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Canonical Correlation Analysis Based on Sparse Penalty

and Through Rank-1 Matrix Approximation

Abdeldjalil Aïssa-El-Bey and Abd-Krim Seghouane

Abstract

Canonical correlation analysis (CCA) is a well-known technique used to characterize the

relationship between two sets of multidimensional variables by finding linear combinations

of variables with maximal correlation. Sparse CCA and smooth or regularized CCA are two

widely used variants of CCA because of the improved interpretability of the former and the

better performance of the later. So far the cross-matrix product of the two sets of multidimen-

sional variables has been widely used for the derivation of these variants. In this paper two

new algorithms for sparse CCA and smooth CCA are proposed. These algorithms differ from

the existing ones in their derivation which is based on penalized rank one matrix approxima-

tion and the orthogonal projectors onto the space spanned by the columns of the two sets of

multidimensional variables instead of the simple cross-matrix product. The performance and

effectiveness of the proposed algorithms are tested on simulated experiments. On these results

it can be observed that they outperforms the state of the art sparse CCA algorithms.

1 Introduction

Canonical correlation analysis (CCA) [1] is a multivariate analysis method, the aim of which is to

identify and quantify the association between two sets of variables. The two sets of variables can

be associated with a pair of linear transforms (projectors) such that the correlation between the pro-

jections of the variables in lower-dimensional space through these linear transforms are mutually

maximized. The pair of canonical projectors are easily obtained by solving a simple generalized

eigenvalue decomposition problem, which only involves the covariance and cross-covariance ma-

trices of the considered random vectors. CCA has been widely applied in many important fields,

for instance, facial expression recognition [2], detection of neural activity in functional magnetic

resonance imaging (fMRI) [3, 4], machine learning [5, 6] and blind source separation [7, 8].
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In the context of high-dimensional data, there are usually a large portion of features that are not

informative in data analysis. When the canonical variables involve all features in the original space,

the canonical projectors are in general not sparse. Therefore, it is not easy to interpret canonical

variables in such high-dimensional data analysis. These problems may be tackled by selecting

sparse subsets of variables, i.e. obtaining sparse canonical projectors in the linear combinations

of variables of each data set [6, 9–11]. For example, in [10] the authors propose a new criterion

for sparse CCA and applied a penalized matrix decomposition approach to solve the sparse CCA

problem and in [9] the presented sparse CCA approach compute the canonical projectors from

primal and dual representations.

In this paper, we adopt an alternative formulation of CCA problem which is based on rank-1 matrix

approximation of the orthogonal projectors of data sets [12]. Based on this new formulation of

CCA problem, we developed a new sparse CCA based on penalized rank-1 matrix approximation

which aims to overcome the drawback of CCA in the context of high-dimensional data and improve

interpretability. The proposed sparse CCA seeks to obtain iteratively a sparse pairwise of canonical

projectors by solving a penalized rank-1 matrix approximation via sparse coding method. Also, we

present in this paper a smoothed version of CCA problem based on rank-1 matrix approximation

where we impose some smoothness on the projections of the variables in order to avoid abrupt

or sudden variations. These proposed algorithms differ from the existing ones in their derivation

which is based on penalized rank one matrix approximation and the orthogonal projectors onto the

space spanned by the columns of the two sets of multidimensional variables instead of the simple

cross-matrix product [6, 9–11].

The rest of the paper is organized as follow: In Section 2, we give a brief review of the CCA

problem. In Section 3, we present a formulation of CCA using a rank-1 matrix approximation of

the orthogonal projectors of data sets and derive the smoothed solution. In Section 4, we introduce

our new sparse CCA algorithm. In Section 5, we present some simulation results to demonstrate

the effectiveness of the proposed method compared to state of the art CCA algorithms. Finally,

Section 6 concludes the paper.

