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REFLECTIVE FILTERED BACKPROJECTION

JEAN-BAPTISTE BELLET AND GERARD BERGINC

ABsTRACT. This note introduces reflective tomography in a mathematical framework. The effect
of the filtered backprojection on reflective-kind projections is studied: a reflective projection is
defined, tomographic filtering of such a projection is analysed, and so is the filtered backprojection.
The results emphasize the role of the contrasts: we get a decomposition in which the contributions
of the discontinuities and of the tangential variations are enlightened.

1. INTRODUCTION

There is a considerable interest in the development of new optical imaging systems that are
able to give three-dimensional images. Potential applications range across the field of defense
and security for the recognition of targets, the medical field for the detection of subcutaneous and
cutaneous tumors or the field of micro-electronics for the observation of hardware components during
their manufacture. Identifying targets or objects concealed by foliage or camouflage is a critical
requirement for operations in public safety, law enforcement and defense. The most promising
techniques for these tasks are 3D laser imaging techniques. In this field, 3D reconstructions are
obtained through a tomographic algorithm taking into account 2D images with different angles
of view [1-6]. This algorithm is derived from the filtered backprojection (FBP), which is among
the most famous inversion algorithms from transmission tomography by X-Ray [9]. The success
of 3D laser imagery shows that FBP provides relevant results from intensity images resulting from
backscattering by rough surfaces.

3D laser imagery enters in the framework of reflective tomography [8] and introduces some math-
ematical challenge. Indeed the standard mathematical result states that FBP inverts the Radon
transform. That is the justification of transmission tomography under the complete view assump-
tion - scan over 360 degrees. Here the previous comments suggest that FBP works also for reflective
images, and does not require the complete view assumption. This heuristically extends the domain
of validity of FBP: FBP can reconstruct the boundaries of opaque objects from a partial set of
projections of the scene. Nevertheless, according to the authors’ knowledge, FBP on reflective data
has never been studied in a mathematical framework. This is the object of this Note: we give a
meaning to a reflective filtered backprojection (RFBP), we link REBP with the objects of the scene,
and we identify different kinds of contributions in RFBP.

The first part of the work is defining a notion of reflective projection, which is inspired from the
applications. Some information is projected along rays from opaque objects to a screen, and for
several angles of view. These informations can vary with the angle; and the angle does not necessary
scan a full circle. They could represent backscattered intensities, emitted by the surfaces of the scene
after exterior illuminations. So we call this a reflective projection of an emission intensity, even if
the model could be used for other physical problems. The main assumption that we formulate is
a piecewise smooth decomposition of the projection; it is relatively weak and enables for example
objects backscattering intensities with jumps at interfaces between different materials. With this
regularity assumption, it is then possible to define and to analyse standard tomographic filtering [9]
on reflective projections, due to the distribution theory [7]. Filtered projections are written in
function of the variations of the intensity: its tangential derivative on the objects, and its jumps. The
next step is defining and applying the filtered backprojection, which applies the adjoint of the Radon
transform on the filtered projections. We get a decomposition of the filtered backprojection in which
we distinguish the contribution of the jumps and the contribution of the tangential derivative. We
investigate the case of a convex object as a corollary: the contribution of the shapes is distinguished
from the contribution of the tangential variations of intensity. To conclude, we provide a numerical
reconstruction in which we distinguish the two types of contributions. In a word this note shows
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Ficure 1. Reflective projection: the opaque objects X; are projected along the
direction 6. On the left, the dashed lines represent two rays, from a visible point
y(6, s) to the associated screen point s — RA+. On the right, the piecewise smooth
projection s — Fy(s) is represented.

that RFBP is some kind of sensitivity analysis: an operator which concerns variations is applied;
it aims at producing high values near the objects of the scene, and especially near portions which
generate coherent contrasts in the projections.

