has the deomposition 2.1. We apply Lemma 3.4:

∂sFθ =

nθ
∑

j=0

∂sfi(θ,j)(y(θ, s), θ)11(s(θ,j),s(θ,j+1)) +

nθ+1
∑

j=0

[fθ,j]δs(θ,j), with

∂sfi(θ,j)(y(θ, s), θ) = ∂τfi(θ,j)(y(θ, s), θ) |∂sy(θ, s)| ,
[fθ,j] := fi(θ,j)(y(θ, s(θ, j)+), θ)− fi(θ,j−1)(y(θ, s(θ, j)−), θ), 1 6 j 6 nθ,

[fθ,0] := fi(θ,0)(y(θ, s(θ, 0)+), θ), [fθ,nθ+1] := −fi(θ,nθ)(y(θ, s(θ, nθ + 1)−), θ).

Thus the �ltering is:

∂sFθ ⋆ ϕ(s) =

nθ
∑

j=0

∫ s(θ,j+1)

s(θ,j)
∂τfi(θ,j)(y(θ, t), θ) |∂sy(θ, t)|ϕ(s − t)dt+

nθ+1
∑

j=0

[fθ,j]ϕ(s − s(θ, j))

=

nθ
∑

j=0

∫

Σ(θ,j)
∂τfi(θ,j)(y, θ)ϕ(s − y · θ)dσ(y) +

nθ+1
∑

j=0

[fθ,j]ϕ(s − s(θ, j)) (y(θ, t) · θ = t).

�

This theorem shows that a �ltered image ∂sFθ ⋆ ϕ ontains two ontributions. The �rst one is

a ϕ-spreading of the tangential variations ∂τfi(θ,j) of the emission intensity of the visible piees

Σ(θ, j). The other one is a ϕ-spreading of the intensity jumps [fθ,j] between piees. In partiular,

it an be notied that when the support of ϕ is small, the last ontribution is a ontour detetion

(zero-rossing) in the image Fθ.
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4. Refletive filtered bakprojetion

The �ltered bakprojetion is a summation over sinusoids x · θ = s in the �ltered sinogram:

De�nition 4.1 (Filtered bakprojetion). Let ϕ be a regularized Hilbert kernel and a sinogram

F : θ ∈ Θ 7→ Fθ ∈ E. The �ltered bakprojetion of F is:

x ∈ R
2 7→ R∗[∂sFθ ⋆ ϕ](x) =

∑

θ∈Θ

∂sFθ ⋆ ϕ(x · θ).

Using the deomposition of the re�etive tomographi �ltering (theorem 3.5), we get the following

deomposition in the re�etive ase:

Theorem 4.2 (Re�etive �ltered bakprojetion). If F : θ ∈ Θ 7→ Fθ is the re�etive sinogram 2.1,

then its �ltered bakprojetion with the kernel ϕ is:

R∗[∂sFθ ⋆ ϕ](x) =
∑

θ∈Θ





nθ
∑

j=0

∫

Σ(θ,j)
∂τfi(θ,j)(y, θ)ϕ((x− y) · θ)dσ(y) +

nθ+1
∑

j=0

[fθ,j]ϕ(x · θ − s(θ, j))



 .

This theorem shows that the re�etive �ltered bakprojetion (RFBP) ontains two ontributions.

The �rst one is due to the tangential variations of the visible emission intensity, and the seond one

is due to the jumps. Furthermore the RFBP is a superposition of terms x 7→ A(y, θ)ϕ((x − y) · θ),
with (θ, y) ∈ Θ×∪iΣi. At a generial point x, the ontributions from di�erent (θ, y) are generially
inoherent and may ompensate for eah other. But oherene an appear for spei� hoies of x;
more partiularly, when the reeptor x is lose to a soure y, the di�erent (y, θ) an produe terms

that are onstrutively added. This suggests that the highest (absolute) values of the RFBP must

be loated near the objets, and more partiularly near points at the origin of variations or jumps

in the re�etive projetions.

