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It is shown that sufficiently large periodic modulations in the coefficients of a nonlinear Schrödinger
equation can drastically impact the spatial shape of the Peregrine soliton solutions: they can de-
velop multiple compression points of the same amplitude, rather than only a single one, as in the
spatially homogeneous focusing nonlinear Schrödinger equation. The additional compression points
are generated in pairs forming a comb-like structure. The number of additional pairs depends on
the amplitude of the modulation but not on its wavelength, which controls their separation distance.
The dynamics and characteristics of these generalized Peregrine soliton are analytically described
in the case of a completely integrable modulation. A numerical investigation shows that their main
properties persist in nonintegrable situations, where no exact analytical expression of the generalized
Peregrine soliton is available. Our predictions are in good agreement with numerical findings for an
interesting specific case of an experimentally realizable periodically dispersion modulated photonic
crystal fiber. Our results therefore pave the way for the experimental control and manipulation of
the formation of generalized Peregrine rogue waves in the wide class of physical systems modeled
by the nonlinear Schrödinger equation.

I. INTRODUCTION

Rogue waves (RW) originally designate abnormally
high oceanic surface waves. These devastating walls of
water are short-lived and extremely rare, and constitute
one of the fascinating manifestations of the strength of
nature: “they appear from nowhere and disappear with-
out a trace” [1]. They have been recognized by sailors
for nearly a century, but large scale, systematic scientific
studies have been undertaken only in the past twenty
years, initially in the field of oceanic waves [2]. Experi-
mental evidence of optical RW in a fiber system has been
established first in the pulsed regime in [3], and later in
the continuous wave (CW) regime [4]. It has received
considerable attention since [5–7]. Moreover, intensive
studies of RW have recently been pursued in diverse
fields, e.g. acoustics, capillary and plasma waves, gen-
erally under the category of “extreme and rare events in
physics” [8, 9]. From a theoretical point of view, the most
important progress concerns the nonlinear Schrödinger
equation (NLSE) since it appears as a generic model in
diverse nonlinear systems such as surface waves or opti-
cal fiber systems. Although there exist different classes
of explicit nonlinear solutions to the NLSE, the most im-
portant solutions commonly accepted to represent rogue
waves are the Akhmediev breathers (AB) and the Pere-
grine solitons (PS) [10]. It has been shown that these
solutions show indeed the main signatures of RW and
extensive studies are devoted to characterize and con-
trol the formation of these solutions [11, 12]. This in-
cludes collisions of AB [13] or the optimum conditions for
the experimental generation of PS [14]. Our goal here is
to study the evolution and properties of the generalized

Peregrine rogue waves (PRWs) in systems described by
the NLSE with spatially periodic coefficients. We will
limit ourselves here to sinusoidally varying coefficients,
which have found an experimental realisation in [15, 16].
But other periodic modulations are possible and have
been recently realized experimentally [17]. We expect the
richness of the nonlinear dynamics of PRWs and the flex-
ibility to manipulate them in optical fiber systems with
periodic dispersion to be immensely greater than those
for an optical fiber with constant coefficients.

Our models depend on two parameters: the wavelength
and the amplitude of the periodic modulation. We ad-
dress here the following question. How do the main char-
acteristics of the generalized PRW depend on those two
control parameters? We will in particular see that, de-
pending on the amplitude of the modulation, the gener-
alized PRW can have one or several compression points,
whose spatial separation is monitored by the wavelength
of the dispersion modulation. We show that, under
strong modulation, a comblike structure is formed, that
we will refer to as the Peregrine comb. We take advantage
of the analytical expressions that can be obtained for the
generalized PRW under suitable integrability conditions
on the coefficients of the NLSE.

The paper is organized as follows. In section II we
show that under a suitable integrability condition, the
periodic modulation of the coefficients of the NLSE can
lead to a generalized AB or Peregrine solution in which
not one, but a finite number of high intensity peaks de-
velop. In section III we will show that the generalized
Peregrine solution with a sinusoidal modulation develops
multiple compression points depending on the strength of
the modulation, leading to a comblike spatial structure.
Further properties of the generalized Peregrine solution
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are studied in section IV. In section V we numerically
show that such multiple compression points can also arise
in the nonintegrable case, provided the group velocity dis-
persion (GVD) of the equation changes sign repeatedly.
We then further illustrate the phenomenon in the case
where the GVD and nonlinear coefficient in the equation
have experimentally realistic values for photonic crystal
fibers. Section VI contains our concluding remarks.

