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Abstract

This article is devoted to analyze some ambiguities coming from a class
of sediment transport models. The models under consideration are gov-
erned by the coupling between the shallow-water and the Exner equations.
Since the PDE system turns out to be an hyperbolic system in non conser-
vative form, ambiguities may occur as soon as the solution contains shock
waves. To enforce a unique definition of the discontinuous solutions, we
adopt the path-theory introduced by Dal Maso, LeFLoch and Murat [17].
According to the path choices, we exhibit several shock definitions and
we prove that a shock with a constant propagation speed and a given left
state may connect an arbitrary right state. As a consequence, additional
assumptions (coming from physical considerations or other arguments)
must be chosen to enforce a unique definition. Moreover, we show that
numerical ambiguities may still exist even when such a choice is made.

1 Introduction

The numerical simulation of sediment transport is essential in many applica-
tions. Indeed, a river flow may carry wide volumes of gravels that seriously
modify the river bed. As a consequence, the impact of the sediments trans-
port often cannot be neglected when simulating river flows. For instance, water
intakes of some industrial installations may be disturbed by bed river modi-
fications or sediment depositions. Recent sediment transport tools have been
derived to perform numerical simulations for bedload. In general, they are based
on a suitable coupling between a solid phase model which governs the evolution
of the river bed, and a shallow-water model to describe the river flow.

In the present work, we adopt the Exner model [20] to approximate the solid
phase. The Exner equation is derived by considering the mass conservation of
the solid in the interaction with the river flow. Neglecting dynamical effects,
the Exner equation reads:

∂tz + ∂xQ(h, u) = 0, (1)

where h > 0 is the water height, u is the height-averaged water speed and z is the
height of the river bed. Here, the empirical bedload function Q is a function of h
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and u, which is related to the friction between the water and the sediment that
forms the river bed. In practice, many forms of Q are used depending on the
physical setup of the considered problem. The reader is referred to [18, 19, 29, 7]
where several bedload formulas are detailed. In this paper, we adopt two distinct
bedload functions which are quite representative of the different forms of Q
generally considered for physical simulations. The first one is the simple Grass
law [23]:

Q(h, u) = εu3, (2)

and the other one, based on the computation of bed stress, was proposed by
Nielsen [30]:

Q(h, u) =
εu

h
1
6

(
u2

h
1
3

− τc

)
+

. (3)

In both cases, ε and τc are (usually small) positive parameters and x+ =
max(0, x).

The full Exner model is then obtained by coupling the Exner equation (1)
to the shallow-water model for taking into account the topography’s variations.
This full Exner model therefore reads as follows:

∂th+ ∂xhu = 0, (4)

∂thu+ ∂x
(
hu2 + g

h2

2

)
+gh∂xz = 0, (5)

∂tz + ∂xQ(h, u) = 0, (6)

where g > 0 denotes the gravity constant.
To shorten the notations, let us rewrite the system (4)-(5)-(6) in the following

condensed form:
∂tW + ∂xF (W ) +G(W )∂xW = 0,

where we have set:

W =

 h
hu
z

 , F (W ) =

 hu

hu2 + g h2

2
Q(h, u)

 , G(W ) =

0 0 0
0 0 gh
0 0 0

 . (7)

The state vector W is assumed to take values in a convex and open domain Ω
defined by

Ω = {(h, hu, z) ∈ R3; h > 0}. (8)

Let us underline that dry areas are not considered in the present work.
Let us note that the hyperbolicity of the system (4)-(5)-(6) stays an open

problem for general forms of the functionQ including (3). In [16], the system (4)-
(5)-(6) is proved to be strictly hyperbolic when the bedload function is given by
the Grass model (2). A sufficient condition for hyperbolicity was also exhibited
in [16]. This condition becomes |u| > 6

√
gh for Nielsen’s model but as underlined

in [7], the phase state space is certainly larger and no loss of hyperbolicity was
reached in simulations, even in extreme configurations.
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Since the models under consideration are hyperbolic, the solution may de-
velop discontinuities in a finite time independently from the smoothness of the
initial data. As soon as the system of PDEs writes in conservative form, discon-
tinuous solutions are well understood in a weak sense (for instance see [24, 28])
and the propagation of discontinuities is governed by the well-known Rankine-
Hugoniot relations.

Unfortunately, the system (4)-(5)-(6) never recasts in conservative form and
a weak interpretation of the solutions cannot be obtained. As widely studied [17,
33, 35, 3], nonconservative products imply ambiguities to define discontinuous
solutions. To be more precise, the classical Rankine-Hugoniot relations may no
longer be used whenever nonconservative products are involved.

Our main concern in this work is to analyze the impact of the nonconserva-
tive term gh∂xz that appears in (5) since it is a priori not well defined across
shocks. Since these products cannot be uniquely defined without additional
assumptions, we exhibit the consequences issuing from the lack of a suitable
condition for the well-definedness of the nonconservative form of (4)-(5)-(6).
Several definitions have been proposed to overcome this ambiguity (see for ex-
ample [14, 35, 17]). Among them, the theory of Dal Maso, LeFloch and Murat
[17] is stable and flexible enough to be used in the numerical context, and to
define adapted schemes (see for instance [32, 31, 8]).

The loss of uniqueness implied by nonconservative products is all the more
problematic in the numerical context since, in general, it is impossible to predict
the behavior of the schemes in shocks. Put in other words, the shocks’ numerical
behavior is distinct from the expected one according to the theory of Dal Maso,
LeFloch, Murat (DLM). This failure has been underlined in several contexts
[1, 15, 26]. Even though several techniques have been developed to properly
take nonconservative terms into account (see for example [32, 22, 2, 4]), it has
been shown in [9] that there are still problems at least in several contexts. In
fact, other numerical approaches have been recently introduced to capture the
required approximate shock waves, based on viscous profiles regularization [4, 5,
6] or kinetic relations [11, 12], which are not available (or prescribed by physics)
for the Exner model (4)-(5)-(6). It is worth noticing that numerous recent
works still propose or apply numerical schemes for exner models to simulate
flows containing shock waves without addressing this issue.

