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REFLECTIVE FILTERED BACKPROJECTION

JEAN-BAPTISTE BELLET AND GÉRARD BERGINC

Abstra
t. This note introdu
es re�e
tive tomography in a mathemati
al framework. The e�e
t

of the �ltered ba
kproje
tion on re�e
tive-kind proje
tions is studied: a re�e
tive proje
tion is

de�ned, tomographi
 �ltering of su
h a proje
tion is analysed, and so is the �ltered ba
kproje
tion.

The results emphasize the role of the 
ontrasts: we get a de
omposition in whi
h the 
ontributions

of the dis
ontinuities and of the tangential variations are enlightened.

1. Introdu
tion

There is a 
onsiderable interest in the development of new opti
al imaging systems that are

able to give three-dimensional images. Potential appli
ations range a
ross the �eld of defense

and se
urity for the re
ognition of targets, the medi
al �eld for the dete
tion of sub
utaneous and


utaneous tumors or the �eld of mi
ro-ele
troni
s for the observation of hardware 
omponents during

their manufa
ture. Identifying targets or obje
ts 
on
ealed by foliage or 
amou�age is a 
riti
al

requirement for operations in publi
 safety, law enfor
ement and defense. The most promising

te
hniques for these tasks are 3D laser imaging te
hniques. In this �eld, 3D re
onstru
tions are

obtained through a tomographi
 algorithm taking into a

ount 2D images with di�erent angles

of view [1�6℄. This algorithm is derived from the �ltered ba
kproje
tion (FBP), whi
h is among

the most famous inversion algorithms from transmission tomography by X-Ray [9℄. The su

ess

of 3D laser imagery shows that FBP provides relevant results from intensity images resulting from

ba
ks
attering by rough surfa
es.

3D laser imagery enters in the framework of re�e
tive tomography [8℄ and introdu
es some math-

emati
al 
hallenge. Indeed the standard mathemati
al result states that FBP inverts the Radon

transform. That is the justi�
ation of transmission tomography under the 
omplete view assump-

tion - s
an over 360 degrees. Here the previous 
omments suggest that FBP works also for re�e
tive

images, and does not require the 
omplete view assumption. This heuristi
ally extends the domain

of validity of FBP: FBP 
an re
onstru
t the boundaries of opaque obje
ts from a partial set of

proje
tions of the s
ene. Nevertheless, a

ording to the authors' knowledge, FBP on re�e
tive data

has never been studied in a mathemati
al framework. This is the obje
t of this Note: we give a

meaning to a re�e
tive �ltered ba
kproje
tion (RFBP), we link RFBP with the obje
ts of the s
ene,

and we identify di�erent kinds of 
ontributions in RFBP.

The �rst part of the work is de�ning a notion of re�e
tive proje
tion, whi
h is inspired from the

appli
ations. Some information is proje
ted along rays from opaque obje
ts to a s
reen, and for

several angles of view. These informations 
an vary with the angle; and the angle does not ne
essary

s
an a full 
ir
le. They 
ould represent ba
ks
attered intensities, emitted by the surfa
es of the s
ene

after exterior illuminations. So we 
all this a re�e
tive proje
tion of an emission intensity, even if

the model 
ould be used for other physi
al problems. The main assumption that we formulate is

a pie
ewise smooth de
omposition of the proje
tion; it is relatively weak and enables for example

obje
ts ba
ks
attering intensities with jumps at interfa
es between di�erent materials. With this

regularity assumption, it is then possible to de�ne and to analyse standard tomographi
 �ltering [9℄

on re�e
tive proje
tions, due to the distribution theory [7℄. Filtered proje
tions are written in

fun
tion of the variations of the intensity: its tangential derivative on the obje
ts, and its jumps. The

next step is de�ning and applying the �ltered ba
kproje
tion, whi
h applies the adjoint of the Radon

transform on the �ltered proje
tions. We get a de
omposition of the �ltered ba
kproje
tion in whi
h

we distinguish the 
ontribution of the jumps and the 
ontribution of the tangential derivative. We

investigate the 
ase of a 
onvex obje
t as a 
orollary: the 
ontribution of the shapes is distinguished

from the 
ontribution of the tangential variations of intensity. To 
on
lude, we provide a numeri
al

re
onstru
tion in whi
h we distinguish the two types of 
ontributions. In a word this note shows
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sθ −Rθ⊥
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y(θ, s) = sθ + (d−R)θ⊥

|x| = R
Σ0

θ s 7→ Fθ(s)