II. INTEGRABLE MODEL: GENERALIZED
PEREGRINE SOLUTION

We consider the NLSE in the form

i
∂q

∂z
− D2(z)

2

∂2q

∂t2
+R(z)|q|2q = 0, (1)

where D2(z) and R(z) are both taken to be periodic func-
tions of their argument. In optical fiber systems the
above equation describes the dynamics of the envelope
q(z, t) of the electric field [18, 19] where z and t are
the dimensionless propagation distance along the fiber
(measured in units of nonlinear length) and dimension-
less time, respectively. The function D2(z) represents the

GVD coefficient, and R(z) is the nonlinear one.
In this section, we shall introduce an explicit Peregrine-

type solution of the above NLSE, in the presence of pe-
riodic modulations. It is well known that, to construct
explicit solutions of the NLSE, one needs some integra-
bility conditions [20]. Here, we shall work under the as-
sumption that RD2z − D2Rz = 0. This implies that
D2(z) = cR(z) and through normalization we can al-
ways assume c = −1 since we work in the focusing case,
where D2R ≤ 0. To construct the generalized Peregrine
solution, we start with a seed solution in the form of a
plane wave

q0(z) = A exp[iϕ0(z)], (2)

which is the background solution from which the
Peregrine-type rogue wave appears. The parameter A
determines the initial amplitude of the background, and

ϕ0(z) = A2

∫ z

z0

R(z′)dz′, (3)

where z0 fixes a global phase. From the seed q0, one can
first construct generalized inhomogeneous AB solutions
through the use of the Darboux transformation method
[21]. For 0 ≤ η < A, this yields

qAB = A

[
1 +

2η (A cos(d1)− η cosh(d2)− iα sinh(d2))

A cosh(d2)− η cos(d1)

]
exp(iϕ0), (4)

with

d1(t) = 2αt,

d2(z) = 2αη

∫ z

z0

D2(z)dz, α =
√
A2 − η2.

This generalized AB reduces to the standard form when
the coefficients in Eq. (1) are constant (R(z) = 1,
D2(z) = −1) [22]. Notice that the intensity |qAB(z, t)|2
of this solution exhibits a periodic modulation in t with

period π/
√
A2 − η2, which tends to +∞ as η → A. As

a result, in the limit η → A, the above generalized AB
reduces to a generalized PS given by

qPS(z, t) = A

4
1− 2iA2

∫ z

z0
D2(z

′
)dz

′

1 + 4A4
(∫ z

z0
D2(z′)dz′

)2
+ 4A2t2

− 1

 eiϕ0(z). (5)

The same solution can also be obtained using a similar-
ity transformation, as in [23]. In what follows we will
study this solution in detail, and characterize its main
properties when the periodic dispersion is of the form

D2(z) = −1 + dm cos(kmz), (6)

where dm is the amplitude of modulation and km its spa-
tial frequency. Note that in this analytical study dm can
take arbitrary values since the method used is quite gen-

eral and there is no need to assume small values of dm.
The spatio-temporal characteristics of the solution (4)
are illustrated in Fig. 1 where the transition from the
generalized AB solutions (4) to the generalized PS solu-
tions (5) as η → A is shown for a modulation amplitude
dm = 2 and with z0 = 0. 2

Note that both the AB and the limiting PS display
multiple compression points, located at different values
of z, a phenomenon that does not occur in the standard
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FIG. 1. (Color online) Intensity of the solution (4) showing
the transition from generalized Akhmediev breather solutions
to the Peregrine solutions as a function of η, (a) η = 0.65, (b)
η = 0.85, (c) η = 0.95, (d) η = 0.99. The other parameters
are dm = 2, A = 1, z0 = 0, and km = π/4.

AB or PS of the NLSE with constant coefficients, which
displays a unique compression point. This new feature
of the generalized PS results from the longitudinal mod-
ulation in the coefficients in the NLSE and is strongly
linked to the value of dm, which determines the number
of compression points that occurs in generalized PS, as
is shown in the next section.

III. MULTIPLE COMPRESSION POINTS: THE
PEREGRINE COMB

We now consider the generalized PS of Eq. (5), with
z0 = 0, and the periodic dispersion coefficient given by
Eq. (6). At a fixed point z along the fiber, the maximum
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FIG. 2. (Color online) The shape of the generalized Peregrine
Rogue Wave (see Eq. (7)) as a function of z, with A = 1 and
km = π for dm = 0 (dashed line), and dm = 5 solid line.

value of the wave’s intensity is obtained at t = 0 and is
given by

|qPS(z, 0)|2 = |qPS|2max(z) =
9 + 40A4Z2 + 16A8Z4

(1 + 4A4Z2)2
A2,

(7)
where we have set

Z = z − dm
km

sin(kmz) = z

(
1− dm

sin(kmz)

kmz

)
. (8)