Furthermore, Exner’s model has become very popular for the simulation of
complex flows involving moving bed and sediment transport. These sophisti-
cated simulations generally include shock discontinuities and our goal is here to
illustrate the failure coming from the nonconservative form of the model. The
objective of the paper is twofold. On the one hand, we prove that the lack of an
additional assumption to describe the shock waves makes the set of admissible
discontinuous solutions very large. Formally, almost any discontinuity can be
arbitrarily chosen according to a suitable shock definition. On the other hand,
we show that the numerical schemes similarly fail. Given an initial discontinu-
ous data, different schemes will capture distinct shock solutions. To conclude,
we establish that shock ambiguity is a drastic failure from both analytical and
numerical point of view.
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This article is organized as follows. First, the theory of Dal Maso, LeFloch
and Murat is recalled and used in the context of the Exner model. In particular,
we show several choices of paths which enlighten on the variety of possible
definitions for the nonconservative product gh∂xz. Next, the Hugoniot curves
for shocks are considered in the case of both Grass and Nielsen forms ofQ. Their
full expressions are exhibited in the case where the left-state speed uL = 0, which
includes the dam-break problem. Then, several numerical schemes adapted to
nonconservative terms are considered. After a short presentation of each of them
(including an original one), they are benchmarked over dam-break problems.

2 Definition of nonconservative products

In this section, we adopt the theory of Dal Maso, LeFloch and Murat (DLM)
[17] to fully characterize shock discontinuities. Our objective is to describe
the Hugoniot curves for the Exner model (4)-(5)-(6) according to a fixed path
definition. First, the definition of nonconservative products by the DLM theory
is recalled. This approach is based on a path definition to be fixed. Several
examples are enlightened to show the diversity of the possible definitions and
the consequences issuing from this diversity.

2.1 Resolution of the non-uniqueness: choice of paths

Let us first recall the DLM theory. We consider terms which write under the
nonconservative form G(W )∂xW , where G is a smooth function. If G is the
gradient of some function F , namely G(W ) = ∇WF (W ), then G(W )∂xW =
∂xF (W ) is always defined in the sense of distributions as soon asW is a bounded
measurable function.

Otherwise, such a nonconservative product cannot be uniquely defined with-
out additional assumptions. Several definitions were proposed (see for instance
[14, 35, 17]). One way to obtain a unique definition was introduced by Dal Maso,
LeFloch and Murat in [17]. This technique generalizes the definition of Volpert
[35] and provides a stable definition of nonconservative products associated to a
choice of path Φ. From now on, let us mention that the prescription of a given
path Φ will yield to a unique definition of the nonconservative product.

Definition 2.1. Let Ω be a convex and connex subset of RN . A path in Ω is a
local-Lipschitz application

Φ : [0, 1]× Ω× Ω → Ω,

which satisfies the following properties:

1. ∀(WL,WR) ∈ Ω2, Φ(0,WL,WR) = WL and Φ(1,WL,WR) = WR.

2. ∀W ∈ Ω, ∀ξ ∈ [0, 1], Φ(ξ,W,W ) = W .

4



3. For every bounded set O ∈ Ω, ∃K ∈ R such that ∀(W 1
L,W

2
L,W

1
R,W

2
R) ∈

O4 and for almost all ξ ∈ [0, 1]:∥∥∥∂Φ
∂ξ

(ξ,W 2
L,W

2
R)−

∂Φ

∂ξ
(ξ,W 1

L,W
1
R)

∥∥∥≤ K(‖W 2
L −W 1

L‖+ ‖W 2
R −W 1

R‖).

Once a path Φ is chosen, the nonconservative product is given a sense as a
Borel measure. Indeed, if W ∈ BV ((a, b),Ω) and G a locally bounded Borel
function then the nonconservative product of G(W ) by ∂xW is denoted[

G(W )∂xW
]
Φ
= µ,

where the Borel measure µ is characterized by the two following properties:

• If W is continuous on B then:

µ(B) =

∫
B

G(W (x))∂xW (x)dx,

• If W is discontinuous at point x0 ∈ (a, b) where W (x−
0 ) 6= W (x+

0 ), then:

µ({x0}) =
∫ 1

0

G
(
Φ(ξ,W (x−

0 ),W (x+
0 ))

)∂Φ
∂ξ

(
ξ,W (x−

0 ),W (x+
0 )

)
dξ.

with the notations limx−
0
W := W (x−

0 ) and limx+
0
W := W (x+

0 ),

In the case of the Exner model, the variables are W = (h, hu, z)> and the
nonconservative product follows from:

G(W ) =

0 0 0
0 0 gh
0 0 0

 .

Therefore if we denote Φ = (Φh,Φhu,Φz)
>, the nonconservative term h∂xz is

defined around a discontinuity connecting the states WL and WR by a Dirac
mass multiplied by:

[
h∂xz

]
Φ
=

∫ 1

0

Φh(ξ,WL,WR)
∂Φz

∂ξ
(ξ,WL,WR)dξ. (9)

Formally, we will see later that this definition may be viewed as a product of
an average of h by the jump of z. As a consequence, for the sake of simplicity
in the notations, we set: [

h∂xz
]
Φ
=: h̄[z], (10)

where [z] = (zR − zL) is the jump of z and h̄ an average of the water depth to
be defined.

Let us point out that, in general, the average h may be very sophisticated
and may depend on z. Several examples will be given in the next section. With
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these notations, the associated generalized Rankine-Hugoniot relations issuing
from (4)-(5)-(6) then write:

−σ[h] + [hu] = 0, (11)

−σ[hu] +
[
hu2 + g

h2

2

]
+ gh[z] = 0, (12)

−σ[z] + [Q(u)] = 0, (13)

where σ denotes the shock wave velocity.
To conclude this brief presentation of the DLM theory, let us emphasize

that the above definition of path may be extended to weaker hypothesis (see for
instance [27]) but it is not the purpose of the present work.

2.2 Examples of paths

The most common choice of path is the straight line given by:

Φ(ξ,WL,WR) = WL + ξ(WR −WL).

This path corresponds to Volpert’s definition of nonconservative products (see
[35]). With this choice, we get:

[
h∂xz

]
Φ
=

∫ 1

0

(hL + ξ(hR − hL))(zR − zL)dξ,

=
hL + hR

2
(zR − zL),

so that the h term in (10) is simply h = hL+hR

2 , which is nothing but the
arithmetic mean value.

In fact, adopting more complex path definitions may give very sophisticated
averages h̄ eventually depending on the other unknowns. For example, let us
suggest the following definition of Φ:

Φ(ξ,WL,WR) =

 hL + ξ(hR − hL)
(hu)L + ξ

(
(hu)R − (hu)L

)
zL + ξ(zR − zL) + ξ(1− ξ) sin(zR − zL)

 , (14)

to easily get the following mean value for h:

h =
hR + hL

2
− 1

6

sin(zR − zL)

zR − zL
(hR − hL).

It is worth noticing that the above path (14) implies that one may select
a path for which h does not belong to the interval [min(hL, hR),max(hL, hR)],
which was already mentioned in [17].

Indeed, we now state that it is also possible to select h as any positive mean
value of hL and hR through an appropriate choice of path.
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Lemma 2.1. For any admissible WL and WR such that hR 6= hL and any
h? ∈ R+

? , there exists a path Φ such that the jump in a discontinuity connecting
WL to WR satisfies: [

h∂xz
]
Φ
= h?[z].

