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Abstract

In this work, we present a comparative evaluation of var-

ious ‘tracking-by-detection’ approaches on public datasets.

The work investigates popular sequential Monte Carlo and

template ensemble based trackers coupled with relevant vi-

sual people detectors with emphasis on exhibited perfor-

mance variation depending on tracker-detector choice. Ex-

tensive experimental results are provided on public dataset

and results indicate the choice of a detector can signifi-

cantly vary the performance of a tracker. Our experimental

results show, depending on the choice of the detector, av-

erage tracking accuracy across three public datasets could

exhibit a 45% standard deviation with only, on average, a

6.8% and 11.1% standard deviation in detector recall and

precision respectively.

1. Introduction

People detection and tracking is an important research

area with prominent applications in video surveillance,

pedestrian protection systems, human-computer interaction,

robotics, and the like. As a result, it has amassed huge in-

terest from the scientific community [2, 5, 4]. People track-

ing falls under Multi-Object Tracking (MOT) which deals

with the process of accurately estimating the state of ob-

jects – position, identity, and configuration – over time from

observations. Due to incurred challenges – scene clutter,

target dynamics, intra/inter-class variation, measurement

noise, frame rate – it has long been established that cou-

pling trackers with detectors, in a paradigm called ‘tracking-

by-detection’, helps better tackle these challenges [2, 9, 8].

In the context of people tracking, ‘tracking-by-detection’

approaches rely on a people detector to start, update, re-

initialize, guide (avoid drift), or terminate a tracker.

∗This work was supported by grants from the French General Di-

rectorate for Armament (DGA) under grant reference SERVAT RAPID-

142906073 and the French National Research Agency (ANR) under

project RIDDLE with grant number ANR-12-CORD-0003.

In the literature, it is common to find many ‘tracking-

by-detection’ approaches applied to people tracking. How-

ever the usual trend it to select a single detector and di-

rectly couple it with the tracker, e.g, [2, 9]. With the ad-

vent of various different people detection techniques with

significant variations in terms of detection performance and

speed, see [5], the first step should be to evaluate the ef-

fect a detector choice impacts performance, and the rele-

vant association with filtering strategies. To the best of our

knowledge no such work exits till date. To clarify, there

are indeed very good experimental comparative works in

detection, e.g., [5], but none that shows the inter related ef-

fects by detector and tracker choices. To bridge this gap,

in this work, we present a comparative evaluation of exem-

plar ‘tracking-by-detection’ approaches, with different de-

tectors, on relevant public datasets, primarily focusing on

sequential Monte Carlo approach as most approaches rely

on it. We consider three different trackers (filtering strate-

gies) owing to their pervasive use in the literature and rel-

evance: A Decentralized Particle Filter (DPF), e.g., [2, 7],

Tracker Hierarchy [12], and Reversible JumpMarkov Chain

Monte Carlo - Particle Filter (RJMCMC) [8]. The DPF and

RJMCMC are selected as they are the most popular Monte

Carlo approaches marking two important tracker configu-

rations: a decentralized one which assigns an independent

tracker per target, and centralized one – also called a joint

state tracker – in which all the states of the tracked targets

are concatenated forming a single representation that cap-

tures the entire configuration. The Tracker Hierarchy is se-

lected as it, unlike the usual implementations of DPF and

RJMCMC which utilize simple single target representation,

consists of a rich target representation model in the form of

template ensembles. Similar to DPF, it is a decentralized

approach and has shown tracking results comparable to the

state-of-the-art [12].

The above mentioned trackers are coupled with three

selected detector, namely: Dalal and Triggs Histogram of

Oriented Gradients (HOG) based detector [3] denoted as

HOG-SVM, Felzenszwalb et al. [6] Deformable Part-based

Methods (DPM) detector, and Dollar et al. [4] Aggregate



Channel Features (ACF) based detector. The detectors mark

three distinct detector ‘superiority era’ onsets as published

in 2005, 2010, and 2014 consecutively. Furthermore, our

choice is motivated by the fact that both ACF and DPM are

amongst the current best detectors and HOG-SVM, though

not currently the best itself, its features make constituents,

one way or another, of current state-of-art approaches and

historically has been the de facto benchmark detector.