The above expression provides a first interesting result.
Indeed, this expression is easily seen to reach its maximal
value 9A2 whenever Z = 0. Hence the periodic variation
of the coefficients in the NLSE has no effect on the max-
imum intensity of the rogue wave, which is identical to
the one obtained in the case of constant coefficients. Note
that a similar result has been reported in [10] where the
NLSE has been considered in presence of a linear poten-
tial. On the other hand, the equation Z = 0 has, beyond
the obvious solution z = 0, several other solutions, pro-
vided dm > 1, as is readily seen from (8). We will refer
to those as the compression points of the RW. In other
words, when dm > 1, the amplitude |qPS(z, 0)| of the gen-
eralized PS has several absolute maxima as a function of
z. For such large values of the modulation, the shape
of the PS is drastically altered. This phenomenon is the
most striking new feature of the generalized Peregrine so-
lutions in (5). It will be analyzed in more detail below
and can be observed in the last panel of Figures 1 and
Fig. 2.

To better understand the temporal evolution of this
generalized PS as well as its spatial shape, it is convenient
to rewrite it in the following form:

qPS(z, t) =
2

W

1

1 +
(

t
W

)2 eiϕ1(z) −Aeiϕ0(z), (9)

with

ϕ1(z) = ϕ0(z) + tan−1(−2A2Z), (10)

W (z) =

√
1 + 4A4Z2

2A
. (11)

In this form, it is seen that the generalized PS is a su-
perposition of a CW and a pulse with characteristics W ,
2/W , that correspond to its temporal width, and its am-
plitude, respectively. In the temporal domain, the pulse
has a Lorentzian shape with width W , depending on z.
The shorter this pulse, the intenser it is, since its maximal
amplitude is given by 2/W . This shows the generalized
PS has the typical signature of a RW that “appears from
nowhere and disappears without a trace” [1]. Note that
W is a function of Z, which is therefore the variable that
controls the spatio-temporal behaviour of the pulse, as
well as of the full generalized PS. When dm = 0, so that
the NLSE has constant coefficients, the width W has a
unique minimum at z = 0, which is also the unique ab-
solute maximum of both the pulse and of the generalized
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FIG. 3. (Color online) Graph of |qPS(z, 0)|2 for values of dm
and km as indicated. Note the extra peaks close to ±kmz =
kmz1 = dm,1 ' 7.85 and to ±kmz = kmz2 = dm,2 ' 14.13.

PS amplitude |qPS| itself. As dm increases from dm = 0
to dm = 1, the pulse flattens at its top, until, as dm
increases beyond the critical value dm = 1, it gradually
develops two extra compression points close to the central
one at z = 0, which are symmetrically positioned around
the latter. To understand what happens for larger values
of dm, we proceed as follows. Whenever dm > 1, there
are several compression points, for each value of z 6= 0
for which Z = 0, corresponding to the solutions to

sin(kmz)

kmz
=

1

dm
.

Whereas an explicit closed form expression for the so-
lutions to this equation is not available, inspecting the
graph of the sinc functions, it is clear that, as dm is in-
creased, the number of solutions increases. It is easily
seen that the threshold values dm,` of dm for which an
extra pair of compression points appears are well approx-
imated by

dm,` =
π

2
+ 2`π, ` ≥ 1, (12)

corresponding to new compression points approximately
positioned at (see Fig. 3),

z = ±z` = ±dm,`

km
. (13)

As dm increases from dm,` to dm,`+1, the single compres-
sion point that formed close to z` splits in two, while a
new smaller peak slowly emerges in the shape of the gen-
eralized PS, close to the value z = z`+1. When dm reaches
the value dm,`+1, this new peak reaches the maximum
value 9A2. This can be observed in Fig. 3, for dm = 8,
which is situated between dm,1 ' 7.85 and dm,2 ' 14.13.
One notices in the figure that the compression point at
kmz ' 7.85 has started to split, whereas the local maxi-
mum at kmz ' 14.13 is quite visible already. Note that,
for large dm the spacing between the successive peaks
becomes approximately π/km, giving rise to a comblike
structure with a periodicity of half the wavelength of the
GVD modulation, that we shall refer to as the Peregrine
comb (see Fig. 4). The width of the teeth of the comb
scales as d−1m , as is readily checked.