Corollary 4.3 (Convex lambertian objet). We onsider a sene with a unique onvex objet Σ.
We assume that its intensity f : y ∈ Σ 7→ f(y) does not depend on θ (lambertian objet). We assume

that the wall Σ0 does not emit: f0 = 0. For eah angle of projetion θ ∈ Θ, the re�etive projetion

Fθ an be deomposed in E under the form:

Fθ(s) =

nθ−1
∑

j=1

f(y(θ, s))11(s(θ,j),s(θ,j+1))(s),

with Σ+(θ) = {y ∈ Σ : τy · θ > 0} = {y(θ, s), s1 < s < snθ
} = (y

θ
, yθ) being the visible part of Σ

under the angle θ, and y
θ
, yθ ∈ Σ being the boundary points of Σ+(θ). We also introdue the �nite

set of boundary points where f jumps: yα, α ∈ A, and the jumps: [fα]. The deomposition of the

RFBP yields: R∗[∂sFθ ⋆ ϕ](x) = Tder + Tjump + Sleft + Sright, with:

Tder =

∫

Σ
∂τf(y)

∑

θ∈Θ:θ·τ>0

ϕ((x− y) · θ)dσ(y); Tjump =
∑

α∈A

[fα]
∑

θ∈Θ:θ·τyα>0,
s(θ,1)<yα·θ<s(θ,nθ)

ϕ((x− yα) · θ);

Sleft =
∑

θ∈Θ

f(y
θ
)ϕ((x − y

θ
) · θ); Sright =

∑

θ∈Θ

−f(yθ)ϕ((x− yθ) · θ).

The term Tder looks like a onvolution of the tangential derivative of the intensity f with a partial

bakprojetion of the �lter ϕ; for eah soure y ∈ Σ, only the angles θ suh that y is visible under

θ are kept in the bakprojetion. The term Tjump is very similar but is about the tangential jumps

[fα] at the points yα ∈ Σ. The term Sleft, resp. Sright, omes from the jumps at the left, resp. right,

boundaries s(θ, 1), resp. s(θ, nθ), of the objet in the images Fθ. As a result, the RFBP has two

ontributions: Sleft + Sright whih is mainly due to the shapes of Σ, and Tder + Tjump whih is due

to the tangential variations (and jumps) of the intensity f .

Remark. If we assume that Θ is symmetri with respet to 0, and that the left and the right

boundaries are exhanged for opposite angles: for all θ ∈ Θ, −θ ∈ Θ, and yθ = y
−θ
, then Sright =

∑

θ∈Θ f(y
−θ

)ϕ((x− y
−θ)

) ·−θ) (ϕ is odd), and thus Sright = Sleft by the hange of variable θ := −θ.
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5. Conlusion

Being applied on re�etive data, the �ltered bakprojetion has two main ontributions; they are

due to the jumps formula whih is applied during the �ltering step. One of them is explained by the

jumps in the images, due to interfaes or disontinuties of the emitted intensity; the other one omes

from the tangential derivative of the emitted intensity. High values are produed near the objets of

the sene, and more partiularly near portions of objets whih generate ontrasts in the projetions.

Suh a method realls the methods whih are based on analysis of sensitivity/variations (gradient,

topologial derivative,...): an operator whih onerns variations is applied (�ltered bakprojetion

here), the regions of interest are loated near the highest values of the result.

A lassial extension of the 2D �ltered bakprojetion is the FDK algorithm, whih is dediated

to transmission projetions, in the 3D one-beam sanning geometry. In a word, perspetive proje-

tions of the sene are onsidered; the enter of projetion sans a horizontal irle around the sene.

The two main steps of the FDK algorithm are the same than the 2D �ltered bakprojetion: the �rst

one is a 1D-�ltering with a regularized Hilbert kernel, in the horizontal diretion; the seond one is

a bakprojetion along the rays of projetion. So the results about the RFBP an be extended to

the FDK algorithm. This gives a meaning and a new light on the FDK algorithm when it is applied

on re�etive projetions. This shows that the re�etive FDK reonstrution is essentially produed

by the horizontal variations (and the horizontal jumps) in the reorded images. In partiular, the

features of the sene that are transverse to horizontal planes are emphasized: they tend to produe

horizontal ontrasts.
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