At this level, it is crucial to notice that the above parameter h? > 0 is
independent from both left and right states, WL and WR. This means that the
definition of the nonconservative product (or equivalently the path definition)
may drastically modify the Hugoniot curves as described in the next section.

Proof. Let WL and WR be two admissible states such that hR 6= hL. In order
to simplify the notations, and without loss of generality, we will assume that
hR > hL.

For a and γ ∈ (0, 1) two parameters to be precised later, we introduce the
continuous function:

f(ξ) =


a

γ
ξ, if ξ ∈ (0, γ),

a if ξ ∈ (γ, 1− γ),

1− 1− a

γ
(1− ξ) if ξ ∈ (1− γ, 1),

and select the following path:

Φ(WL,WR, ξ) =

 hL + f(ξ)(hR − hL)
(hu)L + ξ((hu)R − (hu)L)

zL + ξ(zR − zL)

 (15)

This path is admissible in the sense of Dal Maso, LeFloch and Murat as soon as
∀ξ ∈ (0, 1), hL + f(ξ)(hR −hL) > 0 which is equivalent to hL + a(hR −hL) > 0
since hL and hR are positive. Furthermore, we have:∫ 1

0

Φh(WL,WR, ξ)
∂Φz

∂ξ
(WL,WR, ξ)dξ

=

∫ 1

0

(
hL + f(ξ)(hR − hL)

)
(zR − zL)dξ,

=
(
hL + (

γ

2
+ a(1− γ))(hR − hL)

)
(zR − zL).

As a consequence, by involving the path (15), the nonconservative product
[h∂xz]Φ reads as (10) where h is defined by:

h = hL +
(γ
2
+ a(1− γ)

)
(hR − hL), (16)

with γ in (0, 1) and hL + a(hR − hL) > 0.
Now, let us exhibit values of the parameters a and γ which allow to recover

the expected choice h = h?. Indeed, we propose:

γ =
1

2
min

(
1,

h?

(hL + hR)/2

)
, a =

y − γ
2

1− γ
,
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where we have set:

y =
h? − hL

hR − hL
.

To conclude the proof, we have to verify that h = h?, γ stays in (0, 1) and
hL + a(hR − hL) > 0.

By definition of h, given by (16), the adopted choice of a immediately imposes
h = h?. Next, since h? is positive, the definition of γ easily ensures 0 < γ < 1.

Finally, we have:

hL + a(hR − hL) =
1

1− γ

(
h?

(hL + hR)/2
− γ

)
hL + hR

2
.

By involving the definition of γ, we directly obtain the required positiveness of
hL + a(hR − hL) and the proof is achieved.

Let us remark that nothing prevents for using very complicated paths. For
instance, one can choose the a coefficient in the proof of lemma 2.1 as a (positive
and uniformly bounded) function of WL and WR.

To conclude this section, let us underline that the choice of a path is of
prime interest to derive some numerical schemes. For instance, in [34], Roe
proposed to compute averages as mean values along a well-chosen path. In fact,
it is possible to choose paths which are both admissible in the sense of Dal
Maso, LeFloch and Murat and suitable to the construction of a Roe scheme.
This idea is the basis of path-consistent schemes (see [32] and the description
in the following section). In this context of Roe schemes, it is usual to select
the straight line path after a suitable change of variables. For instance, using
the change of variables U = (

√
h,

√
hu, z) and the straight line path for U , we

obtain: h = (hL +
√
hLhR + hR)/3. This time, h is a mean value of hL and hR

but is not a weighted average.

Remark 2.1. As previously mentioned, the choice of path may be related to
some physical considerations when they are available. For example, many people
consider the straight line path since it is the natural choice to preserve the lake-
at-rest (h + z constant). Obviously, such a physical property may turn out to
be unnatural since it eventually allows strong discontinuities in z which won’t
occur for several types of sediments.
Anyway, even when a physical argument imposes the path, we will see in the
last section that the numerical difficulty remains.

3 Hugoniot curves for the Grass model

In this paragraph, the Hugoniot curves resulting from the DLM definition of
nonconservative products are analyzed in order to characterize the shock solu-
tions inside the phase space (8). More precisely, given a left state WL ∈ Ω, we
consider all the right states WR ∈ Ω, which can be connected to WL by a shock
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wave. According to the above path definition, we will see that the Hugoniot
curve will depend on Φ. Invoking the variety of paths issuing from Lemma 2.1,
we will obtain very distinct Hugoniot curves for different path choices.

Here, the Grass model, defined by Q(u) = εu3 with ε > 0, is adopted. Using
this form of bedload function Q in the generalized Rankine-Hugoniot relations
(11)-(12)-(13), we get:

−σ[h] + [hu] = 0, (17)

−σ[hu] +
[
hu2 + g

h2

2

]
+ gh[z] = 0, (18)

−σ[z] + [εu3] = 0. (19)

As a first step, let us point out that no stationary discontinuity may occur.
Indeed, assuming σ = 0, from (17), we get [hu] = 0. Next, from (19), it comes
[u] = 0, which immediately implies, from [hu] = 0, that [h] = 0. Finally, we
deduce from (18) that [z] = 0. Therefore, there is no shock with σ = 0.

Let us also remark that if [h] = 0 then (17) gives [u] = 0, which implies
that [z] = 0 from (19). Therefore, there is no discontinuous solution as long
as [h] = 0. Similar arguments allow to conclude that there is no discontinuous
solution if [hu] = 0. Since we are only interested in non-trivial shocks, we
assume σ 6= 0, [h] 6= 0 and [hu] 6= 0. Now, we are able to exhibit σ from (17) as
follows:

σ =
[hu]

[h]
.

Inserting the above expression of σ in (19) and since [hu] 6= 0 in shocks we get:

[z] =
[εu3][h]

[hu]
. (20)

Then, replacing the above expressions of [z] and σ within (18), we obtain:

0 = − [hu]2

[h]
+ [hu2 + g

h2

2
] + gh

[εu3][h]

[hu]
,

which easily rewrites:

0 = [h][hu][hu2] + g[
h2

2
][h][hu] + gh[h]2[εu3]− [hu]3. (21)

This last relation is a third order polynomial in u which roots will define
the Hugoniot curves in the space (h, u, z). In the general case, these roots have
cumbersome values but interestingly, there is a simplification as soon as uL = 0.
Indeed, by involving a vanishing left velocity, the relation (21) reads:

(
−h2hL + gεh(h− hL)

2
)
u3 + g

hL + h

2
h(h− hL)

2u = 0. (22)
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Now, for the sake of simplicity, we assume that the average parameter h only
depends on the water height, i.e. h := h(hL, h). Then, as soon as:

h < h0 with h0 =
hLh

2

gε(h− hL)2
,

the velocity roots, coming from the relation (22), are simply given by:

u =


0,

±(h− hL)

√
gh(hL + h)

2(hLh2 − gεh(h− hL)2)
.