Henceforth, bold lower cases denote real-valued vectors and bold upper cases denote real-valued

matrices. The transpose of a given matrixA is denoted byAT . All vectors will be column vectors

unless transposed. Throughout the paper, In stands for n× n identity matrix, 0 stands for the null

vector and 1n is the (column) vector of Rn with one entries only. For a vector x the notation xi
will stand for the ith component of x.
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2 Canonical Correlation Analysis

In this section, we present briefly a review of CCA and its optimization problem. Let x ∈ Rdx and

y ∈ Rdy be two random vectors and we assume, without loss of generality, that both x and y have

zero mean, i.e. E[x] = 0 and E[y] = 0 where E[ · ] is the expectation operator. CCA seeks a pair

of linear transform wx ∈ Rdx and wy ∈ Rdy , such that correlation between wT
xx and wT

y y are

maximized. Mathematically, the objective function to be maximized is given by:

ρ(wx,wy) =
cov(wT

xx,w
T
y y)√

var(wT
xx) var(w

T
y y)

. (1)

Then, the objective function ρ can be rewritten as:

ρ(wx,wy) =
wT
xCxywy√

(wT
xCxxwx)(wT

yCyywy)
, (2)

where Cxx = E[xxT ], Cyy = E[yyT ] and Cxy = E[xyT ] are the covariance matrices. Since the

value of ρ(wx,wy) is invariant with the magnitude of the projection direction, we can turn to solve

the following optimization problem

argmax
wx,wy

wT
xCxywy

subject to wT
xCxxwx = 1, wT

yCyywy = 1.

Incorporating these two constraints, the Lagrangian is given by:

J (λx, λy,wx,wy) = w
T
xCxywy − λx(wT

xCxxwx − 1)− λy(wT
yCyywy − 1). (3)

Taking derivatives in respect to wx and wy, we obtain

∂J
∂wx

= Cxywy − 2λxCxxwx = 0 (4)

∂J
∂wy

= CT
xywx − 2λyCyywy = 0. (5)

This equations lead to the following generalized eigenvalue problem

Cxywy = λCxxwx (6)

CT
xywx = λCyywy, (7)

where λ = 2λx = 2λy. One way to solve this problem is as proposed in [5] by assuming Cyy is

invertible, we can write

wy =
1

λ
C−1yy C

T
xywx, (8)
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and so substituting in equation (6) and assuming Cxx is invertible gives

C−1xxCxyC
−1
yy C

T
xywx = λ2wx. (9)

It has been shown in [5] that we can choose the associated eigenvectors corresponding to the top

eigenvalues of the generalized eigenvalue problem in (9) and then use (8) to find the corresponding

wy. A number of existing methods for sparse and smooth CCA have used the description provided

above of CCA and focused on the use of the cross matrixCxy for the derivation of new CCA variant

algorithms [6, 9–11]. For the derivation of the proposed CCA variants we adopt an alternative

description of CCA which is based on the orthogonal projectors onto the space spanned by the

columns of the two sets of multidimensional variables [12].

3 Canonical Correlation Analysis based on rank-1 matrix ap-

proximation

In practice, the covariance matrices Cxx, Cyy and Cxy are usually not available. Instead, the esti-

mated covariance matrices are constructed based on given sample data. Let X = [x1, . . . ,xN ] ∈
Rdx×N and Y = [y1, . . . ,yN ] ∈ Rdy×N are two sets of instances of x and y, respectively. Then,

the optimization problem for CCA based on estimated covariance matrices is given by

argmax
wx,wy

wT
xXY

Twy (10)

subject to wT
xXX

Twx = 1, wT
y Y Y

Twy = 1,

and the generalized eigenvalue problem given by equations (6) and (7) can be rewritten as

XY Twy = λXXTwx (11)

Y XTwx = λY Y Twy. (12)

Then, by multiplying the both side of equations (11) and (12) byXT (XXT )−1 and Y T (Y Y T )−1

respectively, we obtain:

XT (XXT )−1XY Twy = PxY
Twy = λXTwx (13)

