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A Class of Nonlocal Variational

Problems on a Vector Bundle for Color

Image Local Contrast

Reduction/Enhancement. ∗

Thomas Batard and Marcelo Bertalmı́o

Abstract: We extend two existing variational models from the Euclidean
space to a vector bundle over a Riemannian manifold. The Euclidean mod-
els, dedicated to regularize or enhance some color image features, are based
on the concept of nonlocal gradient operator acting on a function of the
Euclidean space. We then extend these models by generalizing this operator
to a vector bundle over a Riemannian manifold with the help of the parallel
transport map associated to some class of covariant derivatives. Through
the dual formulations of the proposed models, we obtain the expressions of
their solutions, which exhibit the functional spaces that describe the im-
age features. Finally, for a well-chosen covariant derivative and its nonlocal
extension, the proposed models perform local contrast modification (reduc-
tion or enhancement) and experiments show that they preserve more the
aspect of the original image than the Euclidean models do while modifying
equally its contrast.
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ondary 90C25, 90C26.
Keywords and phrases: nonlocal variational model, vector bundle, co-
variant derivative, image contrast reduction/enhancement, primal-dual al-
gorithm.
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1. Introduction

1.1. Variational techniques for image features regularization and
enhancement

Regularizing or enhancing image features, e.g. noise, textures, edges, contrast,
are very useful tasks for correcting defects produced during the acquisition pro-
cess of a real-world scene and its reproduction on a display, due to physical
and technological limitations (see e.g. [6] for more details). These tasks are also
useful as pre-processing stage in order to improve the results of higher level ap-
plications like pattern recognition. Variational methods are then a very powerful
tool for performing regularization or enhancement of image features, and have
been extensively used over the last two decades.

Regarding enhancement tasks, a seminal variational approach is due to Sapiro
and Caselles [29] for contrast enhancement purpose. Later on, Bertalmı́o et al.
[7] adapted that model to deal with local contrast, and several applications
have then been derived from that variational model: perceptual color correc-
tion [7],[25], tone mapping [15], color gamut expansion [35], and dehazing [18]
to name a few. Connections have also been made between the variational for-
mulation [7] and Retinex theory [8],[9]. As enhancing some features can also
yield noise amplification, some techniques combine features enhancement with
noise removal (see e.g. [34] for coherence enhancement on color images, [17] for
edge enhancement on gray-level images, [2] for color enhancement. Note that
these three methods are based on generalized heat diffusions, and do not nec-
essarily arise from a variational formulation. More recently, Fitschen et al. [16]
proposed a variational model for contrast enhancement on color images with
the total variation (TV) as regularizing term.

The Rudin-Osher-Fatemi (ROF) denoising model [28] based on minimizing
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the TV of the image has been a pioneering approach for removing noise from
images. However, as it has also a tendency to smooth textures and reduce the
contrast of the image, several modifications of the TV have then been proposed
in order to tackle those issues (see e.g. [10],[36] for second order derivatives-
based regularizers and [4],[11],[20] for vectorial extensions of the TV). On the
other hand, since the seminal nonlocal approaches of Buades et al. [12] and
Awate et al. [1] for image denoising, several nonlocal variational formulations
for image regularization have been proposed (see e.g. [19],[21],[22]). In particu-
lar, Gilboa and Osher [19] introduced the concept of nonlocal gradient operator
from which they derive a nonlocal total variation (TVNL

w ), associated to some
weight function w. Whereas the aforementioned models in this paragraph are
devoted to noise or irregularities removal, the contrast enhancement model of
Bertalmı́o et al. [7] can be slightly modified to produce contrast reduction [8],
which has been used by Zamir et al. [35] for color gamut reduction.

1.2. Previous work and contribution

In [4], we extended the ROF denoising model (based on TV) and its vectorial
extension proposed by Bresson and Chan [11] (based on a vectorial extension of
TV, called VTV) to a vector bundle over a Riemannian manifold, replacing the
Euclidean gradient operator in the expression of TV and the Jacobian operator
in the expression of VTV by a covariant derivative. In particular, we showed
that, if the covariant derivative is compatible with the vector bundle metric,
then the corresponding total variation VBTV possesses a dual formulation from
which follows an expression of the unique solution of the variational model. We
also derived from the dual formulation of the variational problem an algorithm
to compute the numerical solution, based on Chambolle’s projection algorithm
[13]. For a well-chosen covariant derivative, we showed that our model preserves
better the edges and textures of the original image than the TV-based model for
gray-level images and the VTV-based model for color images. Moreover, it also
outperforms these “Euclidean” models in terms of objective measures, namely
the Peak Signal-to-Noise Ratio (PSNR) and the image Quality index (Q-index)
[32], this latter being more correlated to perception than the PSNR [26].

Based on the observation that the nonlocal regularization model of Gilboa
and Osher [19] associated to the so-called anisotropic TVNL

w and the contrast
enhancement model of Bertalmı́o et al. [7] are similar up to the sign of the
anisotropic TVNL

w in their variational formulations, we established in [5] some
connections between the solutions of these models. Under their dual formula-
tions, we showed that the expressions of the solutions both exhibit the same
functional space, which is a nonlocal extension of the space of oscillating pat-
terns [24] that is involved in the expression of the solution of the ROF model.
We then showed that Chambolle’s projection algorithm can be extended to the
nonlocal case to solve the (convex) regularization model and can be adapted
to deal with the (non convex) enhancement model and approximate a solution.
Note that we showed that these results also hold in the vectorial setting, i.e.
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when considering a nonlocal vectorial total variation VTVNL
w .

This paper can be viewed as an unification of our two previous works afore-
mentioned: we extend the nonlocal models studied in [5] from the Euclidean
space to a vector bundle over a Riemannian manifold equipped with a vector
bundle metric, as we did in the local case in [4]. For this, we introduce the
concept of nonlocal covariant derivative on a vector bundle, by the use of the
parallel transport map associated to a covariant derivative. We then construct
a nonlocal total variation VBTVNL

w induced by the nonlocal covariant deriva-
tive and we show that it possesses a dual formulation provided that the (local)
covariant derivative is compatible with the vector bundle metric. By the use of
the dual formulations of the corresponding variational models, we obtain expres-
sions of their solutions, and we show that they can be computed numerically
through primal-dual algorithms (see e.g. [14]), which are known to be more ef-
ficient than the projection algorithm we were using in [5]. The expressions of
the solutions also exhibit a class of functional spaces, which can be viewed as
nonlocal and non Euclidean extensions of the space of oscillating patterns afore-
mentioned. Finally, taking the covariant derivative compatible with the vector
bundle metric constructed in [3] and w as a Gaussian kernel, experiments show
that these functional spaces can model noise, textures and contrast on color im-
ages, and the variational models perform local contrast modification (reduction
or enhancement) that preserves more the aspect of the original image than their
“Euclidean” restrictions in [5] while modifying equally its contrast.

2. Nonlocal total variation on a vector bundle

2.1. Nonlocal vectorial total variation on an Euclidean space

The aim of this section is to remind the reader of the definition of vectorial
nonlocal total variation VTVNL

w we introduced in [5].

Definition 2.1 (Nonlocal gradient operator). Let Ω be a compact subset of R2

and u : Ω −→ Rn be a smooth vector-valued function. We assume that Rn is
equipped with a positive definite quadratic form h. A nonlocal gradient is an
operator ∇NLw : C∞(Ω;Rn) −→ C∞(Ω× Ω;Rn) of the form

∇NLw u : (x, y) 7−→ w(x, y) (u(y)− u(x)) (1)

and w : Ω× Ω −→ R+∗ is a smooth symmetric function.