(23)

As a consequence, from (20) and (23), we have defined three curves parametrized
by h in the phase space (h, u, z) as follows:

C1
WL

=
{
(h, u, z) ∈ R3; h > 0;u = −Ψ(WL); z = zL + εu2h− hL

h
, h < h0

}
,

C2
WL

=
{
(h, u, z) ∈ R3; h = hL, u = 0, z = zL

}
,

C3
WL

=
{
(h, u, z) ∈ R3; h > 0;u = Ψ(WL); z = zL + εu2h− hL

h
, h < h0

}
,

(24)
where we have set:

Ψ(WL) = (h− hL)

√
gh(hL + h)

2(hLh2 − gεh(h− hL)2)
.

As expected, these curves define the set of all possible state vectors W ∈ Ω
that can be connected to WL = (hL, 0, zL)

> by a discontinuity governed by the
generalized Rankine-Hugoniot relations (17)-(18)-(19).

From now on, let us emphasize that the curve C2
WL

just defines a trivial
stationary shock solution, which is here not of interest.

By considering the whole curves (24), it is well-known that unphysical dis-
continuities may occur. In order to rule out such non-admissible discontin-
uous solutions, we adopt the usual Lax condition [24] in a neighborhood of
WL = (hL, 0, zL)

>. Since the shock curves are described by considering prim-
itive variables U = (h, u, z)>, we first exhibit the algebraic properties coming
from (4)-(5)-(6) in a neighborhood of WL = (hL, 0, zL)

> but involving primitive
variables. The initial system (4)-(5)-(6) easily rewrites as follows:

∂tU +A(U)∂xU = 0,

where we have set

A(U) =

 u h 0
g u g

∂hQ ∂uQ 0

 . (25)

With UL = (hL, 0, zL)
> and since ∂hQ(hL, 0) = ∂uQ(hL, 0) = 0, the ma-

trix A(UL) admits three eigenvalues given by λ1 = −
√
ghL, λ2 = 0 and
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λ3 =
√
ghL. The associated right eigenvectors are respectively defined by

r1 = (1,
√

g/hL, 0)
>, r2 = (1, 0,−1)> and r3 = (1,−

√
g/hL, 0)

>. Using Lax
condition in the vicinity of WL = (hL, 0, zL)

>, we immediately deduce that the
admissible shock curves associated to a left state at rest are defined by:

S1
WL

=
{
(h, u, z) ∈ R3; h ≥ hL;u = −Ψ(WL); z = zL + εu2h− hL

h
, h < h0

}
,

(26)

S2
WL

=
{
(h, u, z) ∈ R3; h = hL, u = 0, z = zL

}
, (27)

S3
WL

=
{
(h, u, z) ∈ R3; 0 < h ≤ hL;u = Ψ(WL); z = zL + εu2h− hL

h
, h < h0

}
.

(28)

The shock curves for 1-shocks and 3-shocks obviously depend on the choice
of h, or equivalently on the choice of the path that defines the nonconservative
products. In the following statement, we investigate the variety of shock curves
obtained from different values of h (according to Lemma 2.1).

Theorem 3.1. Assume that WL = (hL, 0, zL)
> is given in Ω. Let ε > 0 and

W = (h, hu, z)> be given in Ω such that:

z = zL + εu2h− hL

h
.

Assume h > hL (resp. 0 < h < hL) then there exists h < h0 such that both
states WL and W are connected by a 1-shock (resp. a 3-shock) for all u <

−(h− hL)

√
g(h+ hL)

2hhL
(resp. u > (h− hL)

√
g(h+ hL)

2hhL
).

Proof. Here, we just establish the result for a 1-shock since the proof for a 3-
shock follows the same arguments. Let h > hL be given, then from (26) the
right velocity, such that the states WL and W are connected by a 1-shock, is
given by:

u(h) = −(h− hL)

√
gh(hL + h)

2(hLh2 − gεh(h− hL)2)

with h < h0.
Now, we easily have:

∂u

∂h
(h) = −

√
h(h+ hL)

2
√
2ε(h0 − h)

√
h0 − h

< 0, ∀h < h0.

Moreover, the following limits are directly obtained:

lim
h→h0

u(h) = −∞

lim
h→0

u(h) = −(h− hL)

√
g(h+ hL)

2hhL
.

11



As a consequence, for all given u < −(h− hL)

√
g(h+ hL)

2hhL
, there exists h < h0

such that the state vector U = (h, u, z) belongs to the 1-shock curve. The proof
is thus achieved.
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Figure 1: Hugoniot curves from the left state WL = (1, 0, 1)> for a 1-shock
in the Exner-Grass model: u as a function of h with h = αhL + (1 − α)h for
α ∈ [0, 1].

To illustrate our purpose, Figure 1 shows the Hugoniot curves coming from
a 1-shock with hL = 1 and ε = 0.06. We have imposed h as a mean value
between hL and h:

h = αhL + (1− α)h with α ∈ [0, 1],

so that Volpert definition of h corresponds to α = 1/2. We just recall that
this average definition of h can be deduced from the path (15) to get (16) as h
definition, which is nothing but the imposed h formula.

Even with these reasonable choice of h, one can see that there may be im-
portant discrepancies between the possible solutions.

4 Nielsen model

We turn considering the Nielsen model where the bedload function is defined
by:

Q(u) =
εu

h
1
6

( u2

h
1
3

− τc

)
+
,

12



where ε > 0 and τc > 0 are given parameters and x+ = max(x, 0).
Using this form of Q, the Rankine-Hugoniot relations now read:

−σ[h] + [hu] = 0, (29)

−σ[hu] +
[
hu2 + g

h2

2

]
+ gh[z] = 0, (30)

−σ[z] +
[ εu
h

1
6

( u2

h
1
3

− τc

)
+

]
= 0. (31)

First, let us notice that no discontinuous solution occurs as soon as [h] = 0.
Indeed, from (29), we get [u] = 0 and then (30) implies [z] = 0. Since we
exclude trivial shock solutions, we assume [h] 6= 0.