Figure 1. Re�e
tive proje
tion: the opaque obje
ts Σi are proje
ted along the

dire
tion θ⊥. On the left, the dashed lines represent two rays, from a visible point

y(θ, s) to the asso
iated s
reen point sθ −Rθ⊥. On the right, the pie
ewise smooth

proje
tion s 7→ Fθ(s) is represented.

that RFBP is some kind of sensitivity analysis: an operator whi
h 
on
erns variations is applied;

it aims at produ
ing high values near the obje
ts of the s
ene, and espe
ially near portions whi
h

generate 
oherent 
ontrasts in the proje
tions.

2. Refle
tive proje
tion

We 
onsider that an obje
t is a pie
ewise C 1
simple 
losed 
urve Σ in the plane. A pie
ewise

C 1
fun
tion f : Σ → R is 
alled an emission intensity of the obje
t Σ. If σ is a 
ounter
lo
kwise

parametrization of Σ, then on a pie
e where σ and f ◦ σ are smooth, the tangential derivative ∂τf
of the emission intensity satis�es: (f ◦ σ)′ = (∂τf) ◦ σ · |σ′|. We now 
onsider a set of n obje
ts:

Σi, 1 6 i 6 n, su
h that every 
urve Σi is in the exterior domain of the other 
urves Σj , j 6= i: see
Figure 1. Let R be su
h that all the 
urves are inside the open disk |x| < R. Then, we 
onsider an
obje
t Σ0 whose interior domain 
ontains the open disk |x| < R

√
2; Σ0 is the wall of the experiment.

This 
onvention for the wall allows to treat the ba
kground exa
tly as the obje
ts of the s
ene. Let

θ ∈ S1 be a �xed angle. Every obje
t Σi, 0 6 i 6 n, is assumed to have an emission intensity

y ∈ Σi 7→ fi(y, θ). The index i denotes the number of the obje
t, the �rst variable y ∈ Σi is the

emission point, whereas the se
ond variable θ indi
ates that the intensity emission may depend on

the angle θ. We measure on a s
reen the proje
tion of the s
ene along lines whi
h are orthogonal to

θ = (θ1, θ2), or parallel to θ⊥ = (−θ2, θ1). For all s ∈ [−R,R], the s
ene is proje
ted on the s
reen,

into the point sθ−Rθ⊥. The visible point is y(θ, s), whi
h is the �rst interse
tion point of the line

L(θ, s) = {x·θ = s} with the obje
ts: y(θ, s) = argmin{y·θ⊥ : y·θ⊥−R > 0, y ∈ L(θ, s)∩∪06i6nΣi}.
The measurement is the emission intensity of the point y(θ, s): Fθ(s) = fi(θ,s)(y(θ, s), θ), where
i(θ, s) ∈ [0, n] denotes the obje
t number of y(θ, s). The fun
tion s 7→ Fθ(s) is a one-dimensionnal

image that we 
all the re�e
tive proje
tion, asso
iated with the angle θ. The pro
ess of re�e
tive

proje
tion is illustrated on Figure 1; this Figure also 
ontains an example of a one-dimensionnal

image Fθ.

Notation. We denote by E the spa
e of fun
tions g : [−R,R] 7→ R that are pie
ewise C 1
and

whose pie
es 
an be extended by 
ontinuity: g ∈ E if, and only if, there exists a (�nite) subdivision

−R = s0 < · · · < sj < · · · < sN+1 = R and there exist a family of fun
tions gj ∈ C 1((sj , sj+1)) ∩
C 0([sj , sj+1]), 0 6 j 6 N , su
h that ∀s /∈ {sj, j}, g(s) =

∑N
j=0 gj(s)11(sj ,sj+1)(s). For 
onvenien
e

we extend g ∈ E by zero: g(s) = 0 for |s| > R.