Note that formula (1) is nothing but the vectorial extension of the nonlocal
gradient introduced by Gilboa and Osher [19] for real-valued functions.

Standard choices for the weight function w in the context of image pro-
cessing are Euclidean/Riemannian distance, Gaussian kernel, and patch-based
distances. We refer to Zosso et al. [33] for more details as well as for the definition
of a weight function specific to color images determined by the hue difference
between two colors. The choice of the positive definite quadratic form h greatly
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depends on the nature of the image to be processed. Dealing with color images,
a suitable choice for h is the perceptual metric associated to the color space
involved (e.g. the Euclidean metric associated to the CIE Lab color space).

Definition 2.2 (The space WNL
w,1,p(Ω;Rn)). The quadratic form h induces a

scalar product 〈 , 〉 on C∞(Ω× Ω;Rn) defined by

〈η1, η2〉 : =

∫
Ω×Ω

(η1(x, y), η2(x, y))h dx dy,

where ( , )h denotes the scalar product with respect to h.
The Lp norm on C∞(Ω× Ω; Rn) is defined by

‖η‖Lp : =

(∫
Ω×Ω

‖η(x, y)‖ph dx dy
)1/p

where ‖ ‖h denotes the norm associated to h. In particular, we have

‖∇NLw u‖Lp =

(∫
Ω×Ω

‖w(x, y)(u(y)− u(x))‖ph dx dy
)1/p

. (2)

Finally, we define the space

WNL
w,1,p(Ω;Rn) : = {u ∈ Lp(Ω;Rn) : ∇NLw u ∈ Lp(Ω× Ω;Rn)}.

Assuming that the function u is real-valued, the norm ‖∇NLw u‖L1 corresponds
to the anisotropic TVNL

w introduced by Gilboa and Osher [19], as well as the
contrast modification term in the perceptual color correction model proposed
by Bertalmı́o et al. [7].

Definition 2.3 (Adjoint of a nonlocal gradient operator). We define the adjoint
of the operator ∇NLw as the operator ∇NLw

∗
: C∞(Ω × Ω;Rn) −→ C∞(Ω;Rn)

satisfying
〈∇NLw u, η〉 = (u,∇NLw

∗
η)

∀u ∈ C∞(Ω;Rn), ∀η ∈ C∞(Ω× Ω;Rn), where ( , ) is the L2 scalar product on
C∞(Ω;Rn) induced by h.

As in the scalar case in [19], a straightforward computation yields

∇NLw
∗
η : x 7−→

∫
Ω

w(x, y)(η(y, x)− η(x, y)) dy. (3)

We derive from Def. 2.3 the definition of VTVNL
w on the set L1(Ω;Rn).

Definition 2.4 (Nonlocal vectorial total variation). The nonlocal vectorial total
variation V TV NLw (u) of u ∈ L1(Ω;Rn) is the quantity

sup
η∈H1

(∫
Ω

(u,∇NLw
∗
η)h dΩ

)
(4)
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where the set Ha, for a ∈ R+∗, is

Ha : = {η ∈ C∞(Ω× Ω;Rn), ‖η(x, y)‖h ≤ a ∀x, y ∈ Ω} . (5)

Note that we can also write

V TV NLw (u) = sup
ξ∈K1

(∫
Ω

(u, ξ)h dΩ

)
, (6)

where the set Ka is the closure in L2(Ω;Rn) of the set Ka defined by

Ka : =
{
∇NLw

∗
η : η ∈ C∞(Ω× Ω;Rn), ‖η(x, y)‖h ≤ a ∀x, y ∈ Ω

}
. (7)

We denote by BV NLw (Ω;Rn) the set of functions u ∈ L1(Ω;Rn) such that
V TV NLw (u) < +∞.

Proposition 2.1. If u ∈WNL
w,1,1(Ω;Rn) then,

V TV NLw (u) = ‖∇NLw u‖L1 . (8)

Proof. Prop.2.1 is a particular case of Prop.2.3 whose proof is detailed below.

2.2. Nonlocal covariant derivative

In order to extend VTVNL
w from the Euclidean space to a vector bundle over a

Riemannian manifold, we need first to extend the concept of nonlocal gradient
operator to a vector bundle. Our proposal is then to make use of the parallel
transport map associated to a covariant derivative. We first remind the defini-
tions of these two objects.

Let E be a vector bundle over a complete Riemannian manifold (M, g) and
π : E −→M the projection map. In this paper, we denote by Ex the fiber over
x ∈ M , i.e. the set {π−1(x)}, and by Γ(E) the set of smooth sections of E.
We denote by TM resp. T ∗M the tangent bundle resp. the cotangent bundle of
M , and by

∧k
T ∗M the vector bundle of differential k-forms of M . We denote

by End(E) the bundle of fiber-wise endomorphisms of E. Finally, we denote by
pr1(E) the vector bundle over M ×M induced by the projection

M ×M −→M
pr1 : (x, y) 7−→ x

In others words

pr1(E) = {(x, y, p) ∈M ×M × E/x = π(p)} (9)
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Definition 2.5 (Covariant derivative). A covariant derivative (or connection)
on E is a map ∇ : Γ(TM)× Γ(E) −→ Γ(E) of the form

∇
X
ϕ = d

X
ϕ+ ω(X)ϕ (10)

where X ∈ Γ(TM), d stands for the differential operator acting on the com-
ponents of the sections and ω ∈ Γ(T ∗M ⊗ End(E)) is called a connection
1-form.

Hence, a covariant derivative is completely determined by a connection 1-
form. The covariant derivative induced by the connection 1-form ω ≡ 0 is called
trivial covariant derivative.

Definition 2.6 (Parallel transport). Let γ : I ⊂ R −→M be a smooth curve. The
parallel transport associated to a covariant derivative ∇ on E along the curve γ
is the map τγ,t1,t2 : Eγ(t1) −→ Eγ(t2) such that τγ,t1,t2(ϕ0) is the solution of the
differential equation {

∇
γ′(t) ϕ ◦ γ(t) = 0 ∀t ∈ [t1, t2]

ϕ ◦ γ(t1) = ϕ0
(11)

We have now available the tools to introduce the concept of nonlocal covariant
derivative on a vector bundle. We distinguish two cases, whether the covariant
derivative is flat or not.

Definition 2.7 (Flat covariant derivative). The curvature associated to a co-

variant derivative ∇ is the tensor R ∈ Γ(
∧2

T ∗M ⊗ End E) defined by

R(X,Y )ϕ = ∇X∇Y ϕ−∇Y∇Xϕ−∇[X,Y ]ϕ (12)

where X,Y ∈ Γ(TM) and ϕ ∈ Γ(E).
The covariant derivative ∇ is said flat if its curvature tensor vanishes identi-
cally.

Then, based on the fact that the parallel transport associated to a flat co-
variant derivative between two points is independent of the curve joining these
two points, we propose the following definition.

Definition 2.8 (nonlocal covariant derivative: the case of flat covariant deriva-
tive). The nonlocal covariant derivative associated to a flat covariant derivative
∇ is an operator ∇NLw : Γ(E) −→ Γ(pr1(E)) of the form

∇NLw ϕ : (x, y) 7−→ w(x, y)
(
τ−1
γ(x,y), 0, l(γ(x,y))

ϕ(y)− ϕ(x)
)

(13)

for any smooth curve γ(x,y) starting at x and ending at y, where l(γ(x,y)) denotes
its length, and where w is a symmetric positive function.

As the map τ−1
γ(x,y), 0, l(γ(x,y))

only depends on x and y, we rewrite (13) as

∇NLw ϕ : (x, y) 7−→ w(x, y)
(
τ−1
x,y ϕ(y)− ϕ(x)

)
(14)
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We can then observe that formulae (13) and (14) restrict to the “Euclidean”
nonlocal gradient operator (1) when∇ is taken as the trivial covariant derivative.