The main difficulty comes from the definition of the bedload function, which
does not define a bijection. As a consequence, non-trivial discontinuous solutions
may satisfy [hu] = 0 or σ = 0. In fact, this problem can be solved by considering
a left state WL = (hL, 0, zL)

> ∈ Ω. Indeed, as soon as uL = 0, the Rankine-
Hugoniot relations read:

−σ[h] + hu = 0, (32)

−σhu+ hu2 +
[
g
h2

2

]
+ gh[z] = 0, (33)

−σ[z] +
εu

h
1
6

( u2

h
1
3

− τc

)
+
= 0. (34)

Now, let us assume hu = 0. Since no dry areas are here considered, we have
h > 0 and then u = 0. As a consequence, (34) implies [z] = 0 and next, (33)
gives [h] = 0. Then the solution stays continuous as soon as hu = 0.

In the same way, if we impose σ = 0, from (32) we get hu = 0 and once
again no discontinuity appears.

As long as we study non-trivial discontinuous solutions issuing from a left
state where uL = 0, we now assume σ 6= 0, u 6= 0 and [h] 6= 0. As a consequence,
we can deduce from (32) and (34):

σ =
hu

[h]
and z = zL + ε

[h]

h7/6

(
u2

h1/3
− τc

)
+

. (35)

By substituting the above relations satisfied by [z] and σ within (33), we get:

g
h+ hL

2
(h− hL)

2hu+ gh(h− hL)
2 εu

h1/6

(
u2

h1/3
− τc

)
+

− hLh
2u3 = 0. (36)

Let us assume that h does not depend on h and hL so that the above equation
is easily solved to define u as a function of h. Indeed, as soon as h ∈ (0, hm) ∪
(hM ,+∞) where we have set:

ha =
h

5
2hL

εg(h− hL)2
, hb =

h
7
6 (h+ hL)

2ετc
,

hm = min(ha, hb), hM = max(ha, hb),

(37)

13



the velocity solution reads:
if u2 ≥ h1/3τc:

u =



− (h− hL)

√
g
2εhτch

1
3 − h

3
2 (h+ hL)

2εgh(h− hL)2 − 2h
5
2hL

,

0,

(h− hL)

√
g
2εhτch

1
3 − h

3
2 (h+ hL)

2εgh(h− hL)2 − 2h
5
2hL

,

if u2 < h1/3τc:

u =



− (h− hL)

√
g(hL + h)

2hhL
,

0,

(h− hL)

√
g(hL + h)

2hhL
,

To simplify the notations, we introduce the two following functions:

U+(h) =


(h− hL)

√
g
2εhτch

1
3 − h

3
2 (h+ hL)

2εgh(h− hL)2 − 2h
5
2hL

if U+(h)2 ≥ h1/3τc,

(h− hL)

√
g(hL + h)

2hhL
otherwise,

(38)

U+(h) =


−(h− hL)

√
g
2εhτch

1
3 − h

3
2 (h+ hL)

2εgh(h− hL)2 − 2h
5
2hL

if U+(h)2 ≥ h1/3τc,

−(h− hL)

√
g(hL + h)

2hhL
otherwise.

(39)

By involving these notations, the solutions of (36) now writes:

u =


U+(h),

0,

U−(h).

In addition, we set:

Z±(h) =

 zL + ε
h− hL

h7/6

(
U±(h)2

h1/3
− τc

)
+

if U±(h)2 ≥ h1/3,

zL otherwise,

(40)

so that, we note that z = Z±(h) satisfies the jump condition (35).

14



From these definitions we define three continuous curves as follows:

C1
WL

=
{
(h, u, z)> ∈ R3; h > 0, u = U−(h), z = Z−(h), h ∈ (0, hm) ∪ (hM ,+∞)

}
,

C2
WL

=
{
(h, u, z)> ∈ R3; h = hL, u = 0, z = zL

}
,

C3
WL

=
{
(h, u, z)> ∈ R3; h > 0, u = U+(h), z = Z+(h), h ∈ (0, hm) ∪ (hM ,+∞)

}
.

These curves define all the states that can be connected to WL = (hL, 0, zL) by
a discontinuity according to the generalized Rankine-Hugoniot relations (32)-
(33)-(34). In order to select the admissible part of the curves, we once again
adopt the Lax criterion. Hence, we give the algebra satisfied by the matrix
A(UL) defined by (25). Let us note that:

∂Q
∂u

(h, u) =


0 if u2 < h1/3τc,

ε

h1/6

(
3

u2

h1/3
− τc

)
otherwise.

As a consequence, since dry areas are not considered here, we have Q(h, 0) = 0

and
∂Q
∂u

(h, 0) =
∂Q
∂h

(h, 0) = 0. We thus recover the matrix A(U) defined by (25)

with the same algebraic properties. Then the admissible shock curves coming
from a state at rest are defined as follows:

S1
WL

=
{
(h, u, z)> ∈ R3; h ≥ hL, u = U−(h), z = Z−(h), h ∈ (0, hm) ∪ (hM ,+∞)

}
,

(41)

S2
WL

=
{
(h, u, z)> ∈ R3; h = hL, u = 0, z = zL

}
, (42)

S3
WL

=
{
(h, u, z)> ∈ R3; 0 < h ≤ hL, u = U+(h), z = Z+(h), h ∈ (0, hm) ∪ (hM ,+∞)

}
.

(43)

Now, we study for the behavior of the above shock curves S1
WL

and S3
WL

according

to the definition of h, or equivalently according to the non-conservative product
path definition. Since each shock curve is made of two branches, we first analyze
the junction, arising as soon as u2 = h1/3τc, of the two parts of the shock curve.

Lemma 4.1. Assume h 6= ha, where ha is defined by (37). There exists a

unique h? > hL (resp. h? < hL) such that U−(h?)
2 = h

1
3
? τc where U− is defined

by (39) (resp. U+(h?)
2 = h

1
3
? τc where U+ is defined by (38)). Furthermore, in

all cases, h? does not depend on the choice of h.

Proof. By involving the definition of U±, given by (38) and (39), we have:

U±(h)2 − h
1
3 τc =

K(h)N(h)

D(h)
,
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where we have set:

K(h) =

{
−h

3
2 if U±(h)2 ≥ h1/3τc,

1 otherwise,

N(h) = −2h
4
3hLτc + g(h− hL)

2(h+ hL),

D(h) =

{
2εgh(h− hL)

2 − 2h1/5hL, if U±(h)2 ≥ h1/3τc,

2hhL, otherwise.

Therefore, we remark that U±(h)2 = h
1
3 τc holds either if h = 0 or N(h) = 0.

Since h = 0 does not define an admissible state, we now consider the roots of
N(h) = 0.

Introducing the change of variables η = h
1
3 , we obtain

N(h) = N (η) = η9 − hLη
6 − 2

τc
g
hLη

4 − h2
Lη

3 + h3
L. (44)

Straightforward computations give:

N ′(η) = η2p(η),

where:
p(η) = 9η6 − 6hLη

3 − 8
τc
g
ηhL − 3h2

L.