IV. FURTHER PROPERTIES OF THE
GENERALIZED PEREGRINE SOLITONS

To shed further light on the spatio-temporal behaviour
of the generalized PS, it is instructive to introduce the
difference between the light intensity of the generalized
PS and the CW background as follows [24, 25]

∆Ic(t, z) = |qPS(t, z)|2 −A2

= 8A2 1 + 4A4Z2 − 4A2t2

[1 + 4A4Z2 + 4A2t2]
2 . (14)

It is easily checked that it possesses the property∫ +∞

−∞
∆Ic(t, z)dt = 0,

for all values of z. This is a reflection of the fact that the
energy of the pump is preserved along the fiber, in spite
of the periodic modulations in its physical characteristics.
It also implies that, at any value of z, the light intensity
of the generalized PS will be sometimes higher, and some-
times lower than the background intensity (see Fig. 5).
In particular, at compression points, when Z = 0, it will
be lower for all |t| ≥ 1/2A, to compensate for the very
short burst of high intensity around t = 0 (see Eq. (14)).

A related quantity, which is however not experimen-
tally easily accessible, is the energy of the Peregrine
pulse [24, 25]:

Epulse(z) =

∫ +∞

−∞
|qPS(t, z)− qPS(±∞, z)|2dt

=
4πA√

1 + 4A4Z2
. (15)

One notices that the energy of the pulse is a simple func-
tion of the width W and therefore clearly maximal at the
compression points Z = 0.

We expect the generalized PS to be unstable, which
poses the question whether it can be obtained with a nu-
merical integration of the NLSE. To check this, we have
taken the generalized PS (5) as initial condition, and sim-
ulated its subsequent evolution by numerically solving
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FIG. 4. (Color online) The shape of the Peregrine comb for
A = 1, dm = 20, and km = π/4 (see Eq. (7)).
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Eq. (1). The results are summarized in Fig. 6, which dis-
plays the intensity profile of the generalized PS obtained
numerically (Fig. 6(a)) as well as the analytical and nu-
merical pulse energy (red line and dotted black line, re-
spectively, in Fig. 6(b)). The analytically computed in-
tensity profile of the PS (5) is shown in Fig. 6(c). As
can be seen in the figure, the numerically computed PS
exhibits 3 compression points as expected for the value of
dm = 5 used. In addition, the numerical intensity profile
of Fig. 6(a) is in reasonable agreement with the analytical
one in Fig. 6(c). Similarly, the numerical and analytical
results displayed in Fig. 6(b) are in excellent agreement.

To end this section, we compute the frequency spec-
trum of the PS in (9), which is the most accessible phys-
ical quantity in experiments:

−5 0 5

0

2

4

6

8

z

∆
 I

c

FIG. 5. (Color online) The distribution of the difference be-
tween the light intensities of the PS and the CW background
at t = 0 given by (14). Parameters A = 1, km = π, dm = 0
(dashed line), and dm = 5 (solid line).

F (ω, z) =
1√
2π

∫ ∞
−∞

qPS(t, z)eiωtdt

=
√

2π

[
1− 2iA2Z√
1 + 4A4Z2

e−
1

2A |ω|
√
1+4A4Z2 −Aδ(ω)

]
eiϕ0(z). (16)

The Dirac delta function δ(ω) originates from the finite
background level. The modulus of this spectrum with
A = 1 is given by:

|F (ω, z)| =
√

2πe−0.5|ω|
√
1+4Z2

. (17)

The Dirac delta function is omitted here, so (17) rep-
resents the spectrum of the variable part of the solu-
tion. In the homogeneous case, the spectrum starts
with narrow spectral components and then spreads into
a triangular-type shape [6]. In the inhomogeneous case,
the rogue wave starts also with narrow spectral compo-
nents, but spreads and shrinks during the propagation
along the fiber, and eventually recovers the initial shape
(see Fig. 7(a)). As can be seen by comparing Fig. 3 and
Fig. 7, each nonlinear spreading in the spectrum is asso-
ciated with a corresponding maximal compression point.
Thus, when the amplitude of modulation increases, the
number of spectral components increases as shown in Fig.
7(b).

V. BEYOND INTEGRABILITY

The analytical expression (5) provides a solution of
the NLSE only if the integrability condition is satisfied.
However, this will rarely be the case in realistic situa-
tions, and in particular in optical fibers, where the non-
linearity coefficient R(z) cannot change sign. In this sec-
tion, we show that solutions with characteristics simi-
lar to those of the generalized PS can still be generated
in such cases. For that purpose, we first solve the di-
mensionless Eq. (1) by means of the split-step Fourier
method with the initial condition given by the PS (5) for