In order to adapt formula (13) to non flat covariant derivatives, we need to
specify the curves along which we perform the parallel transport. A natural
choice is then to consider the geodesics of (M, g), and this yields the following
definition.

Definition 2.9 (nonlocal covariant derivative: general case). The nonlocal co-
variant derivative associated to a covariant derivative ∇ is an operator ∇NLw : Γ(E) −→
Γ(pr1(E)) of the form

∇NLw ϕ : (x, y) 7−→ w(x, y)

 1

]{γmin(x,y)}
∑
{γmin

(x,y)
}

τ−1
γmin
(x,y)

,0,dg(x,y)
ϕ(y)− ϕ(x)


(15)

where {γmin(x,y)} is the set of geodesics starting at x and ending at y parametrized

by the arc length, dg(x, y) the geodesic distance between x and y, i.e. the length
of the curves γmin(x,y) , and where w is a symmetric positive function.

Both definitions are indeed compatible since formula (15) does reduce to (13)
if ∇ is flat.

2.3. Nonlocal total variation on a vector bundle

In this section, we introduce the concept of nonlocal total variation VBTVNL
w for

integrable sections of a vector bundle equipped with a definite positive metric
and a covariant derivative compatible with that metric. We first remind the
reader of some definitions and results related to covariant derivatives compatible
with a vector bundle metric.

Definition 2.10. A metric h on a vector bundle E over a manifold M is the
assignment of a scalar product hx on each fiber {π−1(x)}, x ∈M . The metric is
said positive definite if the scalar products are positive definite.

Definition 2.11. A covariant derivative ∇ is compatible with the vector bundle
metric h if it satisfies

d h(ϕ,ψ) = (∇ϕ,ψ)h + (ϕ,∇ψ)h (16)

for any ϕ,ψ ∈ Γ(E).

It follows from Def. 2.11 that the parallel transport τγ,t,s along any smooth
curve γ associated to a covariant derivative compatible with a metric h is an
isometry (Eγ(t), hγ(t)) −→ (Eγ(s), hγ(s)).

Moreover, there is a one-one correspondence between connection 1-forms ω
that are so(h)-valued i.e. ω ∈ Γ(T ∗M ⊗ so(h)) and covariant derivatives ∇ that
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are compatible with the metric h. We refer to Lawson and Michelson ([23], Prop.
4.4 p.103) for a proof of that result.

From now on, we assume that E is equipped with a positive definite metric h,
and ∇ is a connection compatible with h. Under this latter assumption, the non-
local covariant derivative (15) possesses an adjoint operator, that we will define
below. We first introduce a norm on the space Γ(pr1(E)), defined in formula (9).

The positive definite metric h on E induces a L2 scalar product 〈 , 〉 on Γ(pr1(E))
defined by

〈η1, η2〉 : =

∫
M×M

(η1(x, y), η2(x, y))hx dx dy

where ( , )hx denotes the scalar product in Ex with respect to h(x), from which
derive the Lp norm on Γ(pr1(E)) defined by

‖η‖Lp : =

(∫
M×M

‖η(x, y)‖phx dx dy
)1/p

where ‖ ‖hx denotes the norm associated to h(x), and the space Lp(pr1(E)) as
the completion of Γ(pr1(E)) in this norm.

Finally, we define the space

WNL
w,1,p : = {ϕ ∈ Lp(E),∇NLw ϕ ∈ Lp(pr1(E))}

Definition 2.12 (Adjoint of nonlocal covariant derivative). The adjoint of a
nonlocal covariant derivative ∇NLw induced by a covariant derivative ∇ compat-
ible with a positive definite metric h is the operator ∇NLw

∗
: Γ(pr1(E)) −→ Γ(E)

satisfying
〈∇NLw ϕ, η〉 = (ϕ,∇NLw

∗
η)

∀ϕ ∈ Γ(E), ∀η ∈ Γ(pr1(E)), where ( , ) is the L2 scalar product on Γ(E)
induced by h.

Proposition 2.2. The operator ∇NLw
∗

is defined by

∇NLw
∗
η : x −→

∫
M

w(x, y)

 1

]{γmin(x,y)}
∑
{γmin

(x,y)
}

τ−1
γmin
(x,y)

,0,dg(x,y)
η(y, x)− η(x, y)

 dy

(17)

Proof. We have

〈∇NLw ϕ, η〉 =

∫
M×M

w(x, y)

 1

]{γmin(x,y)}
∑
{γmin

(x,y)
}

(
(τ−1
γmin
(x,y)

,0,dg(x,y)
ϕ(y)− ϕ(x)), η(x, y)

)
hx

 dx dy

=

∫
M×M

w(x, y)

 1

]{γmin(x,y)}
∑
{γmin

(x,y)
}

(
(ϕ(y), τγmin

(x,y)
, 0, dg(x,y)η(x, y))hy − (ϕ(x), η(x, y))hx

) dx dy
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since τγmin
(x,y)

, 0, dg(x,y) : (Ex, hx) −→ (Ey, hy) is an isometry, by compatibility of

∇ with h.
It then follows

=

∫
M×M

w(x, y)

 1

]{γmin(x,y)}
∑
{γmin

(y,x)
}

(
(ϕ(x), τγmin

(y,x)
, 0, dg(x,y)η(y, x))hx − (ϕ(x), η(x, y))hx

) dx dy
by interchanging x and y in the first part of the integral, and using the symme-
try of w and dg.

Rearranging the terms and using τγmin
(y,x)

, 0, dg(x,y) = τ−1
γmin
(x,y)

,0,dg(x,y)
, we finally

obtain

〈∇NLw ϕ, η〉 =

∫
M×M

ϕ(x), w(x, y)

 1

]{γmin(x,y)}
∑
{γmin

(x,y)
}

τ−1
γmin
(x,y)

,0,dg(x,y)
η(y, x)− η(x, y)



hx

dx dy

from which we deduce (17).

Definition 2.13 (Nonlocal vectorial total variation of integrable sections). Let
ϕ ∈ L1(E) and w : M ×M −→ R+∗ be a smooth symmetric function, we define
the nonlocal vectorial total variation V BTV NLw (ϕ) of ϕ as the quantity

sup
η∈H1

(∫
M

(ϕ,∇NLw
∗
η)h dM

)
(18)

where the set Ha, for a ∈ R+∗, is

Ha : = {η ∈ Γ(pr1(E)), ‖η(x, y)‖hx ≤ a ∀x, y ∈M} (19)

We can also write

V BTV NLw (ϕ) = sup
ξ∈K1

(∫
M

(ϕ, ξ)h dM

)
(20)

where Ka is the closure in L2(E) of the set Ka defined by

Ka : = {∇NLw
∗
η : η ∈ Γ(pr1(E)), ‖η(x, y)‖hx ≤ a ∀x, y ∈M} (21)

We denote by BV NLw (E) the set of sections ϕ ∈ L1(E) such that V BTV NLw (ϕ) <
+∞.

Proposition 2.3. If ϕ ∈WNL
w,1,1(E) then,

V BTV NLw (ϕ) = ‖∇NLw ϕ‖L1 (22)
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Proof. Let η ∈ Γ(pr1(E)), we have∫
M

(ϕ,∇NLw
∗
η)h dM =

∫
M×M

〈∇NLw ϕ, η〉h dM×M

by definition of the adjoint operator ∇NLw
∗
.