In short, the selected trackers and detectors are quite

relevant in the literature and the variations amongst them,

namely: (1) tracker configuration that governs how the state

space is explored, (2) variation in target representation –

simple color appearance to template ensemble, (3) the de-

tectors variation in terms of detection accuracy and preci-

sion [5], dictates the representativeness and relevance of this

comparative evaluation. Hence, the contributions of this pa-

per are: (1) systematic evaluation of ‘tracking-by-detection’

approach based on relevant combination of trackers and de-

tectors, (2) a presentation of relevant results with insightful

discussions that highlight the benefits of tracker choice, tar-

get representation, and detector choice.

This paper is organized as follows: section 2 starts with

background and overview of the different trackers and de-

tectors combined, section 3 details the experimental setting

and obtained results, section 4 presents a comprehensive

discussion, and the paper finally finishes off with conclu-

sions and future works in section 5.

2. Background and overview

In this section, we will provide an overview and relevant

background information about the two main ingredients of

‘people tracking-by-detection’: people detection and track-

ing. The different detectors and trackers selected for the

comparative evaluation are briefly described.

2.1. People Detection

Depending on the type of feature, model, classifier, and

learning technique adopted, visual people detectors perform

variably on different datasets. Below, the three chosen de-

tectors are briefly explained.

HOG-SVM [3]: This detector is one of the classical and

oldest detectors. This detector computes local histograms

of the gradient orientation on a dense grid and uses linear

Support Vector Machine (SVM) as a classifier. The

constituent HOG features have shown to be the most

discriminant features to date, and in fact, a majority of

detectors proposed hence-after make use of HOG or its

variant one way or another [5].

DPM [6]: Contrary to HOG and ACF which detect a

person’s full body, the DPM is a parts based detector that

works by aggregating evidence of different parts of a body

to detect a person in an image. Its trained model is divided

(a) HOG-SVM (b) DPM (c) ACF

Figure 1: Sample detection outputs of the three detectors.

in different parts. For instance, a person’s model could be

made up of a head, upper body, and lower body sub-models.

Each detected area has its own score. Thus, it is possible to

put a threshold in order to remove detections that have low

scores. Since this detector relies on parts, and not solely

on a full body, it detects partially occluded people rather

well, see figure 1b for example. Additionally, it also has

better localization accuracy as it infers bounding box based

on detected body parts. The detector uses variants of HOG

features with Latent-SVM as classifier.

ACF [4]: This is a fast person detector that has

shown state-of-the-art performance on various benchmark-

ing datasets [4]. It is based on aggregates (summed over

blocks) of features represented as channels and a variant of

Boosted classifier. Examples of features channels used in-

clude: normalized amplitude of the gradient, the histograms

of oriented gradients (HOG, 6 channels) and color channels

(LUV).

Generally speaking, the ACF, amongst the others, does

significantly better in outdoor environments, e.g., cam-

era mounted on a vehicle, whereas the DPM outperforms

whenever the dataset contains partially occluded person in-

stances. Surprising, the HOG-SVM detector also does well

with the presence of contrasting background that clearly

helps delimit the boundaries of people. As a result, it is

the interest in this work to show how these detector perfor-

mance variations affect ‘tracking-by-detection’ based track-

ers, notably their filtering and target appearance model ro-

bustness, on different benchmarking public datasets. Sam-

ple detections are shown in figure 1.

2.2. MultiObject Tracking (MOT)

For MOT, we consider the two popular tracker configura-

tions: A decentralized and centralized tracker configuration.

2.2.1 Decentralized MOT

In decentralized MOT, each instantiated tracker has its own

state vector which is independent of the others. In this class,

we chose to use our variant of the classical Particle Filter

(PF) – a popular choice in the literature, e.g., [2, 7] – and the

more involved open-sourced Tracker Hierarchy [12] which

is a template ensemble based tracker.

Decentralized Particle Filters (DPF): In this approach,

each target is assigned a unique instance of a Particle Fil-

ter as a tracker. In this work, this target specific tracker is



implemented based on the ICondensation [10] filter as it is

the most widely used and suitable PF variant for detector in-

tegration. This is a sequential Monte Carlo approach which

approximates the posterior over the target state xt given all

measurements up to time t, Z1:t, using a set of N weighted

samples, i.e., p(xt|Z1:t) ≈ {x
(i)
t , w

(i)
t }Ni=1. Tracking is

achieved sequentially with the notion of Importance Sam-

pling whereby the particles at time t − 1 are propagated

according to a proposal density, q(.), and their weights are

updated in accordance with equation 1.