Moreover, we easily have:

p′(η) = 54η5 − 18hLη
2 − 8

τc
g
hL,

p′′(η) = 18η(15η3 − 2hL).

The roots of p′′ are 0 and η1 = ( 2hL

15 )
1
3 , therefore p′′ < 0 if η ∈ [0, η1] and p′′ > 0

if η ∈ [η1,+∞). As a consequence, p′ is decreasing for η ∈ [0, η1] and increasing
for η ∈ [η1,+∞). Since p′(0) < 0, we immediately deduce that there exists
η2 > η1 such that p′ < 0 if η ∈ [0, η2] and p′ > 0 if η ∈ [η2,+∞). The same
arguments may be applied to p since p(0) < 0. Then there exists η3 > η2 such
that p < 0 if η ∈ [0, η3] and p > 0 if η ∈ [η3,+∞).

Finally, since N ′(η) = η2p(η), we deduce that N is decreasing if η ∈ [0, η3]

and increasing if η ∈ [η3,+∞). Now, we notice that N (h
1/3
L ) = N(hL) =

−2 τc
g h

7
3

L < 0, which implies that the equationN (η) = 0 admits a unique solution

η? > h
1/3
L . Therefore, the equation N(h) = 0 has only one root h? larger than

hL, and the proof is completed.

To conclude the presentation of the Hugoniot curves for the Nielsen model,
we now establish that a large variety of shock curves can be reached by involv-
ing suitable path definitions, or equivalently by involving suitable h definitions
according to Lemma 2.1.
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Theorem 4.1. Assume WL ∈ Ω be given such that uL = 0. Let ε > 0, τc > 0
be two given constants. Let W = (h, hu, z)> be an admissible state in Ω such
that h > hL (resp. 0 < h < hL) and z = Z−(h) (resp. z = Z+(h)) where Z±

are defined by (40).

• If h ≤ h? (resp. h ≥ h?), where h? is defined Lemma 4.1, then the 1-shock
curve (resp. the 3-shock curve) is uniquely defined independently from the
choice of h.

• If h > h? (resp. h < h?) then there exists h ∈ (0, hm) ∪ (hM ,+∞), where
hm and hM are defined by (37), such that the state WL = (hL, 0, zL)

> and
W are connected by a 1-shock (resp. a 3-shock) for all u ∈ (−∞,−h̃) ∪
(−

√
τch1/3, 0) (resp. u ∈ (0,

√
τch1/3) ∪ (h̃,+∞)) where we have set:

h̃ = (h− hL)

√
g
h+ hL

2hhL
.

Proof. We just consider 1-shock solutions. The proof turns out to be similar
considering 3-shock solutions. Across a 1-shock connecting a left state at rest,
the velocity is given by u = U−(h) where U− is given by (39). Now, by involving
the definition of h?, the function U− rewrites:

U−(h) =


− (h− hL)

√
g
2εhτch

1
3 − h

3
2 (h+ hL)

2εgh(h− hL)2 − 2h
5
2hL

, if h > h?,

− (h− hL)

√
g(hL + h)

2hhL
, otherwise.

Similarly, the topography function z is given by z = Z−(h) where Z− reads:

Z−(h) =

 zL + ε
h− hL

h7/6

(
U−(h)2

h1/3
− τc

)
+

if h > h?,

zL otherwise.

We immediately remark that u = U−(h) and z = Z−(h) are uniquely defined
(independently from h) as long as 0 < h ≤ h?.

Now, we turn considering h > h?. To characterized the 1-shock solution, we
have to study for the function U− since the definition of Z− just involves U−,
which now writes

U−(h) = −(h− hL)
√
g

√
n(h)

d(h)
,

where we have set:

n(h) = 2εhτcH
1/3 − h2/3(h+ hL),

d(h) = 2εgh(h− hL)
2 − 2h5/2hL.
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We recall that d(h) 6= 0 as long as h 6= ha where ha is given by (37), and
n(h)

d(h)
> 0 as long as h ∈ (0, hm) ∪ (hM ,+∞).

Straightforward computations yield to the following sequence of equalities:

∂hU
− = −

(h− hL)
√
g

2
√

n(h)/d(h)

∂hn(h)d(h)− n(h)∂hd(h)

d(h)2
,

= −
(h− hL)

√
gh

3
2√

n(h)/d(h)d(h)2

(
−2τchLh

4
3 + g(h− hL)

2(h+ hL)
)
,

= −
(h− hL)

√
gh

3
2N(h)√

n(h)d(h)
,

where the function N is defined by (44) and stays positive for all h > h?. As a
consequence, we get ∂hU− < 0 for all h > h?. Therefore, for h > h? fixed, U−

is a decreasing function of h ∈ (0, hm) ∪ (hM ,+∞). Moreover, An immediate
consequence of the definitions of ha and hb, defined by (37), gives for all fixed
h > h?:

lim
h→ha

U− = −∞, lim
h→hb

U− = 0.

Since for h > h?, U− is a decreasing function of h in (0,min(ha, hb))∪(max(ha, hb),+∞),
then necessarily ha < hb.

The proof directly follows from the following limits:

lim
h→0

U− = −(h− hL)

√
g
h+ hL

2hhL

and lim
h→+∞

U− = −
√
τch1/3.

To illustrate our purpose, the function U− versus h with the parameters
h = 1.5, hL = 1, τc = 1 and ε = 0.06 is shown on Figure 2. Here τc was
chosen large enough for the sake of presentation although it is usually smaller
in applications. In realistic simulations, since hb is very large, numerical schemes
are expected to involve values of h within the interval (0, ha).

In a similar fashion, Figure 3 shows the curve of a 1-shock, this time as a
function of h with hL = 1, τc = 0.05 and ε = 0.06. For this picture, h once
again was taken as a mean value between hL and h, that is h = αhL + (1−α)h
for α ∈ [0, 1], so that Volpert definition of h corresponds to α = 1/2.

As for Grass model, there are still important discrepancies between the pos-
sible solutions even with reasonable choices of parameters and h.
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Figure 2: Hugoniot curves for a 1-shock in the Exner-Nielsen model: u as a

function of h and the limit value −
√
τch

1
3 .
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Figure 3: Hugoniot curves for a 1-shock in the Exner-Nielsen model: u as a
function of h with the choice h = αhL + (1 − α)h for α =(bottom to top)
0, 0.25, 0.5, 0.75 and 1.

5 Numerical results

This section concerns four numerical techniques for taking into account noncon-
servative terms which allow to design adapted numerical schemes. That is to be
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the so-called path-consistent schemes developed by Parès and Castro [31, 32], a
scheme proposed by Ghidaglia, Kumbaro and LeCoq [22], a relaxation scheme
specifically designed for the Exner system [2] and a modified HLL scheme con-
structed for the sake of this article.