Then, as the metric h is positive definite, we have∫
M×M

〈∇NLw ϕ, η〉h dM×M ≤
∫
M×M

‖∇NLw ϕ‖h‖η‖h dM×M

and it follows∫
M×M

‖∇NLw ϕ‖h‖η‖h dM×M ≤
∫
M×M

‖∇NLw ϕ‖h dM×M

since ‖η(x, y)‖hx ≤ 1 ∀(x, y) ∈M ×M . Hence

sup
η∈H1

(∫
M

(ϕ,∇NLw
∗
η)h dM

)
≤
∫
M×M

‖∇NLw ϕ‖h dM×M (23)

Let

η̃ : (x, y) 7−→


∇NLw ϕ(x, y)

‖∇NLw ϕ(x, y)‖hx
if ∇NLw ϕ(x, y) 6= 0

0 otherwise

(24)

and (ηε) ∈ Γ(pr1(E)), ‖ηε(x, y)‖hx ≤ 1 ∀(x, y) ∈M ×M such that ηε −→
ε→0

η̃. We

claim that such a sequence can be constructed using generalizations of Lusin’s
theorem and the mollification technique to vector-valued measurable functions.

We then have

lim
ε→0

∫
M

(ϕ,∇NLw
∗
ηε)h dM = lim

ε→0

∫
M×M

〈∇NLw ϕ, ηε〉h dM×M

=

∫
M×M

〈∇NLw ϕ, η̃〉h dM×M

=

∫
{∇NLw ϕ6=0}

〈
∇NLw ϕ,

∇NLw ϕ

‖∇NLw ϕ‖h

〉
h

dM×M

=

∫
M×M

‖∇NLw ϕ‖h dM×M

Hence, we have constructed a sequence
∫
M

(ϕ,∇NLw
∗
ηε)h dM converging towards∫

M×M ‖∇
NL
w ϕ‖h dM×M , and such that∫
M

(ϕ,∇NLw
∗
ηε)h dM ≤

∫
M×M

‖∇NLw ϕ‖h dM×M ∀ε
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since ‖ηε(x, y)‖hx ≤ 1 ∀(x, y) ∈M ×M . Together with (23), it shows that

sup
η∈H1

(∫
M

(ϕ,∇NLw
∗
η)h dM

)
=

∫
M×M

‖∇NLw ϕ‖h dM×M

In what follows, we highlight two properties of VBTVNL
w that will be use-

ful in the next Section where we consider variational models based on VBTVNL
w .

Properties of VBTVNL
w :

Let us first notice that VBTVNL
w is a sup of linear forms

Jη : ϕ 7−→
∫
M

(ϕ,∇NLw
∗
η)h dM s.t. η ∈ H1

which are continuous with respect to the weak topology of L2(E) since they are
bounded. Hence, for ϕ ∈ L2(E) and ϕn ⇀ ϕ, we have Jη(ϕn)→ Jη(ϕ).

1. Lower semi-continuity
We have

Jη(ϕ) = lim
n
Jη(ϕn) ≤ lim inf

n
V BTV NLw (ϕn)

and taking the sup over the set H1 yields

V BTV NLw (ϕ) ≤ lim inf
n
V BTV NLw (ϕn)

meaning that V BTV NLw is lower semi-continuous with respect to the weak topol-
ogy of L2(E).

2. Convexity The functional V BTV NLw is convex as the supremum of the
convex (since linear) functionals Jη. Indeed, ∀ϕ1, ϕ2 ∈ L1(E), we have

Jη(t ϕ1 + (1− t)ϕ2) = t Jη(ϕ1) + (1− t) Jη (ϕ2)

≤ t V BTV NLw (ϕ1) + (1− t)V BTV NLw (ϕ2)

and consequently

V BTV NLw (t ϕ1 + (1− t)ϕ2) ≤ t V BTV NLw (ϕ1) + (1− t)V BTV NLw (ϕ2)

3. Variational models for image processing tasks

3.1. Image features regularization

3.1.1. Previous work

In [19], Gilboa and Osher developed a nonlocal variational formulation based
on the so-called anisotropic nonlocal total variation for the regularization of
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gray-level images u0 : Ω ⊂ R2 −→ R, that can be written as follows with our
notations

arg min
u

λ

2
‖u− u0‖2L2 + ‖∇NLw u‖L1 (25)

for λ > 0, where ‖∇NLw u‖L1 is of the form (2) for n = 1.
In [5], we showed that we can derive an expression of the unique solution

of the problem (25), and of its vectorial extension, using the dual formulation
V TV NLw of the term ‖∇NLw ‖L1 , defined in (4).

More precisely, we considered the following variational problem

arg min
u∈L2∩BV NLw (Ω;Rn)

λ

2
‖u− u0‖2L2 + V TV NLw (u) (26)

and showed that its unique solution u is of the form

u = u0 − PK1/λ
u0 (27)

where P is the projection operator, and K1/λ is the closure in L2(Ω;Rn) of the
set K1/λ defined in (7).

3.1.2. The proposed model and its solutions

Let us first point out that the variational problem (26) can be rewritten in
the vector bundle context proposed in this paper when viewing a Rn-valued
function on Ω as a section of a (trivial) vector bundle over Ω, and considering
the regularizing term V TV NLw in (26) as the (vector bundle) nonlocal total
variation V BTV NLw (18) induced by the trivial covariant derivative and the
vector bundle metric consisting in the Euclidean scalar product in each fiber.

The following proposition shows that the problem (26) extends in a straight-
forward way when replacing the trivial covariant derivative by a non trivial one,
assuming that this latter is compatible with a vector bundle positive definite
metric.

Proposition 3.1. Let E be a vector bundle over a complete Riemannian mani-
fold (M, g) equipped with a positive definite metric h and a covariant derivative
∇ compatible with h, and u0 ∈ L2(E). The unique solution u of the variational
problem

arg min
u∈L2∩BV NLw (E)

λ

2
‖u− u0‖2L2 + V BTV NLw (u) (28)

is
u = u0 − PK1/λ

u0 (29)

where P is the projection operator, and K1/λ is the closure in L2(E) of the set
K1/λ defined in (21).
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Proof. As proved in Sect. 2, the functional V BTV NLw is lower semicontinuous
convex, and is also proper. Hence, the regularization model (28) is the prox-
imity operator of 1

λV BTV
NL
w evaluated at the element u0. Then, according to

Moreau’s decomposition formula (see. e.g. [27] for details), we have

u = u0 −
1

λ
prox(λV BTV NLw

∗
)(λu0) (30)

By definition, V BTV NLw is the support function of the closure K1 of the convex
set K1. Hence its convex conjugate V BTV NLw

∗
is the indicator function δK1 of

K1. We then have

prox(λV BTV NLw

∗
)(λu0) : = arg min

v

1

2λ
‖v − λu0‖2L2(E) + δK1(v)

= arg min
v∈K1

‖v/λ− u0‖2L2(E)

= λ arg min
v∈K1/λ

‖v − u0‖2L2(E)

= λPK1/λ
u0

Together with (30), it follows formula (29).

3.1.3. Algorithm to solving the proposed model

The original problem (28) has the following primal-dual formulation

min
u∈L2(E)

max
η∈H1

L(u, η) : =
λ

2
‖u− u0‖2L2 + (u,∇NLw

∗
η) (31)

The function L is strictly convex in u and concave in η, which guarantees that
the saddle points of L are of the form (u, η), where u is the unique solution
of the primal problem (28) and η is a solution of its dual formulation. In the
discrete setting, the problem (31) can be rewritten

min
u∈L2(E)

max
η∈H1

λ

2
‖u− u0‖2L2 + 〈∇NLw u, η〉,

which is equivalent to

min
u∈L2(E)

max
η∈Γ(pr1(E))

〈∇NLw u, η〉+
λ

2
‖u− u0‖2L2 − δH1

(η) (32)

Problem (32) is of the form

min
u∈X

max
η∈Y

〈Au, v〉+G(u)− F ∗(v) (33)

where X,Y are two finite-dimensional real vector spaces equipped with an inner
product, the map A : X −→ Y is a continuous linear operator possessing an
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adjoint A∗, the maps G : X −→ [0,+∞], F ∗ : Y −→ [0,+∞] are proper, convex,
lower semi-continuous, and F ∗ is the convex conjugate of a convex lower semi-
continuous function F . Then, the solutions of these problems satisfy

Au ∈ ∂F ∗(η) (34)

−A∗η ∈ ∂G∗(u) (35)

where ∂ denotes the sub-differential operator.