Y T (Y Y T )−1Y XTwx = PyX
Twx = λY Twy, (14)

where Px = XT (XXT )−1X and Py = Y T (Y Y T )−1Y are the orthogonal projectors onto the

linear spans of the columns of X and Y respectively. So substituting XTwx in equation (14) and
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Y Twy in equation (13) gives

PxPyX
Twx = λ2XTwx

PyPxY
Twy = λ2 Y Twy,

Therefore, the rank-1 matrix approximation of Kxy = PxPy can be formulated as solving the

following optimization from:

argmin
wx,wy

∥∥Kxy −XTwxw
T
y Y
∥∥2
F

(15)

where ‖ · ‖2F is the squared Frobenius norm. Consequently, the projected data wT
xX and wT

y Y

consist on the eigenvectors associated to the largest eigenvalue of the matrix Kxy. Hence, for

multiple projected data the solution consist on the associated eigenvectors corresponding to the top

eigenvalues of the matrixKxy.

One disadvantage of the above approach is the restriction that XXT and Y Y T must be non-

singular. In order to prevent overfitting and avoid the singularity of XXT and Y Y T [5], two

regularization terms γxIdx and γyIdy , with γx > 0, γy > 0 are added in (10). Therefore, the reg-

ularized version solves the generalized eigenvalue problem with Px = XT (XXT + γxIdx)
−1X

andPy = Y T (Y Y T +γyIdy)
−1Y . We summarized the method of solving the entire rank-1 matrix

approximation CCA in Algorithm 1

Algorithm 1 Rank-1 matrix approximation CCA algorithm
Input: Training dataX ∈ Rdx×N and Y ∈ Rdy×N .

Output: The r pairs of canonical projectorWx ∈ Rdx×r andWy ∈ Rdy×r.

1: Compute Px =XT (XXT + γxIdx)
−1X , Py = Y T (Y Y T + γyIdy)

−1Y andKxy = PxPy;

2: Perform the SVD ofKxy : Kxy = UDV
T ;

3: Form Ũ = [u1, . . . ,ur], D̃ = diag(
√
d1, . . . ,

√
dr) and Ṽ = [v1, . . . ,vr];

4: SetWx = (XXT + γxIdx)
−1XŨD̃ andWy = (Y Y T + γyIdy)

−1Y Ṽ D̃.

3.1 Smoothed rank-1 matrix approximation CCA algorithm

In order to give preference to a particular solution with desirable properties for the proposed CCA

problem, a regularization term (Tikhonov regularization) can be included in equation (15) such

that:

argmin
wx,wy

∥∥Kxy −XTwxw
T
y Y
∥∥2
F
+ αxw

T
xXΩxX

Twx + αyw
T
y Y ΩyY

Twy (16)

In many cases, the matrices Ωx and Ωy are chosen as a multiple of the identity matrix, giving

preference to solutions with smaller norms. In our case, the matrices Ωx and Ωy are a non-negative
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definite roughness penalty matrices used to penalize the second differences [13] [14] and αx > 0

and αy > 0 are trade-off parameters such as:

∀z ∈ RN , zTΩz = z21 + z2N +
N−1∑

i=2

(zi+1 − 2zi + zi−1)
2

The choice of such matrices may be used to enforce smoothness if the underlying vector is believed

to be mostly continuous. Therefore, the criterion of equation (16) can be rewritten as

argmin
wx,wy

∥∥XTwx‖22‖Y Twy‖22 − 2wT
xXKxyY

Twy + αxw
T
xXΩxX

Twx + αyw
T
y Y ΩyY

Twy

(17)

The optimization problem (17) can be alternatively solved by optimizingwx andwy. Specifically,

we first fixwy and solvewx by minimizing (17). Then, we fixwx and minimize (17) to obtainwy.

The above two procedures are repeated until convergence. Taking derivatives in respect to wx and

wy, we obtain
(
‖Y Twy‖22XXT + αxXΩxX

T
)
wx = XKxyY

Twy

(
‖XTwx‖22 Y Y T + αy Y ΩyY

T
)
wy = Y KT

xyX
Twx.

