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Klt singularities of horospherical pairs

Boris Pasquier

September 22, 2015

Abstract

Let X be a horospherical G-variety and let D be an effective Q-divisor of X that is stable
under the action of a Borel subgroup B of G and such that D +KX is Q-Cartier. We prove,
using Bott-Samelson resolutions, that the pair (X,D) is klt if and only if ⌊D⌋ = 0.

1 Introduction

Let X be a normal algebraic variety over C and let D be an effective Q-divisor such that
D+KX is Q-Cartier. If the pair (X,D) has klt singularities (see Definition 2.1) then ⌊D⌋ = 0
(ie D =

∑
Di irreducible

aiDi with ai ∈ [0, 1[). The inverse implication is false in general.
In [AB04], V. Alexeev and M. Brion proved that, if X is a spherical G-variety and D be an
effective Q-divisor of X such that D+KX is Q-Cartier, ⌊D⌋ = 0 and D = DG+DB where DG

is G-stable and DB is stable under the action of a Borel subgroup B of G, then (X,DG+D′
B)

has klt singularities for general D′
B in |DB|.

Here, we prove that, if X is a horospherical G-variety and D be an effective Q-divisor of X
such that D+KX is Q-Cartier, ⌊D⌋ = 0 and D is stable under the action of a Borel subgroup
B of G, then the pair (X,D) has klt singularities.

The strategy of the proof is the following. In section 3, we recall the definitions and some
properties of Bott-Samelson resolutions of any flag variety G/P . In particular, they are log
resolutions and the klt singularity condition in the case of flag varieties becomes equivalent
to some inequalities on the root systems of G and P ⊂ G, which we prove in section 5. And
in section 4, we deduce the horospherical case from the case of flag varieties, using that any
horospherical variety admits a desingularization that is a toric fibration over a flag variety (ie
a fibration over a flag variety whose fiber is a smooth toric variety).

2 Notations and definitions

In all the paper, varieties are algebraic varieties over C.
We first recall the definition of klt singularities.

Definition 2.1. Let X be a normal variety and let D be an effective Q-divisor such that
KX + D is Q-Cartier. The pair (X,D) is said to be klt (Kawamata log terminal) if for any
resolution f : V −→ X of X such that KV = f∗(KX +D) +

∑
i∈E aiEi where the Ei’s are

distinct irreducible divisors, we have ai > −1 for any i ∈ E .

Remark 2.2. 1. In fact, it is enough to check the above property for one log-resolution
to say that a pair (X,D) is klt. A log-resolution of (X,D) is a resolution f such that,
the exceptional locus Exc(f) of f is of pure codimension one and the divisor f−1

∗ (D) +∑
E⊂Exc(f)E has simple normal crossings (where f−1

∗ (D) is the strict transform of D by

f).
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2. The condition ”ai > −1 for any i ∈ E” can be replaced by: ⌊D⌋ = 0 and for any i ∈ E
such that Ei is exceptional for f , ai > −1.

In all the paper, G denotes a connected reductive algebraic group over C.
Let T be a maximal torus in G and let B be a Borel subgroup of G containing T . We

denote by R the root system of (G,B, T ), by R+ the set of positive roots and by S the set of
simple roots. For any simple root α ∈ S we denote by sα the corresponding simple reflection
of the Weyl group W = NG(T )/T . By abuse of notation, for any w in W , we still denote by
w one of its representative in G. We denote by w0 the longest element of W .

Let P be a parabolic subgroup of G that contains B. Denote by I the set of simple roots
of P (in particular, if P = B we have I = ∅ and, if P = G we have I = S). Denote by WP

the subgroup of W generated by {sα | α ∈ I}. Also denote by WP the quotient W/WP and
denote by wP

0 the longest element of WP .
The Bruhat decomposition of G in B×B-orbits gives the following decomposition of G/P :

G/P =
⊔

w∈WP

BwP/P.

Moreover the dimension of a cell BwP/P equals the length of w. In particular, the length of
wP

0 is the dimension of G/P and irreducible B-stable divisors of G/P are the closures of the
cells Bsαw

P
0 P/P with α ∈ S\I. We denote them by Dα.

A horospherical variety X is a normal G-variety with an open G-orbit isomorphic to a
torus fibration G/H over a flag variety G/P (ie P/H is a torus). The irreducible divisors
of such X that are B-stable but not G-stable, are the closures in X of the inverse images in
G/H of the Schubert divisors Dα of G/P defined above. We still denote them by Dα, with
α ∈ S\I.