Each technique is briefly described, then they are all applied to dam-break
problems in order to investigate their behavior in shocks.

5.1 Short description of the schemes

Path-consistent scheme Path-consistent schemes were introduced in [31]
(see also [32]) and extended to take into account more complex physics (see for
instance [8]).
These schemes read as a natural extension of the well-known Roe scheme,
adapted to the nonconservative context: a suitable path is selected in order
to define the Roe matrix for the conservative part. Then, the same path is also
used for the definition of the nonconservative terms.
Indeed, Roe proposed in [34] a convenient way to obtain suitable Roe matrices
to derive the numerical scheme. It consists in selecting a path and to compute
the averages by integrating along this path. In practice, the path is often the
straight line path for a new set of variables. For instance, Roe used the change
of variables Z = ρ−

1
2W to approximate Euler equations.

The idea of Castro and Parès is to compute the Roe matrix of their numerical
schemes by using the same path that defines the nonconservative product. In
the end, the expression of the scheme is similar to any Roe scheme: first, a
suitable way to compute Roe averages, which is denoted A(W1,W2), is selected.
This Roe average has to be computed over a path which is admissible both from
the Roe and Dal Maso-LeFloch-Murat theories.

Then we note Ai+ 1
2
= A(Wn

i ,W
n
i+1). Since Ai+ 1

2
is a Roe matrix, it is

diagonalizable i.e. Ai+ 1
2
= Pi+ 1

2
Λi+ 1

2
P−1
i+ 1

2

where Λi+ 1
2
is the diagonal matrix

composed of the eigenvalues of Ai+ 1
2
. Now, setting A±

i+ 1
2

= Pi+ 1
2
Λ±
i+ 1

2

P−1
i+ 1

2

where

Λ±
i+ 1

2

=

λ±
1 0

. . .

0 λ±
N

 ,

and a± respectively represents the positive and negative parts of a. The scheme
finally reads:

Wn+1
i = Wn

i − ∆t

∆x

(
A−

i+ 1
2

(Wn
i+1 −Wn

i ) +A+
i− 1

2

(Wn
i −Wn

i−1)
)
,

In practice, the straight line path is often considered for the sake of simplicity
in the computations. For the numerical simulations performed in this paper,
the straight lines path for the variables (

√
h,

√
hu, z) was considered as in [7].
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The scheme of Ghidaglia, Kumbaro and Le Coq This scheme was in-
troduced in [22]. In the conservative context, it is built as follows. The formal
conservation law:

∂tW + ∂xf(W ) = 0,

is approximated around each interface of the mesh, setting A(W ) = ∂WF (W ),
by:

∂tW +A(µi+ 1
2
)∂xW = 0,

where µi+ 1
2
is a mean value of W in the neighborhood of the interface xi+ 1

2
.

The numerical flux at xi+ 1
2
is then chosen to be:

Fn
i+ 1

2
=

∑
λk<0

[lkF (Wn
i )]rk +

∑
λk>0

[lkF (Wn
i+1)]rk

+
∑
λk=0

[ lk
2

(
F (Wn

i ) + F (Wn
i+1)

)]
rk, (45)

where λk, lk and rk are respectively the eigenvalues, left and right eigenvectors
of A(µi+ 1

2
). The overall scheme writes then:

Wn+1
i = Wn

i − ∆t

∆x

(
Fn

i+ 1
2
−Fn

i− 1
2

)
.

Now, let us consider a nonconservative system in the following form:

∂tW + ∂xf(W ) + C(W )∂xW = 0.

We set:
J(W ) = ∇f(W ) and E(W ) = C(W )J(W )−1,

as long as the matrix J is invertible, to introduce the following numerical dis-
cretization:

Wn+1
i = Wn

i − ∆t

∆x
[I + E(Wn

i )](Fn
i+ 1

2
−Fn

i− 1
2
),

where the Fn
i+ 1

2

’s are defined by (45). The choice of both matrices J and E is

not unique since the following relation holds:

∂xF (W ) + C(W )∂xW = ∂x(F (W ) +G(W )) + (C(W )−∇WG(W ))∂xW.

Put in other words, the choice of J and E is related to the choice of a path to
define the nonconservative product.

In the case of Exner’s model with Grass law, one would like to choose:

J(W ) =

 0 1 0
−u2 + gh 2u 0

−3εu3

h 3εu2

h 0


21



which is the Jacobian matrix of the conservative terms. This is not possible
however since this matrix J is obviously singular. To derive the required scheme,
we adopt the following definition for J :

J(W ) =

 0 1 0
−u2 + gh 2u 0

−3εu3

h 3εu2

h 1

 and C(W ) =

0 0 0
0 0 gh
0 0 −1

 .

Let us note that Ghidaglia, Kumbaro and Le Coq developed an implicit ver-
sion of their numerical scheme in order to avoid the stability problems which
may arise in the explicit case. Only the explicit scheme was considered in this
paragraph.

A relaxation scheme This scheme was introduced in [2]. Its is based on the
following relaxation model:

∂th+ ∂xhu = 0,

∂thu+ ∂x(hu
2 +Π) + gh∂xz = 0,

∂tΠ+ u∂xΠ+
a2

h
∂xu =

1

λ

(gh2

2
−Π

)
,

∂tz + ∂xΩ = 0,

∂tΩ+
( b2

h2
− u2

)
∂xz + 2u∂xΩ =

1

λ

(
Q(h, u)− Ω

)
,

(46)

where a and b are parameters which are chosen to ensure the stability of the
numerical scheme.

The resulting numerical scheme is composed of two steps. The first one is
dedicated to the transport part while the second step is devoted to deal with
the stiff source term.

During the first step, the relaxation unknowns are evolved by considering
the homogeneous system issuing from the relaxation model (46). In fact, the
extracted homogeneous system turns out to be fully linearly degenerated and
the associated Riemann problem is easily solvable. As a consequence, this first
step consists in a classical Godunov scheme to update the relaxation unknowns.

The second step simply consists in a projection to the equilibrium map that
corresponds to all admissible states (h, u,Π, z,Ω) such that Π = gh2/2 and
Ω = Q(h, u). In the end, the whole scheme can be written in order to only
update h, hu and z.

Finally, the scheme was shown to be robust under Whitham subcharacteristic
type conditions taking the form a ≥ h

√
gh and b ≥

√
(hu)2 + gh2∂uQ. Indeed,

these parameters a and b control the numerical diffusion of the scheme.