We assume that the proje
tion Fθ belongs to the spa
e E, with the following pie
ewise smooth

de
omposition:

Fθ(s) =

nθ
∑

j=0

fi(θ,j)(y(θ, s), θ)11(s(θ,j),s(θ,j+1))(s), (2.1)

with −R = s(θ, 0) < · · · < s(θ, j) < s(θ, j+1) < · · · < s(θ, nθ+1) = R. On the pie
e (s(θ, j), s(θ, j+
1)), the visible part of the s
ene is Σ(θ, j), subset of the obje
t number i(θ, j) : Σ(θ, j) := {y(θ, s), s ∈
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(s(θ, j), s(θ, j+1))} ⊂ Σi(θ,j). The pie
e Σ(θ, j) is furthermore assumed to be C 1
. As in the Figure 1,

the following reasons explain the apparition of jumps in the proje
tion Fθ:

• geometri
al jump: the 
onse
utive visible pie
es Σ(θ, j) and Σ(θ, j+1) are not linked: y(θ, s)
jumps from one obje
t to another obje
t, or jumps from one part of a non-
onvex obje
t to

another part of the same obje
t;

• tangential jump: the pie
es Σ(θ, j) and Σ(θ, j + 1) are in
luded in the same obje
t Σi and

are linked, and so y(θ, s) is 
ontinuous, but the emission intensity of the obje
t fi jumps.

Finally, we 
hange the a
quisition angle and we restart: this experiment is repeated for θ moving

in a �nite set of angles Θ ⊂ S1. Juxtaposing the di�erent images, we get at the end a re�e
tive

sinogram (s, θ) 7→ Fθ(s). In the sinogram, ea
h emission point y ∈ ∪06i6nΣi is seen partially (or

eventually not seen) on the sinusoid y · θ = s; its intensity level depends on θ.

3. From tomographi
 filtering to refle
tive filtered ba
kproje
tion

De�nition 3.1. A regularized kernel of the Hilbert transform is ϕ = F−1(−i sign(σ) · ĥ(σ)), where
F is the Fourier transform and ĥ(σ) is an even windowing fun
tion with 
ompa
t support (σ is the

frequen
y).

Proposition 3.2. Su
h a kernel ϕ is odd and belongs to C∞
(with low growing derivatives).

De�nition 3.3 (Tomographi
 �ltering). Let f ∈ E (extended by zero). Sin
e f is in the spa
e E ′

of distributions with 
ompa
t support, it makes sense to de�ne the tomographi
 ϕ-�ltering ∂sf ⋆ ϕ
of f , and:

∂sf ⋆ ϕ = F−1(|σ| ĥ(σ)F(f)(σ)).

Lemma 3.4. Let f ∈ E, with the following de
omposition in E: f(s) =
∑N

j=0 f(s)11(sj ,sj+1)(s).
The tomographi
 ϕ-�ltering of f is C∞

and satis�es:

∂sf ⋆ ϕ(s) =

N
∑

j=0

∫ sj+1

sj

∂sf(t)ϕ(s− t)dt+

N+1
∑

j=0

[f ]jϕ(s− sj),

where [f ]j := f(sj+)− f(sj−) is the jump of f a

ross sj.

Proof. This result is a 
onsequen
e of the jumps formula in the sense of distributions. It states

that: ∂sf =
∑N

j=0 ∂sf(s)11(sj ,sj+1)(s)+
∑N+1

j=0 [f ]jδsj . As ∂sf ∈ E ′
, it 
an be 
onvolved with ϕ ∈ C∞

.

We get the following C∞
fun
tion:

∂sf ⋆ ϕ(s) = 〈∂sf(t), ϕ(s − t)〉 =
N
∑

j=0

∫ sj+1

sj

∂sf(t)ϕ(s − t)dt+

N+1
∑

j=0

[f ]jϕ(s − sj). �

Theorem 3.5 (Re�e
tive tomographi
 �ltering). The tomographi
 ϕ-�ltering of the re�e
tive pro-

je
tion Fθ ∈ E satis�es:

∂sFθ ⋆ ϕ(s) =

nθ
∑

j=0

∫

Σ(θ,j)
∂τfi(θ,j)(y, θ)ϕ(s − y · θ)dσ(y) +

nθ+1
∑

j=0

[fθ,j]ϕ(s − s(θ, j)),

where ∂τfi(θ,j) is the tangential derivative of the emission intensity on the visible pie
e Σ(θ, j) and

[fθ,j] is an intensity jump between two pie
es.