If X and Y are varieties such that a parabolic subgroup P have a right action on X and
a left action on Y , we denote by X ×P Y the quotient of the product X × Y by the following
equivalences:

∀(x, y) ∈ X × Y, ∀P ∈ P, (x, y) ∼ (x · p, p−1 · y).

3 Bott-Samelson desingularizations and klt pairs of flag

varieties

In that section, we prove the following result.

Theorem 3.1. Let D =
∑

α∈S\I dαDα be a B-stable Q-divisor of G/P such that ∀α ∈

S\I, dα ∈ [0, 1[.
There exists a B-stable log-resolution φ : Z/P −→ G/P of (G/P,D), where Z is a variety

with a right action of P and a left action of B, such that the exceptional divisors of φ are the
quotient by P of irreducible divisors of Z, and such that KZ/P − π∗(KG/P +D) =

∑
i∈E aiEi

where for any i ∈ E, ai > −1 and Ei is an irreducible divisor of f .
In particular the pair (G/P,D) is klt.
Moreover, for any i ∈ E, Ei is the quotient of an exceptional B × P -stable divisor Fi of Z

by P (left action of B and right action of P ).

Remarks 3.2. (i) In general,
∑

α∈S\I Dα is not a simple normal crossingQ-divisor ofG/P .

Then, it is not enough to know that G/P is smooth to say that (G/P,D) is klt, when
D 6= 0.

(ii) Since D is globally generated, then (G/P,D′) is klt for a general D′ in |D| (consequence
of [Laz04, Lemma 9.1.9]). We can generalized this remark to spherical pairs, see [AB04,
Theorem 5.3].
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To prove Theorem 3.1, we use a Bott-Sameslon resolution of G/P . Bott-Samelson resolu-
tion of Schubert varieties of G/B have been introduced by M. Demazure in [Dem74]. Here,
we use the easy (and well-known) generalization of his work to G/P . And we choose the
equivalent definition of Bott-Samelson resolutions that is now used in almost all papers on the
topic.

For any simple root α, we denote by Pα the minimal parabolic subgroup containing B such
that α is a simple root of Pα.

Definition 3.3. Let sα1sα2 · · · sαN
be a reduced decomposition of wP

0 with α1 . . . , αN in S.
We define the Bott-Samelson variety BS to be the quotient of Pα1 × Pα2 × · · · × PαN

by the
right action of BN given by,

(p1, p2, . . . , pN) · (b1, b2, . . . , bN ) = (p1b1, b
−1
1 p2b2, . . . , b

−1
N−1pNbN ).

The map φ′ : BS −→ G/P that sends (p1, p2, . . . , pN) to p1p2 · · · pNP/P is well-defined
and birational (it is an isomorphism from the quotient of Bsα1B ×Bsα2B × · · · ×BsαN

B by
the right action of BN to BwP

0 /P ). (We can decompose this map by the usual map from V

to the Schubert variety BwP
0 B/B of G/B and the projection map from G/B to G/P .)

Hence, to get Z as in Theorem 3.1, we define Z to be the quotient of Pα1 × · · · × PαN−1 ×
PαN∪I by the right action of BN−1 given by,

(p1, . . . , pN ) · (b1, b2, . . . , bN−1) = (p1b1, . . . , b
−1
N−1pN ).

Then, since PαN∪I/P = PαN
P/P ≃ PαN

/B, the B-varieties Z/P and BS are isomorphic and
φ : Z/P −→ G/P that sends (p1, . . . , pN ) to p1 · · · pNP/P is well-defined and birational.

The lines bundles and divisors Bott-Samelson varieties are well-known, so that we can
describe the lines bundles of Z/P , and the divisors of Z/P and Z.

Proposition 3.4. For any i ∈ {1, . . . , N − 1}, we define Fi to be the B × P -stable divisor of
Z defined by pi ∈ B; and we define FN to be the B×P -stable divisor of Z defined by pN ∈ P .

Then, we can also define Ei to be the B-stable divisor Fi/P of Z/P . Moreover, the B-stable
irreducible divisors of Z/P are the Ei’s with i ∈ {1, . . . , N}, and the family (Ei)i∈{1,...,N} is a
basis of the cone of effective divisors of Z/P .