The problem (33) can be solved through one of the primal-dual algorithms pre-
sented in Chambolle and Pock [14]. Dealing with the Arrow-Hurwicz approach
with fixed step sizes, the algorithm to solving (31) reads

∗ Initialization: Choose τ, σ > 0 s.t. τσ‖A‖2 ≤ 1, (u0, η0) ∈ L2(E)×Γ(pr1(E)).
∗ Iterations (n ≥ 0): Update un, ηn as follows:{

ηn+1 = (I + σ∂F ∗)−1(ηn + σAun)
un+1 = (I + τ∂G)−1(un − τA∗ ηn+1)

(36)

In the context of problem (31), the iterative procedure is then the following
ηn+1 =

ηn + σ∇NLw un

max (1, ‖ηn + σ∇NLw un‖h)

un+1 =
1

1 + λτ
[λτu0 + (un − τ∇NLw

∗
ηn+1)]

(37)

The convergence of the algorithm towards a saddle point is proved in [14].

3.2. Image features enhancement

3.2.1. Previous work

In [7], Bertalmı́o et al. proposed a variational model for enhancing the local
contrast of a color image u0 = (u1

0, u
2
0, u

3
0) based on some properties of the

human visual system, that can be written as follows with our notations

arg min
uk

λ

2
‖uk − uk0‖2L2 − ‖∇NLw uk‖L1 , k = 1, 2, 3 (38)

for λ > 0, and where ‖∇NLw u‖L1 is of the form (2) for n = 1.
They showed that the problem (38) has a solution in the discrete case, i.e.

when the image domain Ω is considered as discrete. Moreover, in order to ap-
proximate a solution, they considered a regularized version of the problem by
regularizing the terms ‖∇NLw uk‖L1 and performed a gradient descent until reach-
ing a steady-state.
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In [5], we showed that we can derive an expression of the solutions of the
original problem (38) and its vectorial extension by the use of the dual formu-
lation V TV NLw (u) of the term ‖∇NLw u‖L1 defined in (4) with n = 3, i.e. by
considering the model

arg min
u

λ

2
‖u− u0‖2L2 − V TV NLw (u) (39)

assuming that the solutions belong to the discrete space L2∩BV NLw (Ω;R3). We
then showed that the solutions u are of the form

u = u0 − arg max
u∗∈K1/λ

‖u0 − u∗‖2L2 (40)

and K1/λ is defined in (7).

3.2.2. The proposed model and its solutions

As the variational problem (26), the variational problem (39) can be rewritten
in the vector bundle context proposed in this paper when viewing a Rn-valued
function on Ω as a section of a (trivial) vector bundle over Ω, and considering the
regularizing term V TV NLw in (39) as the (vector bundle) nonlocal total variation
V BTV NLw (18) induced by the trivial covariant derivative and the vector bundle
metric consisting in the Euclidean scalar product in each fiber.

The following proposition shows that the problem (39) extends in a straight-
forward way when replacing the trivial covariant derivative by a non trivial one,
assuming that this latter is compatible with a vector bundle positive definite
metric.

Proposition 3.2. Let E be a vector bundle over a discrete Riemannian mani-
fold (M, g), equipped with a positive definite metric h and a covariant derivative
∇ compatible with h, and u0 ∈ L2(E). The solutions u of the variational problem

arg min
u∈L2∩BV NLw (E)

λ

2
‖u− u0‖2L2 − V BTV NL(u) (41)

are

u = u0 − arg max
u∗∈K1/λ

∥∥∥u0 − u∗
∥∥∥2

L2
(42)

where K1/λ is defined in (21).

Proof. The problem (41) is of the form

inf
u∈X
{G(u)− F (u)} (43)

where F and G are two lower semi-continuous functionals on a reflexive Banach
space X such that F is convex and G satisfies G(u)/‖u‖ → ∞ as ‖u‖ → ∞.
Then according to Theorem 2.7 in [31], if u∗ is a solution of the dual problem

inf
u∗∈X∗

{F ∗(u∗)−G∗(u∗)} (44)
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where F ∗ resp. G∗ denotes the convex conjugate of F resp. G, then there exists
a solution u of the primal problem (43), and the solutions of both problems are
connected by the formulas

F (u) + F ∗(u∗) = 〈u,u∗〉 (45)

G(u) +G∗(u∗) = 〈u,u∗〉. (46)

Hence, the problem (41) can be solved through its dual problem (44).

The convex conjugate of the functional

G : u 7−→ λ

2
‖u− u0‖2L2

is

G∗ : u∗ −→ 1

2λ

(
‖u∗‖2L2 + 2〈u∗, λu0〉L2

)
(47)

As the manifold M is discrete, the set K1 is close and convex, hence the func-
tional F : = V BTV NLw is the support function of K1, and its convex conjugate
is the indicator function χK1

of K1. Then, the dual problem (44) reads

arg min
u∗∈L2(E)

χK1
(u∗)− 1

2λ

[
‖u∗‖2L2 + 2〈u∗, λu0〉L2

]
(48)

Since the L2 norm of sections in K1 is bounded, it is clear that the functional
to minimize in (48) is coercive as well as bounded from below. Then, since L2(E)
is reflexive, we deduce that from any minimizing sequence un

∗ for the functional
in (48) can be extracted a subsequence unj

∗ converging weakly towards some

u∗ ∈ L2(E). Finally, as we are in a discrete space, this sequence is actually
strongly converging towards u∗, showing that u∗ is a solution of problem (48).

The dual problem can then be rewritten

u∗ = arg max
u∗∈K1

‖u∗‖2L2 + 2〈u∗, λ u0〉L2 (49)

Adding the term ‖λu0‖L2 does not affect the solution of the problem (49), hence
we can write

u∗ = arg max
u∗∈K1

‖u∗ + λu0‖2L2

which is equivalent to

u∗ = −arg max
u∗∈K1

‖λu0 − u∗‖2L2

Finally, we deduce from (46) and (47) that the solutions u of the original problem
(41) are

u = u0 −
1

λ
arg max
u∗∈K1

‖λu0 − u∗‖2L2(E)
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which can be rewritten

u = u0 − arg max
u∗∈K1/λ

∥∥∥u0 − u∗
∥∥∥2

L2(E)

3.2.3. Algorithm to solving the proposed model

As we are in a discrete space, the problem (41) can be rewritten as

arg min
u∈L2∩BV NLw (E)

λ

2
‖u− u0‖2L2(E) − ‖∇

NL
w u‖L1 (50)

making it be of the form
min
u∈X

G(u)− F (Au) (51)

with A : X −→ Y is a linear operator between two finite dimensional vector
spaces, and possessing an adjoint operator A∗.
Then, as demonstrated in [31] and already mentioned in Sect. 3.2.2, the problem
(51) has the following dual formulation

min
u∈X∗

(F ◦A)∗(u)−G∗(u) (52)

which is equivalent to
min
η∈Y ∗

F ∗(η)−G∗(A∗η) (53)

by definition of F .
Hence, the solutions u and η of the primal (51) and dual (53) problems are
linked by the following formulae

Au ∈ ∂F ∗(η∗) (54)

A∗η∗ ∈ ∂G(u) (55)

Our proposal is then to adapt the Arrow-Hurwicz algorithm (37) to the equa-
tions (54) and (55). It gives the following iterative scheme

ηn+1 =
ηn + σ∇NLw un

max (1, ‖ηn + σ∇NLw un‖h)

un+1 =
1

1 + λτ
[λτ u0 + (un + τ∇NLw

∗
ηn+1)]

(56)
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4. Applications to local contrast modification

4.1. The chosen nonlocal covariant derivative and its numerical
implementation

4.1.1. The chosen local covariant derivative

Let E be a vector bundle over a Riemannian manifold (M, g) equipped with a
positive definite metric h and a covariant derivative ∇ compatible with h. In
[4], we showed that the gradient descent of the variational problem

arg min
u

∫
M

‖∇u‖2g−1⊗h dM (57)

is a generalized heat equation

∂u

∂t
+∇∗∇u = 0 (58)

where ∇∗ is the adjoint of ∇.