w
(i)
t ∝ w

(i)
t−1

p(zt|x
(i)
t )p(x

(i)
t |p(x

(i)
t−1)

q(x
(i)
t |x

(i)
t−1, zt)

(1)

Where, p(x
(i)
t |x

(i)
t−1) is target dynamic model, p(zt|x

(i)
t )

is likelihood term, and q(x
(i)
t |x

(i)
t−1, zt) is the proposal den-

sity evaluated at the sampled state. To derive this filter

with incoming detections, hence to realize ‘tracking-by-

detection’, the proposal density shown in equation 2 is em-

ployed. According to this density, part of the particles will

be sampled from the detector cues, π(x
(i)
t |zt), some from

the dynamics, and some from the prior p0(x
(i)
t ), in accor-

dance with the ratios α, β, γ which should sum to 1.

q(x
(i)
t |x

(i)
t−1, zt) = βp(x

(i)
t |x

(i)
t−1)+απ(x

(i)
t |zt)+γp0(x

(i)
t )
(2)

The likelihood p(zt|x
(i)
t ) is a probabilistic measure

based on the Bhattacharyya similarity coefficient, as in [10],

with respect to a dynamically updated simple single tar-

get color histogram, constructed in the HSV color space.

During MOT, each incoming detections have to be associ-

ated with the different trackers distinctly. For that we use

a greedy assignment algorithm [2] which performs compa-

rably to the famous Hungarian assignment algorithm. The

DPF is coupled with each one of the detectors presented

in section 2.1 during experimental evaluations. The exact

label for the tracker is derived by appending the detector

name on DPF. For example, DPF-ACF is the decentralized

Particle Filter multi-object tracker using ACF as detector.

Tracker Hierarchy (Hierarchy) [12]: This multi-object

tracker is another ‘tracking-by-detection’ decentralized

MOT that assigns a single tracker per target. It is a tracker

that consists of a rich appearance model of the target in the

form of a template ensemble and uses hierarchy of expert

and novice trackers for efficient multi-person tracking. At

each time step, the correct target position is estimated by

making use of a mean-shift mode estimator and a Kalman

filter. We consider evaluating its performance with differ-

ent detectors as it, unlike the two other trackers, consists of

a rich and involved target appearance model. Please refer

to [12] for further details. This tracker combined with any

of the detectors is labelled as Hierarchy followed by detec-

tor name, e.g., Hierarchy-ACF.

2.2.2 Centralized MOT

The centralized MOT, also called joint state tracker, repre-

sents the tracked target using a joint state that captures the

entire configuration. The main advantage is that should the

targets interact, an interaction model can be incorporated in

the tracking step. The most famous approach in this class is

the Reversible Jump Markov Chain Monte Carlo - Par-

ticle Filter (RJMCMC) tracker [8]. The RJMCMC defines

a Markov Chain over the state configuration so that the sta-

tionary distribution of the chain approximates the posterior

distribution p(xt|Z1:t). It replaces the inefficient important

sampling step with a trans-dimensional Metropolis Hastings

(MH) algorithm to sample from the chain.

In RJMCMC tracker, the posterior at time t is approx-
imated using a set of M discrete unweighted samples:

p(xt|Z1:t) ≈ {x
(i)
t−1}

M
i=1. It uses a set of movesm to change

the dimension of the state, i.e., adding new target, remov-

ing untracked targets, or leave it unchanged according to

a prior move proposal qm. Each move is associated with

a move specific proposal distribution Qm(.). Each move

m must have a reverse move m∗ that assures reversibil-

ity so that detailed balance will be achieved and the chain

will converge to the desired stationary distribution [8]. Dur-

ing the iterative estimation process, at the ith iteration, it

first samples a move from qm and proposes a new particle

x∗ based on Qm(.). It then computes the acceptance ratio

αa shown in equation 3 considering Qm(.) and the reverse

move proposal distribution Qm∗(.). The proposed particle

is accepted with probability αa or otherwise rejected. Par-

ticles used both for the burn-in, Mb, and thin-out, Mth, are

discarded leaving M unweighted samples to represent the

posterior.