First remark that the divisor
∑N

i=1 Ei is clearly a simple normal crossing divisor. Also,
since G/P is smooth and by [Kol96, VI.1, Theorem 1.5], we know that the exceptional locus
of φ is of pure codimension one, so it is the union of the Ei’s contracted by φ.

Now, let λ be a character of P . It defines a line bundle LG/P (λ) on G/P (where P acts
on the fiber over P/P by the character λ). And by pull-back by φ, it defines a line bundle
LZ/P (λ) on Z/P .

The total space of LZ/P (λ) is the quotient of Pα1 × · · · × PαN−1 ×PαN∪I ×C by the right
action of BN−1 × P given by,

(p1, . . . , pN , z) · (b1, . . . , bN−1, p) = (p1b1, b
−1
1 p2b2, . . . , b

−1
N−1pNp, λ(p)z).

By [Dem74, Section 2.5, Proposition 1] adapted to our notation and by induction on N ,
we have the following result.

Proposition 3.5. Let λ be a character of P . Then LG/P (λ) is the line bundle associated to
the B-stable divisor Dλ :=

∑
α∈S\I〈λ, α

∨〉Dα.

Moreover, φ∗(Dλ) =
∑N

i=1〈λ, β
∨
i 〉Ei, where for any i ∈ {1, . . . , N}, βi = sα1 · · · sαi−1(αi).
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If I ⊂ S, we denote by R+
I the set of positive roots generated by simple roots of I. Then

we define ρ to be the half sum of positive roots, and ρP to be the half sum of positive roots
that are not in R+

I (in particular, ρB = ρ).
It is well known that an anticanonical divisor of G/P is D2ρP . Anticanonical divisors of

Bott-Sameslon resolutions are also well-known.

Proposition 3.6. ([Ram85, Proposition 2]) An anticanonical divisor of Z/P is φ∗(Dρ) +∑N
i=1 Ei.

Corollary 3.7. The pair (G/P,D) (with ⌊D⌋ = 0 as in Theorem 3.1) is klt if and only if for
any β in R+\R+

I ,

〈2ρP − ρ−
∑

α∈S\I

dα̟α, β
∨〉 > 0.

Proof. By Propositions 3.5 and 3.6, we get

KZ/P − φ∗(KG/P +D) = −φ∗(Dρ)−
∑N

i=1 Ei + φ∗(D2ρP )− φ∗(D)

= φ∗(D2ρP −ρ−
∑

α∈S\I dα̟α
)−

∑N
i=1 Ei

=
∑N

i=1(〈2ρ
P − ρ−

∑
α∈S\I dα̟α, β

∨
i 〉 − 1)Ei.

We conclude by remarking that, since sα1sα2 · · · sαN
is a reduced expression of wP

0 , the set
{βi | i = 1 · · ·N} is R+\R+

I .

The condition of Corollary 3.7 is always satisfied by Theorem 5.1 and the hypothesis that
⌊D⌋ = 0. Then Theorem 3.1 is proved.

4 Horospherical pairs

From the classification of horospherical G-varieties, the description of G-equivariant mor-
phisms between horospherical G-varieties, the description of B-stable Cartier divisor of horo-
spherical G-varieties and the description of a B-stable anticanonical divisor of horospherical
G-varieties (see for example [Pas08]), we have the following result.

Proposition 4.1. Let X be a horospherical G-variety with open G-orbit isomorphic to G/H,
torus fibration over the flag variety G/P . Then, there exists a smooth toric P/H-variety Y and
a G-equivariant birational morphism f from the smooth horospherical G-variety V := G×P Y
to X, such that the exceptional locus of f is of pure codimension one.

Let D be a B-stable effective Q-divisor of X such that ⌊D⌋ = 0. Write KV −f∗(KX+D) =
−f−1

∗ (D)+
∑

i∈E aiVi. Then, for any i ∈ E, Vi is exceptional and G-stable, in particular there
exists a P -stable divisor Yi of Y such that Vi = G×P Yi. Moreover, ai > −1 for any i ∈ E.

We do not want here to recall the long description and theory of horospherical varieties.
To get more details, see for example [Pas08] or [Pas15].

Proof. With the description in terms of colored fans of horospherical G-varieties and G-
equivariant morphisms between them, Y can be chosen as the toric P/H-variety associated to
a smooth subdivision FY of the fan associated to the colored fan FX of X . Then we clearly
have that V := G ×P Y is smooth and associated to the fan FY considered as a colored fan
without color. In particular, there exists a G-equivariant morphism from V := G×P Y to X .