In [3], Batard and Sochen constructed a covariant derivative ∇opt compatible
with a vector bundle metric as solution of a minimization problem, and apply
the corresponding heat diffusion (58) for color image regularization purpose.

More precisely, they consider a color image u = (u1, u2, u3) defined on a do-
main Ω ⊂ R2 as a section of a (trivial) vector bundle E of rank 3 over Ω. Taking
the Euclidean scalar product in each fiber as the positive definite metric h on
E, they use the fact that a covariant derivative compatible with h is completely
determined by a connection 1-form ω ∈ Γ(T ∗Ω⊗ so(3)) to construct the desired
covariant derivative through a connection 1-form. Then, considering E as an as-
sociated bundle P×(ρ,SO(3))R3 where P is the principal bundle Ω×SO(3) over Ω
and ρ is the standard representation of SO(3) on GL(R3), a connection 1-form
on E is determined by a horizontal bundle HP on P , which is a subbundle of
dimension 2 of P . Finally, they propose a variational model in order to construct
an optimal horizontal bundle HP opt of P (see [3] for details). The corresponding
optimal connection 1-form ωopt is given by the matrix field coefficients

ωopt12 = −
2∑
k=1

ακ
(

(be−dc)(u2
xl
u3−u3

xl
u2)+(bc−ae)(u1

xl
u3−u3

xl
u1)+(ad−b2)(u1

xl
u2−u2

xl
u1)
)
dxl

ωopt13 = −
2∑
k=1

ακ
(

(ce−fb)(u2
xl
u3−u3

xl
u2)+(af−c2)(u1

xl
u3−u3

xl
u1)+(bc−ae)(u1

xl
u2−u2

xl
u1)
)
dxl

ωopt23 = −
2∑
k=1

ακ
(

(fd−e2)(u2
xl
u3−u3

xl
u2)+(ce−fb)(u1

xl
u3−u3

xl
u1)+(be−dc)(u1

xl
u2−u2

xl
u1)
)
dxl
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where
a = δ + κ[(u2)2 + (u3)2] b = κu1u2 c = −κu1u3

d = δ + κ[(u1)2 + (u3)2] e = κu2u3 f = δ + κ[(u1)2 + (u2)2]

and

α =
1

2cbe+ fad− ae2 − fb2 − c2d
for some κ, δ > 0.

Then, they applied the heat diffusion (58) associated to the covariant derivative
∇opt = d + ωopt of initial condition the image u = (u1, u2, u3) given in the
RGB color space. Moreover, in order to make the diffusion take into account
the image edges, they equipped Ω with the following Riemannian metric

g : =

 1 + κ
∑3
k=1(ukx1

)2 κ
∑3
k=1 u

k
x1
ukx2

κ
∑3
k=1 u

k
x1
ukx2

1 + κ
∑3
k=1(ukx2

)2

 (59)

in the frame (∂/∂x1, ∂/∂x2), where κ is the constant that appears in the ex-
pression of ωopt above.
Note that, unlike ∇opt, its adjoint operator ∇∗opt depends on g.

Fig. 1 reproduces some of the results available in [3]. It compares the heat dif-
fusion of the operator ∇opt∗∇opt to the heat diffusion of the operator ∇tri∗∇tri
associated to the trivial covariant derivative ∇tri and the Riemannian metric
(59), that corresponds to the Laplace-Beltrami operator diffusion introduced
in [30]. The same parameters have been taken in both cases, i.e. κ = 0.0005,
dt = 0.1, δ = 1, and the diffusions were stopped after 50 iterations. We observe
that the heat diffusion based on the optimal covariant derivative preserves more
the small details of the original image like the textures and tends also to preserve
more its colors.

4.1.2. Nonlocal extension of the chosen covariant derivative

Based on the results obtained in [3] and showed in Fig. 1, we aim at using the
optimal covariant derivative ∇opt in the context of the variational models de-
scribed in this paper. We then need to extend ∇opt in a nonlocal way by the
use of the corresponding parallel transport map, as described in Sect. 2.

Numerical computations show that the covariant derivative ∇opt is not flat,
meaning that there exist no local frame of E in which its corresponding con-
nection 1-form vanishes, i.e. that there exist no local frame of E in which the
parallel transport map associated to ∇opt writes as the Identity map. As a
consequence, we have to determine the parallel transport map by solving the
following differential equation

∇opt.
γ(t)

u(t) = 0, u(0) = u(γ(0)) (60)
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(a) Original image (b) Laplace-Beltrami (c) Operator ∇opt∗∇opt

(d) Original image (e) Laplace-Beltrami (f) Operator ∇opt∗∇opt

Fig 1. Heat diffusions of generalized Laplacians (58). Comparison between the operator
∇opt∗∇opt and the Laplace-Beltrami operator associated to the Riemannian metric (59).
Images taken from [3].

i.e.
du(t) = −ωopt( .γ(t))(u(t)), u(0) = u(γ(0)) (61)
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Our proposal is then make us of an explicit Euler scheme

u(tn+1) = u(tn)− dt ωopt( .γ(tn))(u(tn)), u(t0) = u(γ(0)) (62)

to solve (61) numerically.

Unlike the local case in Sect. 4.1.1, we equip the image domain Ω with the
Euclidean metric in the following experiments where we test the nonlocal mod-
els (28) and (41), meaning that the geodesic curves γ in (62) are nothing but the
straight lines in Ω. In Sect. 4.1.1, as we were using the L2 norm of the covariant
derivative, we made use of the Riemannian metric (59) in order to guarantee
the anisotropy of the diffusion with respect to the edges. In the models (28)
and (41), the anisotropy of the diffusion with respect to the edges is taken into
account by the L1 norm of the (nonlocal) covariant derivative.

Finally, we need to determine the symmetric function w in order to complete the
construction of the nonlocal covariant derivative (15). The function w completely
determines the behavior of the models (28) and (41), meaning that the choice
of w is dependent of the application targeted. In this paper, we made the choice
of applying the models (28) and (41) to local contrast reduction/enhancement
and we then choose w as a truncated (normalized) Gaussian kernel with fixed
variance value, but varying the window size.

4.2. Local contrast reduction

In Fig. 2-3, we show the results of our nonlocal regularization model (28) induced
by two different covariant derivatives, namely the trivial ∇tri and the optimal
∇opt ones aforementioned, where color images are expressed in the RGB color
space equipped with the Euclidean metric. Note that the parallel transport map
associated to the trivial covariant derivative is nothing but the Identity map.
The solutions of both models are computed with the algorithm (37) where we
take λ = 0.05, σ = τ = 0.1, and the stopping criteria is

1

3|Ω|
‖un+1 − un‖L2 < 0.001 (63)

Computing the parallel transport map associated to ∇opt through an Euler
scheme (62) makes the algorithm (37) be time and memory consumer when the
window size of w gets too big, which explains why we only make experiments
up to 30× 30 window sizes. The variance value we select is 2000, which makes
the function w be almost constant.