Therefore, we obtain wx and wy by solving the above equations in least square sense. For

multiple canonical projectors, we propose to use a deflation procedure where the second pair-

wise of canonical projectors are defined by using the corresponding residual matrices Kxy −
XTwxKxyw

T
y Y w

T
xXY

Twy. Then, we can define the other pairwise of sparse projectors. The

method for solving the smoothed rank-1 matrix approximation CCA is summarized by Algorithm

2.

4 Sparse CCA algorithm based on rank-1 matrix approxima-

tion

In this section, we will propose the sparse CCA method based on rank-1 matrix approximation

by penalizing the optimization problem (15). Then, we propose an efficient iterative algorithm to

solve the sparse solution of the proposed criterion.

In general cases, the canonical projectorswx andwy solutions of equation (15) are not sparse, i.e.,

the entries of both wx and wy are nonzeros. To obtain the sparse solution, we adopt the similar

trick used in [6,10,11] by imposing penalty functions on the optimization problem (15). Therefore,

we can write the new optimization problem as:

argmin
wx,wy

∥∥Kxy −XTwxw
T
y Y
∥∥2
F

subject to Fx(wx) ≤ βx and Fy(wy) ≤ βy (18)

RR-2015-01-SC 6



Algorithm 2 Smoothed rank-1 matrix approximation CCA algorithm
Input: Training dataX ∈ Rdx×N and Y ∈ Rdy×N .

Output: The r pairs of canonical projectorWx ∈ Rdx×r andWy ∈ Rdy×r.

1: Compute Px =XT (XXT + γxIdx)
−1X , Py = Y T (Y Y T + γyIdy)

−1Y andKxy = PxPy;

2: for i = 1, 2, . . . , r do
3: Perform the SVD ofKxy : Kxy = UDV

T ;

4: Initialize ũ = u1 and ṽ = v1;

5: repeat
6: Update the i-th column of Wx : Wx(:, i) =

(
XXT + αxXΩxX

T +

γxIdx

)−1
XKxyṽ;

7: Update ũ = XTWx(:,i)
‖XTWx(:,i)‖2 ;

8: Update the i-th column ofWy : Wy(:, i) =
(
Y Y T+αy Y ΩyY

T+γyIdy

)−1
Y KT

xyũ;

9: Update ṽ = Y TWy(:,i)

‖Y TWy(:,i)‖2 ;

10: until convergence

11: UpdateKxy : Kxy ←Kxy − ũTKxyṽũṽ
T ;

12: end for

where Fx( · ) and Fy( · ) are penalty functions, which can take on a variety of forms. Useful exam-

ples are: `0-quasi-norm F(z) = ‖z‖0 which count the nonzero entries of a vector; Lasso penalty

with `1-norm F(z) = ‖z‖1 and so on.

The optimization problem (18) can be alternatively solved by optimizingwx andwy. Specifically,

we first fixwy and solvewx by minimizing (18). Then, we fixwx and minimize (18) to obtainwy.

The above two procedures are repeated until convergence.

The straightforward approach to solve this problem is to formulate it as an ordinary sparse coding

task. Then, for a fix wy the problem (18) is equivalent to much simpler sparse coding problem

argmin
wx

∥∥KxyY
Twy −XTwx

∥∥2
2

subject to Fx(wx) ≤ βx

which can be solved by using any sparse approximation method. In the same way, we can solve

the problem (18) regarding wy for a fix wx by minimizing the following criterion:

argmin
wy

∥∥KT
xyX

Twx − Y Twy

∥∥2
2

subject to Fy(wy) ≤ βy

Based on the above description, we can obtain the first pairwise of sparse projectors wx and wy.

For multiple projection vectors, we propose to use a deflation procedure as presented in Section

3.1 where the second pairwise of sparse projectors are defined by using the corresponding resid-

RR-2015-01-SC 7



Algorithm 3 Sparse rank-1 matrix approximation CCA algorithm
Input: Training dataX ∈ Rdx×N and Y ∈ Rdy×N .