Moreover, we can choose FY such that:

• each image of a color of FX is in an edge of FY and,

• each cone of FY that is not a cone of FX contains an edge that is in FY but not in FX .
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These two conditions implies that the exceptional locus of f is of pure codimension one.

Any exceptional divisor Vi of f is G-stable and of the form G×P Yi where Yi is a P -stable
divisor of Y .

It remains to prove that ai > −1 for any i ∈ E . We use that −KX =
∑m

i=1 Xi +∑
α∈S\I aαDα where the Xi’s are the G-stable irreducible divisors ofX and the aα are positive

integers. Similarly, with our notation, KV = −
∑m

i=1 Xi −
∑

i∈E f
−1
∗ (Xi) −

∑
α∈S\I aαDα.

In particular, by hypothesis on D, we remark that the divisor −KX −D is strictly effective
(ie,

∑m
i=1 biXi +

∑
α∈S\I bαDα, with bi > 0 for any i ∈ {1, . . . ,m} and bα > 0 for any α ∈

S\I) and then, by the description of pull-backs of B-stable divisors of horospherical varieties,
f∗(−KX −D) is also strictly effective. Hence, we have ai > −1 for any i ∈ E .

Theorem 4.2. Let X be a horospherical G-variety. Let D be any B-stable Q-divisor D of X
such that ⌊D⌋ = 0, then (X,D) has klt singularities.

Proof. Let f be as in Proposition 4.1 and let Z be as in Theorem 3.1. Define V ′ := Z ×P Y
and let π : V ′ −→ V the natural B-equivariant morphism defined from φ.

We first prove that the B-equivariant morphism f ◦ π : V ′ −→ X is a log resolution of
(X,D). By composition, it is clearly a birational morphism and its exceptional locus is the
union of the inverse images Z×P Yi of the exceptional divisors of f and the exceptional divisors
Fi ×P Y of π (the exceptional locus of π is of pure codimension one because V is smooth).

The divisor (f ◦ π)−1
∗ (D) +

∑
E∈Exc(f◦π)E is a B-stable divisor of V ′ and then has simple

normal crossings. Indeed, a B-stable irreducible divisor of V ′ is either Fi ×P Y where Fi is
one of the B-stable irreducible divisors of Z described in Proposition 3.4, or Z ×P Yi where
Yi is a P -stable divisor of Y . (Recall that, any divisor of a smooth toric variety that is stable
under the action of the torus has simple normal crossings, because such a variety is everywhere
locally isomorphic to Cn with the natural action of (C∗)n.)

Since D is B-stable, we have D =
∑m

i=1 diXi +
∑

α∈S\I dαDα where the Xi’s are the
G-stable irreducible divisors of X . We denote by DB the B-stable but not G-stable part∑

α∈S\I dαDα of D. Then we decompose KV ′ − (f ◦ π)∗(KX +D) as follows:

(KV ′ − π∗(KV + f−1
∗ (DB))) + π∗(KV − f∗(KX +D) + f−1

∗ (DB)).

By Proposition 4.1, KV − f∗(KX + D) + f−1
∗ (DB) =

∑
i∈E aiVi, where for any i ∈ E ,

ai > −1 and Vi = G×P Yi with some P -stable irreducible divisor Yi of Y . We remark that the
inverse image of Vi by π is the irreducible divisor Z ×P Vi so that π∗(Vi) = Z ×P Yi. Hence,
π∗(KV − f∗(KX +D) + f−1

∗ (D)) =
∑

i∈E aiZ ×P Yi.

To compute KV ′ −π∗(KV +f−1
∗ (DB)), we use the fibrations p : V = G×P Y −→ G/P and

p′ : V ′ = Z ×P Y −→ Z/P , which have the same fiber. To summarize, we get the following
commutative diagram.

V ′ = Z ×P Y
π

//

p′

��

V = G×P Y
f

//

p

��

X

Z/P
φ

// G/P

In particular, we have KV = p∗(KG/P ) +Kp and KV ′ = p∗(KZ/P ) +Kp′ . Moreover, the
relative canonical divisors Kp′ and Kp satisfy Kp′ = π∗(Kp).
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Moreover, for any B-stable irreducible divisor D of V that is not G-stable, D is the pull-
back by p of a Schubert divisor of G/P , in particular D = p∗(p∗(D)).