z0 = 1.25. The dispersion and nonlinear coefficients are
choosen as D2(z) = −1+6.6 cos(4πz) and R(z) = 1. Fig-
ure 8(a) shows the spatiotemporal evolution of the gener-
alized Peregrine solution in the nonintegrable case and we
observe that there still are multiple compression points.
From the numerical profile of the generalized Peregrine
solution, it can be seen that the number of peaks cor-
responding to the amplitude of modulation dm = 6.6 is
equal to three, in agreement with our theoretical predic-
tion.
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FIG. 6. (Color online) (a) Numerical solution of Eq. (1)
with initial condition given by the generalized Peregrine solu-
tion (5) at z = 0. (b) Pulse energy Epulse(z). (c) analytical
profile of the generalized Peregrine solution (5). The param-
eters are z0 = 2.5, dm = 5, km = 4π, and A = 1.
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FIG. 7. (Color online) The spectrum of the generalized Pere-
grine soliton log scale, i.e, log |F (ω, z)| with A=1. (a) dm = 5,
(b) dm = 10.

As a further illustration, we have chosen for D2 and
R values corresponding to those of an experimentally re-
alizable photonic crystal fiber with a GVD and nonlin-
ear coefficients that are periodically modulated along the
physical propagation axis z′ and the real time T . No-
tice that, the physical variables z′ and T are related to
the associated dimensionless quantities in Eq. (1) as

z = z′/LNL and t = T/
√

(|〈β2〉|LNL) where the nonlin-
ear characteristic length LNL = 1/(〈γ〉P0), and γ and P0

are the Kerr nonlinearity and the incident peak power,
respectively. We have assumed the air filling fraction
d/Λ = 0.4 (d is the air hole diameter, Λ is the hole pitch
of the periodic cladding) to be constant so that by vary-
ing Λ, d is adjusted accordingly. The modulation am-
plitude corresponds to ±12% of the average hole pitch
(Λ0 = 2 µm). By using the above characteristics of the
photonic crystal fiber, the periodic evolution of the GVD
and the nonlinear coefficient vs the longitudinal z′ axis
was calculated from the model [26] at the pump wave-
length λp = 1700 nm and pump power P0 = 1.7 W.
The results are shown in Figs. 9(a) and (b). As seen in
Fig. 9(a), the second-order dispersion β2(z′) undergoes,
when compared to its average value, large oscillations,
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FIG. 8. (Color online) Numerical solution of Eq. (1) in the
nonintegrable case with initial condition given by the gener-
alized Peregrine solution (5) at z = 0 with z0 = 1.25 and
A = 1, dm = 6.6, km = 4π.
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FIG. 9. (Color online) Evolution plots in experimental case
(a) dispersion in (s2/m), (b) nonlinearity in (W−1m−1),
(c) intensity in (W) of Peregrine soliton type solution for the
experimental parameter values as described in the text.

equivalent to dm ' 6.6 and km = 4π in Eq. (6). The rel-
ative longitudinal variations of the nonlinear coefficient
γ(z′) shown in Fig. 9(b) are much lower (' 0.004%), so
that the fiber can indeed be seen as a mainly dispersion-
managed device for which the nonlinear coefficient γ(z′)
can be taken to a good approximation to a constant. For
more details about the experiment see [15]. In this realis-
tic situation, the periodic coefficients β2(z′) and γ(z′) do
clearly not satisfy the integrability condition. We thus
use the results obtained in Figs. 9(a) and (b), and we
integrate numerically the inhomogeneous NLSE Eq. (1)
with the initial condition given by the generalized PS (5)
with z0 = 1.25, expressed in the original physical vari-
ables given above. The result is displayed in Fig. 9(c)
showing that the solution still generates multiple com-
pression points.

This result is of importance since it indicates that the
generalized PRW is a robust solution that persists in
situations where the integrability condition is not sat-
isfied. As a result, we expect that multiple compression
points could be observed in nonlinear fibers with peri-
odically modulated characteristics. Note that the stan-
dard (one compression point) PRW has been observed
recently [3, 7, 14] in optical nonlinear fibers, operating
in the anomalous dispersion regime with constant coeffi-
cients.

VI. CONCLUSION

We have carried out a theoretical investigation of the gen-
eralized Peregrine soliton of a completely integrable non-
linear Schrödinger equation with periodically varying co-
efficients. The most striking feature of this solution is the
existence of multiple compression points, corresponding
to points of maximal energy concentration, in contrast
with the unique compression point occurring in the case
with constant coefficients. The number of compression
points depends on the modulation amplitude but not on
the modulation frequency of the coefficients. The ampli-
tude of the solution at its compression points is identi-
cal to the one in absence of modulation. We have fur-
thermore demonstrated numerically that solutions with
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similar characteristics exist even when the NLSE is not
completely integrable and can occur also in physically
realizable photonic crystal fibers.
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