Output: The r pairs of canonical projectorWx ∈ Rdx×r andWy ∈ Rdy×r.

1: Compute Px =XT (XXT + γxIdx)
−1X , Py = Y T (Y Y T + γyIdy)

−1Y andKxy = PxPy;

2: for i = 1, 2, . . . , r do
3: Perform the SVD ofKxy : Kxy = UDV

T ;

4: Initialize ũ = u1 and ṽ = v1;

5: repeat
6: Update the i-th column of Wx : Wx(:, i) = argmin

Wx(:,i)

∥∥Kxyṽ − XTWx(:

, i)
∥∥2
2

subject to Fx(Wx(:, i)) ≤ βx;

7: Update ũ = XTWx(:,i)
‖XTWx(:,i)‖2 ;

8: Update the i-th column of Wy : Wy(:, i) = argmin
Wy(:,i)

∥∥KT
xyũ − Y TWy(:

, i)
∥∥2
2

subject to Fy(Wy(:, i)) ≤ βy;

9: Update ṽ = Y TWy(:,i)

‖Y TWy(:,i)‖2 ;

10: until convergence

11: UpdateKxy : Kxy ←Kxy − ũTKxyṽũṽ
T ;

12: end for

ual matrices Kxy −XTwxKxyw
T
y Y w

T
xXY

Twy. Using the same way, we can define the other

pairwise of sparse projectors.

Then, we summarized the method of solving the entire Sparse rank-1 matrix approximation CCA

in Algorithm 3

5 Experiments

In this section, we present several computer simulations in the context of blind channel estimation

in single-input multiple-output (SIMO) systems and blind source separation to demonstrate the

effectiveness of the proposed algorithm. We compare the performance of the proposed algorithm

with existing state of the art sparse CCA methods:

• The sparse CCA presented in [10], relying on a penalized matrix decomposition denoted

PMD. An R package implementing this algorithm, called PMA, is available at http:

//cran.r-project.org/web/packages/PMA/index.html. Sparsity parame-

ters are selected using the permutation approach presented in [15] of which the code is pro-
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vided in PMA package.

• The sparse CCA presented in [6] where the CCA is reformulated as a least-squares problem

denoted LS CCA. A Matlab package implementing this algorithm is available at http:

//www.public.asu.edu/~jye02/Software/CCA/.

• The sparse CCA presented in [11] where the sparse canonical projectors are computed by

solving two `1-minimization problems by using Linearized Bregman iterative method [16].

This algorithm is denoted CCA LB (Linearized Bregman). We re-implemented the sparse

CCA algorithm proposed [11] in Matlab.

For proposed sparse CCA algorithm, we have used Fx(z) = Fy(z) = ‖z‖0 as penalty functions.

5.1 Synthetic data

This simulation setup is inspired from [17]. The synthetic dataX andY were generating according

to multivariate normal distribution, with covariance matrices described in Table 1. The number

of simulations with each configuration was Nr = 1000. We compare the performance of our

algorithm to methods of the state of the art by estimating the precision accuracy of the space

spanned by estimated canonical projectors. Then, we compute for each simulation run r the angle

θr(Ŵ r
x ,Wx) between the subspace spanned by the estimated canonical projectors contained in

the columns of Ŵ r and the subspace spanned by the true canonical projectors contained in the

columns of Wx solution of the eigenproblem (9). The same criterion is used for the canonical

projectorsWy. The average angles are estimated over Nr Monte-Carlo run such that:

θx =
1

Nr

Nr∑

r=1

θr(Ŵ r
x ,Wx) and θy =

1

Nr

Nr∑

r=1

θr(Ŵ r
y ,Wy)
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Table 1: Simulation settings

Parameters dx dy N Cxx Cyy Cxy

Scenario 1 4 4 {50, 100, 200} I4 I4




9
10

0 0 0

0 1
2

0 0

0 0 1
3

0

0 0 0 0




Scenario 2 4 6 {50, 100, 200} I4 I6




3
5

0 0 0 0 0

0 1
2

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




Scenario 3 6 10 {50, 100, 200} I6

[
M 0

0 I7

]

with M(i, j) = 0.3|i−j|

1
2

[
I2 0

0 0

]