For both covariant derivatives, we observe on Fig. 2-3 that the window size
influences the behavior of the regularizations, i.e. a small window size tends
to make the regularization remove the details that were too small in the orig-
inal images on Fig. 2-3(a) while reducing very few its contrast (Fig. 2-3(b-c)),
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whereas a larger window size produces a larger reduction of the contrast of the
original images that smoothes the small details but preserves their structure
(e.g. textures) (see Fig. 2-3(f-g)), the amount of contrast reduction being corre-
lated with the window size (compare Fig. 2-3(d-e) and Fig. 2-3(f-g)).

Given a window size, the results on Fig. 2-3 confirm what we have observed
in [3] with generalized heat diffusions (see Fig. 1), i.e. both covariant derivatives
make the model reduce the noise and smooth small details of the original image
like its textures, but the optimal covariant derivative makes the model preserve
more these small details and produce more saturated colors, meaning that the
model preserves more the aspect of the original image than when it is induced
by the trivial covariant derivative (compare Fig. 2-3(f) and Fig. 2-3(g)).
In order to measure and compare the amount of contrast reduction of the images
on Fig. 2-3(f) and Fig. 2-3(g), we propose to make use of the following mean
contrast (MC) measure of their luminances

1

|Ω|
∑
x

∑
y

w(x, y)|ul(x)− ul(y)| (64)

for w being the truncated (normalized) Gaussian kernel of size 30×30 and vari-
ance 2000, and where we define the luminance ul of a color image u = (u1, u2, u3)

as ul = 1
3

∑3
k=1 u

k.

Fig. 4 shows the luminances of the original color images Fig. 2-3(a) and their
contrast reduced versions on Fig. 2-3(f) and Fig. 2-3(g). We compute the mean
contrast (64) of each luminance image, and the results show that the reduction
of contrast is almost the same for both covariant derivatives.

Finally, through the experiments conducted in this Section, we have shown
that using the optimal covariant derivative makes our local contrast reduction
model preserve more the aspect of the original image than the trivial covariant
derivative does while reducing equally its contrast.

4.3. Local contrast enhancement

In Fig. 5-6, we show the results of our nonlocal enhancement model (41) induced
by the optimal and the trivial covariant derivatives aforementioned, where color
images are expressed in the RGB color space equipped with the Euclidean met-
ric. The solutions of both models are computed with the algorithm (56) where
we take λ = 0.1, σ = τ = 0.1, and the stopping criteria is defined in (63).
Preliminary experiments showed that applying the enhancement model for win-
dow sizes and variance values that are too small amplifies the noise of the original
images for both the trivial and the optimal covariant derivatives, and the noise
amplification tends to reduce with the increase of the window size and the vari-
ance value. This is consistent with the results obtained in the previous Section
where we showed that the regularization model smoothes the small details of the
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(a) Original image u0

(b) NLCV induced by the trivial one with win-
dow size 3× 3

(c) NLCV induced by the optimal one with
window size 3× 3

(d) NLCV induced by the trivial one with win-
dow size 10× 10

(e) NLCV induced by the optimal one with
window size 10× 10

(f) NLCV induced by the trivial one with win-
dow size 30× 30

(g) NLCV induced by the optimal one with
window size 30× 30

Fig 2. Solutions u (29) of the local contrast regularization model (28) for different nonlocal
covariant derivatives (NLCV) .



T.Batard et al./Nonlocal variational problems on a vector bundle 25

(a) Original image u0

(b) NLCV induced by the trivial one with win-
dow size 3× 3

(c) NLCV induced by the optimal one with
window size 3× 3

(d) NLCV induced by the trivial one with win-
dow size 10× 10

(e) NLCV induced by the optimal one with
window size 10× 10

(f) NLCV induced by the trivial one with win-
dow size 30× 30

(g) NLCV induced by the optimal one with
window size 30× 30

Fig 3. Solutions u (29) of the local contrast reduction model (28) for different nonlocal co-
variant derivatives (NLCV).
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(a) Original image: MC 19.42 (b) Original image: MC 25.29

(c) NLCV induced by the trivial one with win-
dow size 30× 30: MC 11.48

(d) NLCV induced by the trivial one with win-
dow size 30× 30: MC 16.89

(e) NLCV induced by the optimal one with
window size 30× 30: MC 11.50

(f) NLCV induced by the optimal one with
window size 30× 30: MC 16.83

Fig 4. Mean Contrast (MC) of luminance images (64). Comparisons between the luminance
of original color images (top row) and the luminance of the solutions (29) of the local contrast
reduction models (28) for different nonlocal covariant derivative (NLCV).

image besides decreasing its contrast for such window sizes, and the smoothing
decreases with the increase of the window size. Hence, we only show on Fig. 5-6
the results where a window size 30 × 30 and a variance value 2000 have been
used, but still we can observe on Fig. 5-6(b-c) some enhancement of the noise,
that would not appear using larger window sizes.
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Comparing the results obtained with the two different covariant derivatives,
we observe that the colors are less saturated in the case of the optimal one
(compare Fig. 5-6(b) and Fig. 5-6(c)), making the colors be closer to the ones of
the original images and consequently the aspect of the original images be more
preserved. This behavior was already observed in the previous Section dealing
with local contrast reduction.
A more objective way to determine whether the aspect of the original image has
been more preserved using the optimal covariant derivative is to compute how
many colors in the contrast enhanced image (Fig. 5-6(b) and Fig. 5-6(c)) belong
to the convex hull of the colors of the original image (Fig. 5-6(a)). The black
pixels of the images on Fig. 5-6(g-h) represent the colors of Fig. 5-6(b-c) that lie
outside the convex hulls of the corresponding original images Fig. 5-6(a), and we
see that there are less black pixels on Fig. 5-6(h) than on Fig. 5-6(g), meaning
that the contrast enhanced images induced by the optimal covariant derivative
on Fig. 5-6(c) have more colors inside the convex hulls of the original images
than the ones induced by the trivial covariant derivative on Fig. 5-6(b).
As we did in the previous Section, in order to show that the better preservation
of the aspect of the original images using the optimal covariant derivative is not
due to the fact that the contrast is less enhanced, we compute and compare
the contrast measure (64) of the luminance of the images on Fig. 5-6(b) and
Fig. 5-6(c). Results are presented in Fig. 7, and the contrast measure tells us
that the model based on the optimal covariant derivative enhances equally (even
slightly more) the contrast than the one based on the trivial covariant derivative.

Finally, the experiments on local contrast enhancement that we have conducted
in this Section yield the same conclusion as the ones of the previous Section on
local contrast reduction, i.e. using the optimal covariant derivative makes the
model preserve more the aspect of the original image than the trivial covariant
derivative does while enhancing equally its contrast.