HLL type scheme This scheme is a modification of the classical Rusanov
scheme using the consistency with the integral form proposed in the paper of
Harten, Lax and Van Leer [25] in order to handle nonconservative terms. This
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idea is related to the ones proposed in [13, 21].After [25], the numerical scheme
comes from a derivation of a suitable approximate Riemann solver. Here, we
adopt an approximate Riemann solver made of one intermediate state W?. Fol-
lowing [25] (see also [21]), the condition of compatibility with the integral form
gives the following relations:

− b
(
h? − hL

)
+ b

(
hR − h?

)
= −

(
Fh(WR)− Fh(WL)

)
,

− b
(
(hu)? − (hu)L

)
+ b

(
(hu)R − (hu)?

)
= −

(
Fhu(WR)− Fhu(WL)

)
− 1

∆t

tn+1∫
tn

x
i+1

2∫
x
i− 1

2

Φh
∂Φz

∂ξ
(ξ)dξdt,

− b
(
z? − zL

)
+ b

(
zR − z?

)
= −

(
F z(WR)− F z(WL)

)
,

where b > 0 stands for a numerical acoustic speed.
As a consequence, we easily deduce the value of W? given by:

h? =
hL + hR

2
− Fh(WR)− Fh(WL)

2b
,

(hu)? =
(hu)L + (hu)R

2
− Fhu(WR)− Fhu(WL)

2b
− ∆x

2b
h(zR − zL),

z? =
zL + zR

2
− F z(WR)− F z(WL)

2b
.

Once the intermediate state known, the scheme is obtained as usual by
integrating the approximate Riemann solution over each cell. We thus obtain:

hn+1
i = hn

i − ∆t

∆x
(Fh

i 1
2
−Fh

i− 1
2
),

(hu)n+1
i = (hu)ni − ∆t

∆x
(Fhu

i 1
2
−Fhu

i− 1
2
)− ∆t

2

(
hi+ 1

2
(zi+1 − zi) + hi− 1

2
(zi − zi−1)

)
,

zn+1
i = zni − ∆t

∆x
(Fz

i 1
2
−Fz

i− 1
2
),

where the involved numerical flux functions are given by the usual HLL flux
function associated with the exact flux function (7).

Let us point out that this scheme obviously depends on the choice of path
made to define h. In numerical simulations, the straight line path is used unless
otherwise specified.

5.2 Numerical Hugoniot curves

The four numerical schemes are now used to compute the solutions of Riemann
problems corresponding to hL = 0 and uL = 0 on a domain of length 1 meshed
with 2000 cells. The results are compared between one another and with the
theoretical Hugoniot curves obtained in previous sections. For these compar-
isons, h is chosen to be a mean value of h and hL i.e. h = αhL + (1− α)h and
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Figure 4: Hugoniot curves for a 1-shock in the Exner-Grass model: α ∈ [0, 1]
compared with the curves obtained by the four numerical schemes.

the obtained solutions remain inside the domain of hyperbolicity.
The first case concerns the Grass model and results can be seen on figures 4 and
5.
For shocks of very small amplitude, all results are similar. When the amplitude
increases however, discrepancies can clearly be seen between the four numerical
results. Interestingly, all numerical results are inside the range of path corre-
sponding to α ∈ [0, 1]. It was somehow expected since they were built to be
close to the straight lines path (α = 0.5), eventually after a change of vari-
ables. However, they do not follow a curve corresponding to a constant α and
are significantly diverging from the straight line path as the shock amplitude
increases. The same remark applies for the path-consistent scheme when the
change of variables is considered (the curve is not showed here for the sake of
clarity). Indeed, it was already observed that path-consistent schemes do not
capture the path they were built upon [9].
It is to note that the scheme of Ghidaglia, Kumbaro and Le Coq we used is
unstable for large amplitude shocks in this context. In this case, the implicit
version shall be used. This instability may also result from the choice of decou-
pling between conservative and nonconservative terms that was made here.
Finally, the (crude) HLL scheme produces comparable Hugoniot curves with re-
spect to the other more elaborate schemes. It is obviously more diffusive but as
far as the shock amplitude is concerned, it stays close to the others’ predictions.
The impact of the choice of different ratios between the a and b parameters
in the relaxation scheme can be seen on figure 5. It is indeed far from being
neglectable. Besides, although it is possible to adjust it so that the scheme
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Figure 5: Hugoniot curves for a 1-shock in the Exner-Grass model: α = 1
2 with

the curves obtained by the numerical schemes.

follows a curve very close to the straight line path, this adjustment depends on
the test-case setup and imply a large numerical diffusion in the scheme since
the Riemann problem is then very poorly approximated. Similar adjustments
are also possible with the other schemes, as it will be seen for the HLL scheme
with the Nielsen model.

It seems for these four schemes that the projection step strongly influences
the path of the numerical scheme. In order to stay consistent, other techniques
have to be considered (see for instance [10] in the context of nonclassical shocks).
On the other hand, the influence of the time step seems to be only marginal on
the results. In fact, the curves in figure 5 where all obtained with the same time
step restriction (∆t was therefore limited by the condition on the relaxation
scheme with a ratio of 5 between a and b), while the curves on figure 4 were
obtained using the optimal time step for each scheme. In the end, for a given
scheme with a given choice of parameters, the differences were hardly visible.
At most, the relative error was of the order of 10−3 with a time step 10 times
smaller.

Now, the results with the Nielsen model are shown on figure 6. This time, only
the HLL and path-consistent schemes were used for numerical computations.
As expected, all the results are the same for h ≤ h? and they begin to diverge af-
terwards. Once again, the numerical curves do not correspond to a path defined
by a constant α and become significantly different from the Hugoniot curves of
the straight line path for large h. The path-consistent scheme predicts a curve
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Figure 6: Hugoniot curves for a 1-shock in the Exner-Nielsen model: results for
the HLL scheme with 2 definitions of h, the Path-Consistent scheme and the
exact solution with α = 0.5

farther to the curve associated to the path for Roe scheme. The additional dis-
crepancies compared to the case for Grass model probably comes from the fact
that the Roe mean values used in this case are those obtained for Grass model
as explained in [7].
For this test, different choices of the h parameter in the HLL scheme were used.
Its impact is quite important in the same way that the ratio between a and b
impacts the relaxation scheme.

Finally, figure 7 shows the values of h predicted with the HLL and path-
consistent schemes for the following Riemann problem: hL = 1, uL = 1, zL =
0.5 and hR = 10, uR = −50.58, zL = 1.5. Grass model was used with
ε = 6.0 10−2. The right state was chosen on the Hugoniot curve corresponding
to a 1-shock for the straight line path.
As a consequence of the fact that the two schemes do not select the same path,
the two solutions are very different from each other even though the setup used
should lead results close to a single shock.
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