αa = min

(

1,
p(x∗|Z1:t)Qm∗(x

(i−1)
t

;x∗)qm∗Ψ(x∗)

p(x
(i−1)
t

|Z1:t)Qm(x∗;x
(i−1)
t

)qmΨ(x
(i−1)
t

)

)

(3)

Ψ(.) in equation 3 is the interaction model. Our im-

plementation is based on [8] with the set of moves m =
{add, delete, stay, leave, update, swap}, a markov ran-

dom field based interaction model Ψ(.), a likelihood mea-

sure p(zt|xt) based on the Bhattacharyya similarity coef-

ficient of a simple single target color histogram, contrary

to Hierarchy which has an ensemble, in the HSV color

space. The different move specific proposal distributions,

Qm(.), are defined as in [8]. The RJMCMC is coupled with

the different detectors presented and evaluated. The cou-

pled tracker-detector is denoted using RJMCMC followed

by used detector acronym, e.g., RJMCMC-ACF. Similar to

DPF, the detection-track data association is handled via a

greedy assignment algorithm.



3. Experiments and results

As stated, the main objective of this paper is to provide a

comparative evaluation of three multi-object ‘tracking-by-

detection’ based tracking techniques utilizing three differ-

ent detectors. The tracker and detector combination leads

to nine evaluated combinations. In this section, we present

the different datasets, evaluation metrics, implementation

details, and obtained results.

3.1. Datasets

To evaluate the different detector-tracker combination,

we have utilized three public datasets, namely: The

CAVIAR OneShopOneWait dataset1, the CAVIAR En-

terExitCrossingPaths dataset1, and the PETS2009S2L12

dataset. Here onwards, these datasets are referred as

OneShop, EnterExit, and PETSS2L1 respectively. These

datasets are selected as they highlight different conditions:

(1) the OneShop sequence consists of intermittent target oc-

clusions, (2) the EnterExit sequence is challenging for de-

tectors due to background clutter, and (3) the PETSS2L1

features an outdoor scene with many targets and encoun-

tered target-target interactions.

Sequence Frame Rate No. Frames No. of Id.
Detector Recall / Precision

ACF DPM HOG-SVM

EnterExit 25 383 4 .58 / .76 .74 / .89 .62 / .77

OneShop 25 1377 6 .32 / .48 .63 / .90 .44 / .43

PETSS2L1 7 795 19 .88 / .93 .80 / .92 .80 / .90

Table 1: Utilized public datasets along with detector performance.

Relevant descriptions of the different datasets along with

the performance of the three detectors is provided in table 1.

At this stage, the detector’s performance is quantized as re-

call = TP
TP+FN

and precision = TP
TP+FP

, where TP is for

true positives, FP for false positives, and FN for false neg-

atives.

3.2. Evaluation metrics

To quantify the performance of the different trackers,

we utilize the prevalent CLEAR-MOT metrics [1]. The

CLEAR-MOT metrics are principally based on computa-

tion of two quantities: the Multi-Object Tracking Accuracy

(MOTA) and the Multi-Object Tracking Precision (MOTP).

The MOTA = 1−(FP +FN+Idsw), whereFP =
∑

t
FPt

gt

quantifies total false positives, FN =
∑

t
FNt

gt
quantifies

the total false negatives, and Idsw =
∑

t

Idsw,t

gt
quanti-

fies total id switches, all divided by the ground truth tar-

gets and summed over the entire dataset. The MOTP is

the average bounding box overlap between the estimated

target position and ground truth annotations over the cor-

rectly tracked targets. A tracker estimated rectangular po-

1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
2http://www.cvg.reading.ac.uk/PETS2009/a.html
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Figure 2: (a) Detector Precision-Recall curve on a subset of the

PETSS2L1 dataset. (b) Performance, in terms of MOTA, of the

Monte Carlo trackers as a function of number of particles used to

approximate the posterior.

sition, RT , is considered a correct track if its overlapping

area score, sc = RT∩GT

RT∪GT
, with the ground truth annotation

GT is above a threshold τ , which is usually set to 0.5.

3.3. Implementation details

Detailing implementation specific choices, for the de-

tectors: for HOG-SVM, we use GPU implementation of

OpenCV library3 with a model trained on the INRIA

dataset, for DPM and ACF, we use the original Matlab

source codes discussed in [6] and [4] respectively. To fur-

ther tune the threshold of the detectors, we evaluate them

on a subset of the PETSS2L1 dataset with the help of

Precision-Recall curves. Accordingly, as shown in figure 2a

the operating point is set at the extreme point where the

curve touches the faded gray lines (the lines denote equal

trade-off between precision-recall). For DPM and HOG-

SVM, this is the point where the highest recall is attained,

whereas for ACF it is where it achieves a 0.93 precision. All
the results in table 1 are obtained at these operating points.