Proof. By assumption, the proje
tion Fθ ∈ E has the de
omposition 2.1. We apply Lemma 3.4:

∂sFθ =

nθ
∑

j=0

∂sfi(θ,j)(y(θ, s), θ)11(s(θ,j),s(θ,j+1)) +

nθ+1
∑

j=0

[fθ,j]δs(θ,j), with

∂sfi(θ,j)(y(θ, s), θ) = ∂τfi(θ,j)(y(θ, s), θ) |∂sy(θ, s)| ,
[fθ,j] := fi(θ,j)(y(θ, s(θ, j)+), θ)− fi(θ,j−1)(y(θ, s(θ, j)−), θ), 1 6 j 6 nθ,

[fθ,0] := fi(θ,0)(y(θ, s(θ, 0)+), θ), [fθ,nθ+1] := −fi(θ,nθ)(y(θ, s(θ, nθ + 1)−), θ).



4 JEAN-BAPTISTE BELLET AND GÉRARD BERGINC

Thus the �ltering is:

∂sFθ ⋆ ϕ(s) =

nθ
∑

j=0

∫ s(θ,j+1)

s(θ,j)
∂τfi(θ,j)(y(θ, t), θ) |∂sy(θ, t)|ϕ(s − t)dt+

nθ+1
∑

j=0

[fθ,j]ϕ(s − s(θ, j))

=

nθ
∑

j=0

∫

Σ(θ,j)
∂τfi(θ,j)(y, θ)ϕ(s − y · θ)dσ(y) +

nθ+1
∑

j=0

[fθ,j]ϕ(s − s(θ, j)) (y(θ, t) · θ = t).

�

This theorem shows that a �ltered image ∂sFθ ⋆ ϕ 
ontains two 
ontributions. The �rst one is

a ϕ-spreading of the tangential variations ∂τfi(θ,j) of the emission intensity of the visible pie
es

Σ(θ, j). The other one is a ϕ-spreading of the intensity jumps [fθ,j] between pie
es. In parti
ular,

it 
an be noti
ed that when the support of ϕ is small, the last 
ontribution is a 
ontour dete
tion

(zero-
rossing) in the image Fθ. The next step is the ba
kproje
tion, whi
h is a summation over

sinusoids x · θ = s in the �ltered sinogram:

De�nition 3.6 (Filtered ba
kproje
tion). Let ϕ be a regularized Hilbert kernel and a sinogram

F : θ ∈ Θ 7→ Fθ ∈ E. The �ltered ba
kproje
tion of F is:

x ∈ R
2 7→ R∗[∂sFθ ⋆ ϕ](x) =

∑

θ∈Θ

∂sFθ ⋆ ϕ(x · θ).

Using the de
omposition of the re�e
tive tomographi
 �ltering (theorem 3.5), we get the following

de
omposition in the re�e
tive 
ase:

Theorem 3.7 (Re�e
tive �ltered ba
kproje
tion). If F : θ ∈ Θ 7→ Fθ is the re�e
tive sinogram 2.1,

then its �ltered ba
kproje
tion with the kernel ϕ is:

R∗[∂sFθ ⋆ ϕ](x) =
∑

θ∈Θ





nθ
∑

j=0

∫

Σ(θ,j)
∂τfi(θ,j)(y, θ)ϕ((x− y) · θ)dσ(y) +

nθ+1
∑

j=0

[fθ,j]ϕ(x · θ − s(θ, j))



 .

This theorem shows that the re�e
tive �ltered ba
kproje
tion (RFBP) 
ontains two 
ontributions.