2. REFLECTIVE PROJECTION

We consider that an object is a piecewise €' simple closed curve ¥ in the plane. A piecewise
¢! function f : ¥ — R is called an emission intensity of the object ¥. If ¢ is a counterclockwise
parametrization of 3, then on a piece where ¢ and f o ¢ are smooth, the tangential derivative 0, f
of the emission intensity satisfies: (f o o) = (0.f) oo - |0’|. We now consider a set of n objects:
¥, 1 <1 < n, such that every curve ¥; is in the exterior domain of the other curves X;, j # i: see
Figure 1. Let R be such that all the curves are inside the open disk |z| < R. Then, we consider an
object ¥y whose interior domain contains the open disk |z| < Rv/2; Xg is the wall of the experiment.
This convention for the wall allows to treat the background exactly as the objects of the scene. Let
6 € S! be a fixed angle. Every object ¥;, 0 < i < n, is assumed to have an emission intensity
y € ¥; = fi(y,0). The index i denotes the number of the object, the first variable y € ¥; is the
emission point, whereas the second variable  indicates that the intensity emission may depend on
the angle 6. We measure on a screen the projection of the scene along lines which are orthogonal to
6 = (01,63), or parallel to 8+ = (—6,,6;). For all s € [~ R, R], the scene is projected on the screen,
into the point s§ — RAL. The visible point is y(6, s), which is the first intersection point of the line
L(0,s) = {x-0 = s} with the objects: y(0,s) = argmin{y-0+ : y-0-—R > 0,y € L(#, s)NUpcicni}.
The measurement is the emission intensity of the point y(6,s): Fa(s) = fig,s)(y(0,5),0), where
i(0,s) € [0,n] denotes the object number of y(6,s). The function s +— Fy(s) is a one-dimensionnal
image that we call the reflective projection, associated with the angle 8. The process of reflective
projection is illustrated on Figure 1; this Figure also contains an example of a one-dimensionnal
image Fp.

Notation. We denote by E the space of functions g : [~R, R] + R that are piecewise €' and
whose pieces can be extended by continuity: g € F if, and only if, there exists a (finite) subdivision
—R =35y < <s8;<--<sny1 = R and there exist a family of functions g; € €*((s;, sj4+1)) N

. . N .
%°([s},5j+1]),0 < j < N, such that Vs ¢ {s;,j},g(s) = > i—09i(8)L(s; s;,1)(s). For convenience
we extend g € E by zero: g(s) =0 for |s| > R.

We assume that the projection Fy belongs to the space E, with the following piecewise smooth
decomposition:

ng
Fy(s) = Z fit0.) (0, 8),0) 1 (50.5),5(0,j41))(5); (2.1)
=0

with —R = 5(0,0) <--- <s(0,j) <s(0,j+1) <--- < s(0,np+1) = R. On the piece (s(6,7),s(0, j+
1)), the visible part of the scene is 3(#, j), subset of the object number (6, 7) : 3(60,7) := {y(0,s),s €
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(5(0,7),5(0,j+1))} C Xj,j)- The piece 3(6, j) is furthermore assumed to be ¢'. Asin the Figure 1,
the following reasons explain the apparition of jumps in the projection Fy:

e geometrical jump: the consecutive visible pieces ¥(6, j) and X(0, j+1) are not linked: y(6, s)
jumps from one object to another object, or jumps from one part of a non-convex object to
another part of the same object;

e tangential jump: the pieces X(6,j) and 3(6,j + 1) are included in the same object ¥; and
are linked, and so y(0, s) is continuous, but the emission intensity of the object f; jumps.

Finally, we change the acquisition angle and we restart: this experiment is repeated for  moving
in a finite set of angles © C S'. Juxtaposing the different images, we get at the end a reflective
sinogram (s,0) — Fy(s). In the sinogram, each emission point y € Up<i<,2; is seen partially (or
eventually not seen) on the sinusoid y - # = s; its intensity level depends on 6.