With regards to the trackers, for Hierarchy, we use the

original source code [12] with only the dataset frame rate

parameter adjusted accordingly. Both the DPF and RJM-

CMC are implemented in C++. To validate the number of

particles to use in each tracker, they are evaluated using a

subset of the EnterExit dataset by varying the number of

particles used to approximate the posterior, shown in fig-

ure 2b. As the result shows, the best performance averaged

over the different detector is obtained when usingN = 150
particles for DPF, and M = 300 particles for RJMCMC.

Furthermore, for RJMCMC, the burn-in and thin-in parti-

cles are set to Mb = 45 and Mth = 3 respectively, and

qm = {0.1, 0.01, 0.01, 0.05, 0.82, 0.01}. For DPF, proposal
density weights of β = 0.6, α = 0.4, γ = 0 are used. These
are also exactly the same for RJMCMC during the update

move. In both RJMCMC and DPF, a random walk dynamic

model is utilized. We do not report on computational speed

of the trackers as we are using unoptimized code that has a

mix of Matlab (for two of the detectors) and C++ code.

3http://opencv.org/



3.4. Results

The results obtained by running the tracker-detector

combinations on the three public datasets are shown in

detail in tables 2, 3, and 4, corresponding to the En-

terExit, OneShop, and PETSS2L1 datasets respectively.

Each tracker-detector combination is run five times to ac-

count for their stochastic nature. In all cases, the results

are reported as mean/standard deviation, i.e., µ/σ. Before
analyzing these results, it is worth taking a look at the detec-

tor performance on these datasets in table 1. All the three

detectors achieve high detection rates, > 80%, with high

precision, > 90%, on the PETSSL1 dataset with top per-

formance from ACF detecting 88% percent of the targets

correctly. On the contrary, ACF does poorly on the other

two datasets, EnterExit and OneShop, with DPM achiev-

ing the best result trailed by HOG-SVM. On average, DPM

perform much better than the others with consistent high

precision rates. The results also indicate that the OneShop

dataset poses a great challenge for detectors followed by

EnterExit.

Tracker-Detector MOTA MOTP TP FP FN Idsw

DPF-ACF .25 / .02 .42 / .04 .77 / .09 .52 / .02 .21 / .07 19.4 / 10.2

Hierarchy-ACF .31 / .00 .64 / .00 .68 / .00 .38 / .00 .31 / .00 6.9 / 0.0

RJMCMC-ACF .30 / .02 .64 / .02 .55 / .02 .24 / .01 .43 / .02 32.8 / 6.7

DPF-DPM .68 / .01 .59 / .04 .79 / .07 .12 / .06 .19 / .07 1.5 / 0.4

Hierarchy-DPM .75 / .00 .76 / .00 .82 / .00 .08 / .00 .17 / .00 4.2 / 0.0

RJMCMC-DPM .53 / .02 .62 / .01 .54 / .03 .01 / .01 .45 / .03 9.0 / 2.7

DPF-HOG .23 / .07 .62 / .01 .60 / .04 .37 / .05 .41 / .02 1.9 / 1.2

Hierarchy-HOG .24 / .00 .22 / .00 .36 / .00 .12 / .00 .63 / .00 18.0 / 0.0

RJMCMC-HOG .50 / .04 .41 / .00 .58 / .05 .08 / .04 .40 / .05 6.9 / 5.7

Table 2: CLEAR-MOT results on the EnterExit dataset. All results

reported as µ/σ computed over five runs.

Table 2 shows the detailed results on the EnterExit

dataset. The best overall result, both accuracy and preci-

sion, is obtained with the Hierarchy-DPM tracker. The best

results of each of the trackers is obtained when combined

with the DPM detector. As the ACF performs poorly in

this dataset, corresponding results are accordingly poor. In

this dataset, the DPF is best combined with ACF, the Hier-

archy with DPM, and the RJMCMC also with DPM. The

HOG-SVM detector is better combined with the RJMCMC

tracker.