Scenario 4 20 20 {50, 100, 200} I20 I20
7
10

[
I10 0

0 0

]

For each algorithm, we used the following parameters; LS CCA algorithm with λx = λy = 0.5,

CCA LB algorithm with µx = µy = 2; Algorithm 2 with αx = αy = 10−2 and Algorithm 3 with

βx = βy = 3. The simulation performance on the estimated angle between the subspace spanned

by the true canonical projectors and the estimated one by the different methods are reported in

Table 2.

RR-2015-01-SC 10



Table 2: Simulation results

θx θy θx θy θx θy

Method N = 50 N = 100 N = 200

Scenario 1: CCA 0.5395 0.5033 0.3468 0.3475 0.2273 0.2388

LS CCA 0.4161 0.3697 0.2649 0.2650 0.1784 0.1872

CCA LB 0.5172 0.5151 0.3310 0.3341 0.2250 0.2228

PMD 0.2203 0.2420 0.0908 0.0506 0.0207 0.0175

Algorithm 2 0.5074 0.5189 0.3123 0.3140 0.2225 0.2202

Algorithm 3 0.2011 0.2191 0.0491 0.0273 0.0044 0.0057

Scenario 2: CCA 0.5091 0.6682 0.3108 0.4123 0.2089 0.2771

LS CCA 0.3481 0.5083 0.2285 0.3247 0.1605 0.2182

CCA LB 0.3000 0.3761 0.0227 0.0228 0.0008 0.0009

PMD 0.2061 0.3068 0.0230 0.0706 0.0043 0.0443

Algorithm 2 0.5064 0.6462 0.3062 0.4111 0.2061 0.2792

Algorithm 3 0.1162 0.1508 0.0012 0.0015 0.0001 0.0001

Scenario 3: CCA 0.8125 0.9956 0.5603 0.6678 0.3390 0.4484

LS CCA 0.5275 0.7305 0.3553 0.4711 0.2412 0.3449

CCA LB 0.7603 0.9209 0.2785 0.5163 0.0149 0.3152

PMD 0.6111 0.8273 0.2031 0.4616 0.0397 0.3373

Algorithm 2 0.8829 0.9938 0.5288 0.6735 0.3295 0.4447

Algorithm 3 0.3990 0.6856 0.0173 0.3237 0.0001 0.3035

Scenario 4: CCA 1.3798 1.3764 0.8879 0.8744 0.4700 0.4722

LS CCA 0.8538 0.8298 0.5231 0.5187 0.3373 0.3378

CCA LB 1.3681 1.3659 0.7264 0.7347 0.0478 0.0417

PMD 1.3972 1.3542 1.1316 1.0342 0.4082 0.3820

Algorithm 2 1.3627 1.3655 0.7413 0.8096 0.4407 0.4605

Algorithm 3 1.1185 1.0986 0.0275 0.0271 0.0001 0.0001

We can observe that the simulation accuracy of the proposed sparse CCA method is significantly

better compared to other CCA methods, especially for a large number of observations N . In the

case of low number of observations the proposed sparse CCA method is still doing well and where
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the performance gain increases with increasing number of observations. This demonstrates the

robustness of our sparse CCA method with respect to the number of available observations and the

benefit of using our sparse CCA method in the context of a relatively low number of observations

5.2 Blind channel identification for SIMO systems

Blind channel identification is a fundamental signal processing technology aimed at retrieving a

system’s unknown information from its outputs only. Estimation of sparse long channels (i.e.

channels with small number of nonzero coefficients but a large span of delays) is considered in

this simulation. Such sparse channels are encountered in many communication applications: High-

Definition television (HDTV), underwater acoustic communications and wireless communications.