3. FROM TOMOGRAPHIC FILTERING TO REFLECTIVE FILTERED BACKPROJECTION

Definition 3.1. A regularized kernel of the Hilbert transform is ¢ = F~1(—i sign(c) - h(c)), where

F is the Fourier transform and iz(a) is an even windowing function with compact support (o is the
frequency).

Proposition 3.2. Such a kernel ¢ is odd and belongs to €°° (with low growing derivatives).

Definition 3.3 (Tomographic filtering). Let f € E (extended by zero). Since f is in the space &’

of distributions with compact support, it makes sense to define the tomographic ¢-filtering 0, f x ¢
of f, and:

Osf o = F ! (lo| h(0) F(f)(0))-
Lemma 3.4. Let f € E, with the following decomposition in E: f(s) = Z;VZO F() (s, ,6,,0)(8)-
The tomographic p-filtering of f is €°° and satisfies:

N+1

Osf * (s Z/SJH o(s —t)dt + Z[f]jgo(s— s5),

j=0
where [f]; == f(sj+) — f(s;—) is the jump of f accross s;.
Proof. This result is a consequence of the jumps formula in the sense of distributions. It states

that: 0y f = 30 s f () (s, ,s;,1)(5)F 305 [f];0s,- As s f € E', it can be convolved with ¢ € €.
We get the following €°° function:

N+1

0, f % o(5) = (0 F(£), (s — 1)) 2/8”1 Jols — )t + 3 [flsels — 5). O

=0

Theorem 3.5 (Reflective tomographic filtering). The tomographic p-filtering of the reflective pro-
jection Fy € E satisfies:

DsFy x (s Z/E( . - fito.)(y, 0)p(s — y - 0)do(y) + Z_:O [fo.ile(s — s(0, 7)),

where O: fyp ;) is the tangential derivative of the emission intensity on the visible piece %(0,7) and
[fo,;] is an intensity jump between two pieces.

Proof. By assumption, the projection Fy € E has the decomposition 2.1. We apply Lemma 3.4:

ng ng+1
DsFp = Zasfi(e,j)(yw, ), ) (5(0,5,5(6,5+1)) T Z [f0,5195(6,5), With
=0 =0

s fi(0,5) (0, 5),0) = 0= fi(0,5)(y(0,5),0) |0sy(0, 5)] ,
[fﬁ,]] = fz 0.5) (y( ’5( )+)’ ) fz (6,5— 1)( (G’S(G’j)_)’e)’ 1< ] < ng,
[fo.0] := fio,0)(w(0,5(0,0)4),0), [fong+1] = —Ffitong) (0, 5(0,m9 +1)—),0).
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Thus the filtering is:

o s(0,5+1) ng+1
OsFp * 90(5) = Z/ ) 8Tfi(€,j)(y(9’ t)’ 9) |8Sy(9’ t)| 30(8 - t)dt + Z [fG,j]SD(S - 8(9,]))
=0 /' 5(0:3) j=0
ng+1
= Z/ O fi(0,5) (. 0)0(s —y - 0)do(y) + > [fasle(s — s(0,5)) (y(0,¢)-0=1).
3(0,5) §j=0

O

This theorem shows that a filtered image 0sFy x ¢ contains two contributions. The first one is

a p-spreading of the tangential variations O fyg ;) of the emission intensity of the visible pieces

¥(0,7). The other one is a ¢-spreading of the intensity jumps [fg ;] between pieces. In particular,

it can be noticed that when the support of ¢ is small, the last contribution is a contour detection

(zero-crossing) in the image Fy. The next step is the backprojection, which is a summation over
sinusoids x - § = s in the filtered sinogram:

Definition 3.6 (Filtered backprojection). Let ¢ be a regularized Hilbert kernel and a sinogram
F:0e€0— Fyec E. The filtered backprojection of F is:

z € R? = R0 Fy » ¢|(x ZGFg*cp(x 0).
0cO

Using the decomposition of the reflective tomographic filtering (theorem 3.5), we get the following
decomposition in the reflective case:

Theorem 3.7 (Reflective filtered backprojection). If F': 0 € © — Fy is the reflective sinogram 2.1,
then its filtered backprojection with the kernel ¢ is:

ng+1

R0 glx) = 3 |3 / Or Fit0.5) (0 Oz — 1) - 0)do(m) + 3 [fa sl -0 — 5(60, )

9o |j=0">(0.9) =0

This theorem shows that the reflective filtered backprojection (RFBP) contains two contributions.
The first one is due to the tangential variations of the visible emission intensity, and the second one is
due to the jumps. Furthermore the REBP is a superposition of plane waves: = — A(y, 0)p((x—y)-0),
with (0,y) € © x U;%;. At a generical point x, the contributions from different (6, y) are generically
incoherent and may compensate for each other. But coherence can appear for specific choices of x;
more particularly, when the receptor x is close to a source y, the different (y, ) can produce terms
that are constructively added. This suggests that the highest (absolute) values of the RFBP must
be located near the objects, and more particularly near points at the origin of variations or jumps
in the reflective projections. Quantifying precisely the processes of accumulation and compensation
of the plane waves decomposition could be subject to further studies.

Corollary 3.8 (Convex lambertian object). We consider a scene with a unique conver object X.
We assume that its intensity f : y € ¥ — f(y) does not depend on 0 (lambertian object). We assume
that the wall g does not emit: fo = 0. For each angle of projection 6 € ©, the reflective projection
Fy can be decomposed in E under the form:

ng—1

Z WO, ) N (s(0,5),5(0,j+1))(5);

with ¥4 (0) ={ye X :7,-0 >0} = {y(ﬂ,s),sl < s < sngt = (Y,,Yp) being the visible part of ¥
under the angle 6, and Yy Yo € X being the boundary points of ¥4+(0). We also introduce the finite

set of boundary points where f jumps: Yo, € A, and the jumps: [fo]. The decomposition of the
RFBP yields: R*[0sFp % cp](ac) = Ter + Tjump + Stett + Sright, with:

Taer = / o-fly o((@—y)-0)do(y); Thump = Y [fal > (T = ya) - 0);

069 0-7>0 acA 0€0:0-1y,>0,
5(0,1)<ya-0<s(6,np)
Sleft = Z f(gg)@((x - gg) : 9)7 rlght Z f yO 'I - g@) : 0)

0cO 0cO
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The term Tye, looks like a convolution of the tangential derivative of the intensity f with a partial
backprojection of the filter ¢; for each source y € %, only the angles 6 such that y is visible under
6 are kept in the backprojection. The term Tjymp is very similar but is about the tangential jumps
[fa] at the points y, € X. The term Sieg, resp. Sright, comes from the jumps at the left, resp. right,
boundaries s(#,1), resp. s(6,ny), of the object in the images Fy. As a result, the REFBP has two
contributions: Sief; + Sright Which is mainly due to the shapes of ¥, and Tyer + Tjump which is due
to the tangential variations (and jumps) of the intensity f.

4. EXAMPLE

We consider a star whose intensity f does not depend on 0 (Figure 2). The scene is projected every
degree: © = {i%,o < i < 359}, inside a black wall: fo = 0. We observe that the support of the
reconstruction is well located, up to some artefacts. We observe the two contributions of RFBP. The
vertices introduce jumps, in particular at the interface star-background and at interfaces between
adjacent edges (top right). That is why the reconstruction has peaks located at vertices. Also the
smooth variations (left) produce a contrasted reconstruction, despite the concavities. Obviously we
also observe that a binary non convex part is not recovered (bottom right). The key of the method
is indeed jumps and variations.

F1GURE 2. The object f is on the left and FBP of the resulting reflective sinogram
is on the right.
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