Tracker-Detector MOTA MOTP TP FP FN Idsw

DPF-ACF -.22 / .07 .43 / .03 .48 / .03 .71 / .07 .50 / .03 9.9 / 5.9

Hierarchy-ACF -.50 / .00 .51 / .00 .55 / .00 1.05 / .00 .42 / .00 121.3 / 0.0

RJMCMC-ACF .00 / .01 .64 / .02 .10 / .01 .10 / .01 .88 / .01 75.4 / 6.2

DPF-DPM .58 / .32 .59 / .02 .69 / .05 .10 / .07 .29 / .04 16.2 / 5.1

Hierarchy-DPM .39 / .00 .68 / .00 .58 / .00 .19 / .00 .38 / .00 184.3 / 0.0

RJMCMC-DPM .41 / .00 .59 / .00 .41 / .01 .01 / .01 .58 / .01 27.4 / 5.4

DPF-HOG .09 / .08 .26 / .01 .54 / .03 .45 / .06 .45 / .04 8.1 / 4.9

Hierarchy-HOG .29 / .00 .33 / .00 .33 / .00 .04 / .00 .67 / .00 26.9 / 0.0

RJMCMC-HOG .16 / .02 .42 / .00 .31 / .02 .15 / .03 .69 / .02 20.8 / 5.5

Table 3: CLEAR-MOT results on the OneShop dataset. All results

reported as µ/σ computed over five runs.

Table 3 shows the results on the OneShop dataset. This

is the dataset where the detectors all perform poorly. This is

clearly reflected in the results. Again the best results, preci-

sion and accuracy, involve the DPM detector: accuracy with

DPF-DPM and precision with Hierarchy-DPM. The best re-

sult, a 58%MOTA, is achieved with the DPF-DPM tracker.

Besides, when the detector is not reliable such as the ACF

in Table 3, the DPF and the RJMCMC handle it better than

the Hierarchy, i.e., have better filtering capabilities.

Tracker-Detector MOTA MOTP TP FP FN Idsw

DPF-ACF .54 / .01 .53 / .00 .87 / .01 .34 / .11 .09 / .01 76.3 / 7.8

Hierarchy-ACF .88 / .00 .68 / .00 .93 / .00 .05 / .00 .05 / .00 79.1 / 0.0

RJMCMC-ACF .73 / .03 .65 / .00 .83 / .02 .10 / .02 .16 / .02 59.0 / 19.6

DPF-DPM .68 / .01 .53 / .01 .77 / .01 .09 / .01 .21 / .01 55.9 / 12.0

Hierarchy-DPM .86 / .00 .70 / .00 .90 / .00 .04 / .00 .09 / .00 55.8 / 0.0

RJMCMC-DPM .61 / .01 .59 / .00 .62 / .01 .01 / .01 .37 / .01 49.8 / 8.8

DPF-HOG .52 / .01 .30 / .00 .81 / .04 .25 / .01 .17 / .03 12.1 / 2.6

Hierarchy-HOG .88 / .00 .65 / .00 .92 / .00 .04 / .00 .08 / .00 37.2 / 0.0

RJMCMC-HOG .54 / .03 .46 / .01 .61 / .01 .07 / .02 .31 / .01 56.8 / 6.1

Table 4: CLEAR-MOT results on the PETSS2L1 dataset. All re-

sults reported as µ/σ computed over five runs.

Table 4 details the results obtained on the PETS2L1

dataset. In this dataset, all detectors provided high detec-

tion and precision rates. Accordingly, an 88% MOTA is

acquired with the Hierarchy-HOG tracker. The maximum

intra-detector MOTA variation with the Hierarchy based

trackers is approximately 2%. In this case, the Hierarchy

combined with any of the detectors shows better accuracy

and precision compared to the other trackers. The worst

result, an accuracy of 52% is obtained with DPF-HOG.

Hierarchy DPF RJMCMC

ACF DPM HOG-SVM ACF DPM HOG-SVM ACF DPM HOG-SVM

MOTA .23/.69 .67/.25 .50/.33 .18/.32 .65/.05 .29/.20 .35/.37 .56/.16 .40/.21

Average .45/.45 .38/.29 .42/.22

Table 5: MOTA of tracker-detector combination averaged over the

different datasets. Results are reported as µ/σ. The overall aver-
age MOTA is also indicated for each tracker variant.

Dataset MOTA ID Switch (average count)

Hierarchy DPF RJMCMC Hierarchy DPF RJMCMC

EnterExit .43/.28 .38/.25 .45/.12 9.7/7.3 11.5/8.3 16.2/14.8

OneShop .06/.49 .15/.41 .19/.20 110.9/79.2 12.0/5.2 41.9/29.9

PETSS2L1 .87/.01 .59/.07 .63/.10 57.4/21.0 48.1/31.0 52.7/9.7

Table 6: Average MOTA and ID switch counts of the differ-

ent trackers (averaged over detector combinations) on the three

datasets. Results are reported as µ/σ.