Then, the problem addressed in this section is to determine the sparse impulse response of a SIMO

system in a blind way, i.e. only the observed system outputs are available and used without assum-

ing knowledge of the specific input signal [18–23].

Let consider a mathematical model where the input and the output are discrete, the system is driven

by a single-input sequence s(t) and yields 2 output sequences x1(t) and x2(t), and the system has

finite impulse responses (FIR’s) hi(t), for t = 0, . . . , L and i = 1, 2 with L is the maximal channel

length (which is assumed to be known). Such a system model can be described as follows :
{
x1(t) = s(t) ∗ h1(t) + η1(t)

x2(t) = s(t) ∗ h2(t) + η2(t)
(19)

where ∗ denotes linear convolution, η(t) = [η1(t), η2(t)]
T is an additive spatial white Gaussian

noise, i.e. E[η(t)η(t)T ] = σ2I2 and h = [hT1h
T
2 ]
T with hi = [hi(0), . . . , hi(L)]

T (i = 1, 2)

denotes the impulse response vector of the i-th channel. Given a finite set of observation of length

T the objective in this experience is to estimate the channel coefficients vector h. The identification

method presented by Xu et al. in [24] which is closely related to linear prediction, exploits the

commutativity of the convolution. Based on this approach and inspired from [25], we present in

the following an experience to asses the performance of blind channel identification methods based

on CCA.

Then, from equation (19), the noise-free outputs xi(n), i = 1, 2 and using the commutativity of

convolution, it follows :

h2(t) ∗ x1(t) = h1(t) ∗ x2(t) , (20)
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ĥ2

ĥ1

Figure 1: The block diagram of a SIMO system A linear SIMO system and the corresponding blind

identification diagram.

In case the outputs xi(t) are corrupted by additive noise, this property inspired the design of the

identification diagram shown in Figure 1, which allows to find estimates of the channels impulse

response, ĥ1 and ĥ2, by collecting T observations sample and minimizing the following cost func-

tion

argmin
h1,h2

‖X1h2 −X2h1‖2

subject to ‖X1h1‖2 = ‖X2h2‖2 = 1.

where

Xi =




xi(L) . . . xi(0)
... . . . ...

xi(T − 1) . . . xi(T − L− 1)


 i = 1, 2.

This problem is a canonical correlation analysis (CCA) problem.

Then, we present here some numerical simulations to assess the performance of the proposed

algorithm. We consider a SIMO system with 2 outputs represented by polynomial transfer function

of degree L = 66. The channel impulse response is generated following 3GPP ETU (Extended

Typical Urban) channel model [26] with frequency sampling 15.36 MHz which is used to model a

channel impulse response for urban area in the context of wireless communications The multipath

delay profile for this channel is shown in the Table 3:

Table 3: 3GPP Extended Typical Urban channel model [26]

Excess tap delay (ns) 0 50 120 200 230 500 1600 2300 5000

Relative power (dB) -1.0 -1.0 -1.0 0.0 0.0 0.0 -3.0 -5.0 -7.0
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The input signal is a BPSK i.i.d. sequence of length T = {256, 1024}. The observation is corrupted

by addition white Gaussian noise with a variance σ2 chosen such that the signal to noise ratio

SNR= ‖h‖2
σ2 varies in the range [0, 40] in dB. Statistics are evaluated over Nr = 100 Monte-Carlo

runs and estimation performance are given by the normalized mean-square error criterion :

NMSE =
1

Nr

Nr∑

r=1

1−

(
ĥTr h

‖ĥr‖‖h‖

)2

,

where ĥr denotes the estimated channel coefficient vector at the rth Monte-Carlo run. For each

algorithm, we used the following parameters; LS CCA algorithm with λx = λy = 10−2, CCA

LB algorithm with µx = µy = 10−1; Algorithm 2 with αx = αy = 10−3 and Algorithm 3 with

βx = βy = 10.