4.4. Functional spaces modeling noise, textures and contrast on
color images

Given a color image u0 defined on a discrete grid Ω, we showed in Sect. 3 that
the solutions u of both models (28) and (41) are of the form

u = u0 − u? (65)

where u? is an element of the space K1/λ defined by

K1/λ : = {∇NLw
∗
η : η ∈ Γ(pr1(E)), ‖η(x, y)‖hx ≤ 1/λ ∀x, y ∈ Ω} (66)

According to the experiments performed in Sect. 4.2-3 (where the vector bun-
dle metric h has been taken as the Euclidean scalar product in the RGB color
space in each fiber, and the function w is a truncated (normalized) Gaussian
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(a) Original Image u0

(b) NLCV induced by the trivial one with win-
dow size 30× 30

(c) NLCV induced by the optimal one with
window size 30× 30

(d) Close-up of (a) (e) Close-up of (b) (f) Close-up of (c)

(g) 11.72% of the colors of (b) are outside the
convex hull of the colors of (a)

(h) 6.46% of the colors of (c) are outside the
convex hull of the colors of (a)

Fig 5. (b-c): solutions u (42) of the local contrast enhancement model (41) applied to (a)
for different nonlocal covariant derivatives (NLCV). Black pixels on (g-h) show the colors of
(b-c) that lie outside the convex hull of the colors of (a).
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(a) Original Image u0

(b) NLCV induced by the trivial one with win-
dow size 30× 30

(c) NLCV induced by the optimal one with
window size 30× 30

(d) Close-up of (a) (e) Close-up of (b) (f) Close-up of (c)

(g) 3.79% of the colors of (b) are outside the
convex hull of the colors of (a)

(h) 1.98% of the colors of (c) are outside the
convex hull of the colors of (a)

Fig 6. (b-c): solutions u (42) of the local contrast enhancement model (41) applied to (a)
for different nonlocal covariant derivatives (NLCV). Black pixels on (g-h) show the colors of
(b-c) that lie outside the convex hull of the colors of (a).
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(a) Original Image: MC 19.42 (b) Original Image: MC 25.29

(c) NLCV induced by the trivial one with win-
dow size 30× 30: MC 24.23

(d) NLCV induced by the trivial one with win-
dow size 30× 30: MC 33.25

(e) NLCV induced by the optimal one with
window size 30× 30: MC 24.65

(f) NLCV induced by the optimal one with
window size 30× 30: MC 33.56

Fig 7. Mean Contrast (MC) of luminance images (64). Comparisons between the luminance
of original color images (top row) and the luminance of the solutions (42) of the local contrast
reduction models (41) for different nonlocal covariant derivative (NLCV).

kernel), these variational models reduce or enhance the local contrast of the
original image u0, the parameter λ being inversely proportional to the intensity
of the reduction or enhancement of the local contrast, and the window size de-
termines the features involved: a very small window size makes the variational
models affect mainly the noise and the small details of the image like its textures
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and very few its contrast, whereas a larger window size makes the variational
models affect mainly the contrast of the image. We can then deduce that the
spaces K1/λ (associated to the trivial and optimal covariant derivatives afore-
mentioned), model noise, textures and contrast of color images.

It is also worth noting that, in the scalar case and when the covariant derivative
is the trivial one, reducing the window size makes the local contrast reduction
model tend towards the ROF model [28] which aims at removing the noise on
gray-level images, but has tendency to remove the textures and reduce (slightly)
the contrast, and this is consistent with the experiments in Sect. 4.2 (see Fig. 2-
3(b-c)). Let us also point out that reducing the window size makes the space
K1/λ tend towards the space

{∇∗η : η ∈ C∞(Ω;R2), |η(x)| ≤ 1/λ ∀x ∈ Ω}, (67)

where ∇∗ is the adjoint of the Euclidean gradient operator, which is a subspace
of the space of oscillating patterns introduced by Meyer [24]. Oscillating pat-
terns can then be considered as a limit of local contrast when reducing the size
of the neighborhood.

On Fig. 8-9, we show the results of the differences between the solutions of
both variational models (28) and (41) applied to the same original image u0

and the original image itself, i.e. we show the element u? in (65), which is given
by

u? = arg min
v∈K1/λ

‖u0 − v‖2L2 , (68)

in the local contrast reduction model (see Fig. 8), and by

u? = arg max
v∈K1/λ

‖u0 − v‖2L2 , (69)

in the local contrast enhancement model (see Fig. 9).
We test both models with the two covariant derivatives aforementioned and two
different window sizes, i.e. 10 × 10 and 30 × 30. Moreover, we use the same
parameter value λ = 0.1 and stopping criteria (63).
Through the observation of the positive and negative parts of u? and the compar-
isons between the two different window sizes, we deduce a region-wise oscillating
behavior of u? around the value 0, that tends to get pixel-wise when reducing the
window size. We also observe color oscillations of smaller saturation in the case
of the optimal covariant derivative, which explains why this covariant deriva-
tive makes the regularization and enhancement models preserve more the colors
of the original image. Finally, a comparison between the results on Fig. 8 and
Fig. 9 reveals big similarities in the case of the window size 30× 30 between the
positive part of the local contrast reduction model and the negative part of the
local contrast enhancement model and vice-versa , meaning that the elements
u? are close to be opposite. This result is consistent with the expressions of u?

in (68) and (69) and the fact that K1/λ is the image of a ball through a linear
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map. However, the similarities are much less obvious for the smaller window size
10 × 10 due to the large noise amplification of the local contrast enhancement
model.

5. Conclusion and further work

We have introduced the notion of nonlocal covariant derivative on a vector
bundle from which we have derived the concept of nonlocal total variation for
sections of a vector bundle. We have then provided an application of these new
mathematical tools to image processing by extending existing variational models
devoted to local contrast reduction/enhancement from the Euclidean space to
a vector bundle. For a well-chosen nonlocal covariant derivative, we have shown
that the models preserve more the aspect of the original image than the ex-
isting Euclidean models do, while reducing/enhancing equally its contrast. As
contrast reduction/enhancement is deeply related with human vision and co-
variant differentiation models some properties of the human visual system too,
we are investigating the relations between the proposed mathematical model
and human vision.
However, the current algorithm is rather slow, mainly due to the fact that the
nonlocal covariant derivative between two points is the solution of an ODE,
whose explicit solution is unknown, and has then to be solved through a nu-
merical scheme. This computational issue forces us to deal with small window
sizes and it makes the models act on noise and textures while modifying the
image contrast, which can be undesirable in some applications where contrast
reduction/enhancement is useful. Current work is then devoted to speeding up
the algorithm in order to make it applicable on large window sizes.
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(2009) A perceptually inspired variational framework for color enhance-
ment. IEEE Trans. Pattern Anal. Mach. Intell. 31(3) 458-474

[26] Pedersen, M., Hardeberg, J. (2011) Full-reference image quality met-



T.Batard et al./Nonlocal variational problems on a vector bundle 36

rics: classification and evaluation. Found. Trends Comp. Graphics and Vi-
sion 7 1-80

[27] Rockafellar, R. T. (1970) Convex Analysis. Princeton University Press
[28] Rudin, L.I., Osher, S., Fatemi, E. (1992) Nonlinear total variation

based noise removal algorithms. Physica D 60 259–268
[29] Sapiro, G., Caselles, V. (1997) Histogram modification via differential

equations. J. Differential Equations 135 238–268
[30] Sochen, N., Kimmel, R., Malladi, R. (1998) A general framework for

low level vision. IEEE Trans. Im. Processing 7 310–318
[31] Tolan, J.F. (1979) A duality principle for non-convex optimisation and

the calculus of variations. Archiv. Rational Mech. Analysis 71(1) 41–61
[32] Wang, Z., Bovik, A. (2002) A universal image quality index. IEEE Signal

Process. Letters 9(3) 81–84
[33] Zosso, D., Tran, G., Osher, S. (2015) Non-local Retinex — A unifying

framework and beyond. SIAM J. Imaging Sci. 8(2) 787–826
[34] Weickert, J. (1999) Coherence-enhancing diffusion of color images. Im.

Vis. Computing 17 201–212
[35] Zamir, S. W., Vazquez-Corral, J., Bertalḿıo, M. (2014) Gamut
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