The �rst one is due to the tangential variations of the visible emission intensity, and the se
ond one is

due to the jumps. Furthermore the RFBP is a superposition of plane waves: x 7→ A(y, θ)ϕ((x−y)·θ),
with (θ, y) ∈ Θ×∪iΣi. At a generi
al point x, the 
ontributions from di�erent (θ, y) are generi
ally
in
oherent and may 
ompensate for ea
h other. But 
oheren
e 
an appear for spe
i�
 
hoi
es of x;
more parti
ularly, when the re
eptor x is 
lose to a sour
e y, the di�erent (y, θ) 
an produ
e terms

that are 
onstru
tively added. This suggests that the highest (absolute) values of the RFBP must

be lo
ated near the obje
ts, and more parti
ularly near points at the origin of variations or jumps

in the re�e
tive proje
tions. Quantifying pre
isely the pro
esses of a

umulation and 
ompensation

of the plane waves de
omposition 
ould be subje
t to further studies.

Corollary 3.8 (Convex lambertian obje
t). We 
onsider a s
ene with a unique 
onvex obje
t Σ.
We assume that its intensity f : y ∈ Σ 7→ f(y) does not depend on θ (lambertian obje
t). We assume

that the wall Σ0 does not emit: f0 = 0. For ea
h angle of proje
tion θ ∈ Θ, the re�e
tive proje
tion

Fθ 
an be de
omposed in E under the form:

Fθ(s) =

nθ−1
∑

j=1

f(y(θ, s))11(s(θ,j),s(θ,j+1))(s),

with Σ+(θ) = {y ∈ Σ : τy · θ > 0} = {y(θ, s), s1 < s < snθ
} = (y

θ
, yθ) being the visible part of Σ

under the angle θ, and y
θ
, yθ ∈ Σ being the boundary points of Σ+(θ). We also introdu
e the �nite

set of boundary points where f jumps: yα, α ∈ A, and the jumps: [fα]. The de
omposition of the

RFBP yields: R∗[∂sFθ ⋆ ϕ](x) = Tder + Tjump + Sleft + Sright, with:

Tder =

∫

Σ
∂τf(y)

∑

θ∈Θ:θ·τ>0

ϕ((x− y) · θ)dσ(y); Tjump =
∑

α∈A

[fα]
∑

θ∈Θ:θ·τyα>0,
s(θ,1)<yα·θ<s(θ,nθ)

ϕ((x− yα) · θ);

Sleft =
∑

θ∈Θ

f(y
θ
)ϕ((x − y

θ
) · θ); Sright =

∑

θ∈Θ

−f(yθ)ϕ((x− yθ) · θ).
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The term Tder looks like a 
onvolution of the tangential derivative of the intensity f with a partial

ba
kproje
tion of the �lter ϕ; for ea
h sour
e y ∈ Σ, only the angles θ su
h that y is visible under

θ are kept in the ba
kproje
tion. The term Tjump is very similar but is about the tangential jumps

[fα] at the points yα ∈ Σ. The term Sleft, resp. Sright, 
omes from the jumps at the left, resp. right,

boundaries s(θ, 1), resp. s(θ, nθ), of the obje
t in the images Fθ. As a result, the RFBP has two


ontributions: Sleft + Sright whi
h is mainly due to the shapes of Σ, and Tder + Tjump whi
h is due

to the tangential variations (and jumps) of the intensity f .

4. Example

We 
onsider a star whose intensity f does not depend on θ (Figure 2). The s
ene is proje
ted every

degree: Θ ≡ {i 2π
360 , 0 6 i 6 359}, inside a bla
k wall: f0 = 0. We observe that the support of the

re
onstru
tion is well lo
ated, up to some artefa
ts. We observe the two 
ontributions of RFBP. The

verti
es introdu
e jumps, in parti
ular at the interfa
e star-ba
kground and at interfa
es between

adja
ent edges (top right). That is why the re
onstru
tion has peaks lo
ated at verti
es. Also the

smooth variations (left) produ
e a 
ontrasted re
onstru
tion, despite the 
on
avities. Obviously we

also observe that a binary non 
onvex part is not re
overed (bottom right). The key of the method

is indeed jumps and variations.

0

0.5

1

1.5

2

-0.1

-0.05

0

0.05

0.1

Figure 2. The obje
t f is on the left and FBP of the resulting re�e
tive sinogram

is on the right.
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