For better analysis, we report two summarized results

in tables 5 and 6. Table 5 reports the µ/σ of the MOTA

obtained by the tracker-detector combination across the

three datasets and the overall average MOTA, across dataset

and detector. Clearly, the best result is obtained using

the Hierarchy based trackers. When combined with DPM,

Hierarchy-DPM, this leads to an average 67%MOTA across

all the datasets. This result is trailed by the RJMCMC, and

then the DPF. Similarly, table 6 details the average MOTA

and Id switch average across the different detectors on each

dataset. On the EnterExit and OneShop dataset, the RJM-

CMC on average does better than the rest, whereas on the



PETSS2L1, the Hierarchy based tracker does better. In

terms of Id switch, the DPF does better on the OneShop

and PETSS2L1 datasets, whereas the Hierarchy on average

does better on the EnterExit dataset.

4. Discussions

As we can see in Tables 2, 3 and 4, the Hierarchy tracker

has the best results in two out of three datasets. Its per-

formance varies with the associated detector. Indeed, when

a detector has a high precision/recall ratio (in a sequence)

compared to the others, the Hierarchy tracker will get a bet-

ter accuracy when combined with it than with the others.

Therefore, even with a complex target representation model,

the Hierarchy tracker is only showing improvements when

combined with a reliable detector. Meanwhile, if the per-

formance of two detectors are comparable, the accuracy of

this tracker will not be affected much. The opposite is also

true as the results of the tracker changes significantly with

high variation in the detector performance. Moreover for

the Hierarchy tracker, it can be inferred from tables 5 and 1,

the average MOTA across datasets exhibits a 45% standard

deviation with only, on average, a 6.8% and 11.1% standard

deviation in detector recall and precision respectively.

The RJMCMC tracker is overall the second best filter

behind the Hierarchy as it has the best results on one over

three datasets. Even with its simple target representation

(compared to the others) it is more resilient to the detector

performance variation – better filtering capabilities. This is

due to its target interaction model which seems more rele-

vant and leads to better results (seven out of nine tests com-

pared with the particle filter). In fact, as we can see in Table

5, it has 11% better average MOTA than the DPF. Besides,

when the detector performance deteriorates, the RJMCMC

has an accuracy higher than the Hierarchy filter (three out

of five cases). The DPM has the best accuracy in two out

of nine test cases which rates it behind the two other filters.

These results are justified by the fact that the particle filter

has a simple target representation and no target interaction

model. Moreover, it has a better accuracy variation than the

Hierarchy filter across the detector performance change and

across the dataset change.

MOTP is also affected by the utilized detector. Indeed, a

higher precision of the detector in a given sequence will in-

crease the ones of the trackers’. We can notice that the DPM

has the best precision, followed by the ACF and finally the

HOG-SVM. Actually, the HOG-SVM has a fixed bounding

box scale ratio which lowers its precision as we can see in

Tables 2, 3 and 4. In addition, Table 6 show that the DPF is

the best in terms of Id switches followed by the RJMCMC

and the Hierarchy tracker. If the particle filter is the best,

it is because it creates less tracks than the other two filters

which helps it have less Id switches. Moreover, even though

the Hierarchy tracker has a more complex target representa-

tion, the target interaction model puts the RJMCMC in front

the Hierarchy tracker in terms of Id switches.

5. Conclusions and future works

In this work, we have evaluated three ‘tracking-by-

detection’ approaches with three different detector combi-

nations on three public datasets. The results show that

the overall performance depends on how challenging the

dataset is, the performance of the detector on the specific

dataset, and the tracker-detector combination. The choice of

the exact detector to use in ‘tracking-by-detection’ should

be carefully investigated, and if possible verified on a vali-

dation set before plugging into a tracker as state-of-the-art

detector does not necessary lead to better detection perfor-

mance (ACF vs DPM). A tracker using a rich target repre-

sentation model, as in the Hierarchy, a precise detector, as

in DPM, and utilizing an interaction model, as in the RJM-

CMC, will perform significantly better across datasets of

varying challenges.

As a future work, we aspire to broaden the evaluation

to incorporate more ‘tracking-by-detection’ approaches and

more public datasets. In addition, further investigations

would be oriented in coupling the RJMCMC with rich tar-

get representation model inspired from the many trackers

highlighted in [11].
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