SNR (dB)

10 15 20 25 30 35 40

N
M

S
E

 (
d

B
)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

CCA

LS CCA

CCA LB

PMD

Algorithm 2

Algorithm 3

Figure 2: Normalized mean-square error (NMSE) versus the SNR for SIMO system with 2 sensors

and T = 256: performance comparison between CCA based methods for blind channel identifica-

tion.
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Figure 3: Normalized mean-square error (NMSE) versus the SNR for SIMO system with 2 sensors

and T = 1024: performance comparison between CCA based methods for blind channel identifi-

cation.

In Figures 2 and 3, the normalized mean-square error is plotted versus the SNR for the proposed

approaches and state of the art algorithm. It is clearly shown that our sparse CCA based on rank-1

matrix approximation provide the best results for all SNR range and all observation length. Es-

pecially, We can observe that the proposed method outperforms the PMD algorithm [10] by 9 dB

for moderate and high SNR. This results show the robustness of the proposed method against the

additive noise and its fast convergence. Indeed, from Figure 2 we can observe that the proposed

sparse CCA method provide for moderate and high SNR a near-optimal performance even in the

case of low observation size.

5.3 Blind source separation for fMRI signals

In this section we evaluate the performance of the proposed CCA variant algorithms on a problem

of functional magnetic resonance imaging (fMRI) resting state experiment. In this case we are

interested in functional connectivity and recovering a resting state network; i.e., the default mode

network from a data matrix Y formed by vectorizing each each time series observed in every

voxel creating a matrix n × N where n is the number of time points and N the number of voxels
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(≈ 10, 000− 100, 000) [27].

To estimate functionally connected brain voxels, response signal strength known as coefficient ma-

trix estimated as X is considered [28]. According to the neural dynamics of interest, coefficient

rows can be converted to z-scores to obtain sparsely distributed and clustered origin of the dynam-

ics. The neural dynamics of interest can be obtained by correlating the modulation profile with the

time-series representing average neural dynamics for regions of interest (ROIs). The representative

time-series for cortical, subcortical, and cerebellum regions in the brain were obtained by parcel-

lating the whole brain into 116 ROIs using automated anatomical labelling [29].

Only the first functional run from the first subject was used for functional connectivity analysis of

a default mode network (DMN). The functional connectivity results of a single subject for DMN

using eight different CCA variant algorithms are shown in figure 4. To obtain these results the

modulation profile that was most correlated with posterior cingulate cortex (PCC) representative

time-series is used. Using the different CCA variant algorithms, the connected regions obtained

for DMN are mostly PCC, medial pre-frontal cortex (MFC), and right inferior parietal lobe (IPL),

where as for rest of the proposed algorithms. As there is no gold standard reference for DMN

connectivity available, therefore, we relied on the similarity of temporal dynamics of DMN based

modulation profile with PCC representative time-series. The similarity measure used was correla-

tion and estimated as > 0.9 for all the algorithms.
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(a) Reference (b) CCA (c) LS CCA, λx = λy = 0.5

(d) CCA LB, µx = µy = 10 (e) PMD (f) Algorithm 2, αx = αy = 10−4

(g) Algorithm 2, αx = αy = 10−3 (h) Algorithm 3, βx = βy = 3 (i) Algorithm 3, βx = βy = 4

Figure 4: The functional connectivity results of a single subject for default mode network (DMN)

using eight different CCA variant algorithms.

6 Conclusion

In this paper, we have developed two new variants of CCA; more specifically we have introduced

new algorithms for sparse and smooth CCA. The proposed algorithms are based on penalized rank

one approximation and differ from existing ones in the matrices they use for their derivation. Indeed

instead of focusing on the cross-matrix product of the two sets of multidimensional variables we
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have used the product of the orthogonal projectors onto the space spanned by the columns of the

two sets of multidimensional variables. Using this approach the sparse and smooth CCA algorithms

proposed differ only the penalty used in the penalized rank one matrix approximation. Simulation

results illustrating the effectiveness of the proposed CCA variant algorithms are provided where

we can observe that proposed sparse CCA outperforms state of the art methods.
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