Hence, we get

KV ′ − π∗(KV + f−1
∗ (DB)) = p′∗(KZ/P ) +Kp′ − π∗p∗(KG/P )− π∗(Kp)− π∗(f−1

∗ (DB))

= p′∗(KZ/P ) + π∗(Kp)− p′∗φ∗(KG/P )− π∗(Kp)

− π∗(p∗p∗(f
−1
∗ (DB)))

= p′∗(KZ/P − φ∗(KG/P + p∗(f
−1
∗ (DB))).

Remark that ⌊p∗(f−1
∗ (DB)⌋ = ⌊DB⌋, so that by Theorem 3.1, we get KZ/P − φ∗(KG/P +

p∗(f
−1
∗ (DB)) =

∑
i∈E′ aiFi/P , where for any i ∈ E ′, we have ai > −1 and Fi is a B×P -stable

irreducible divisor of Z.
Hence, we have KV ′ − π∗(KV + f−1

∗ (DB)) =
∑

i∈E′ aiFi ×P Y .
And finally, we have

KV ′ − (f ◦ π)∗(KX +D) =
∑

i∈E′

aiFi ×
P Y +

∑

i∈E

aiZ ×P Yi,

with, for any i ∈ E ′ ∪ E , ai > −1.

5 A result on root systems

In that independent section, we prove the result that permits to deduce Theorem 3.1 from
Corollary 3.7. We keep notations of section 2 and we recall that, if I ⊂ S, we denote by R+

I

the set of positive roots generated by simple roots of I, ρ denotes the half sum of positive
roots, and ρP denotes the half sum of positive roots that are not in R+

I .

Theorem 5.1. For any (proper) parabolic subgroup P of G containing B, and for any β in
R+\R+

I ,

〈2ρP − ρ−
∑

α∈S\I

̟α, β
∨〉 ≥ 0. (5.1.1)

Note that ρ =
∑

α∈S ̟α and that 2ρP = 2ρ−
∑

γ∈R+
I
γ = 2

∑
α∈S ̟α−

∑
γ∈R+

I
γ. Hence,

equation 5.1.1 is equivalent to

〈
∑

α∈I

̟α −
∑

γ∈R+
I

γ, β∨〉 ≥ 0. (5.1.2)

Denote by fI(β
∨) the integer 〈

∑
α∈I ̟α −

∑
γ∈R+

I
γ, β∨〉.

Remarks 5.2. (i) If I = ∅ (ie if P = B), equations 5.1.1 and 5.1.2 are trivially satisfied.

(ii) If β ∈ R+
I then fI(β

∨) = −〈
∑

α∈I ̟α, β
∨〉 and is negative.

(iii) If β∨ = β∨
1 + β∨

2 , with β1 and β2 in R+, then fI(β
∨) = fI(β

∨
1 ) + fI(β

∨
2 ). In particular,

if β1 and β2 are not in R+
I , and if equation 5.1.2 is satisfied for β1 and β2, the it is also

satisfied for β.

(iv) If I is the disjoint union of I1 and I2, such that for any α1 ∈ I1 and α2 ∈ I2, we
have 〈α1, α

∨
2 〉 = 0, then fI(β

∨) = fI1(β
∨) + fI2(β

∨), and β ∈ R+\R+
I if and only if

β ∈ R+\R+
I1

and β ∈ R+\R+
I2
. It implies that, it is enough to prove Theorem 5.1 in

the case where the subgraph of the Dynkin diagram with vertices in I (and all possible
vertices) is connected. By abuse of language, we will say that I is connected.

To restrict again the cases where we have to prove Theorem 5.1, we give the following
lemma.
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Lemma 5.3. Denote by Supp(β∨) the support of β∨, ie the set of simple roots α ∈ S such
that 〈̟α, β

∨〉 6= 0.
For any β ∈ R+\R+

I ,

fI(β
∨) ≥ fI∩Supp(β∨)(β

∨) (and β ∈ R+\R+
I∩Supp(β∨)).

For any positive root γ, we denote by sγ the reflection such that, for any δ ∈ R, sγ(δ) =
δ − 〈δ, γ∨〉γ. Note also that, for any δ ∈ R, sγ(δ

∨) = δ∨ − 〈γ, δ∨〉γ∨.

Proof of Lemma 5.3. First we compute easily that

fI(β
∨)− fI∩Supp(β∨)(β

∨) = −〈
∑

γ∈R+
I \R+

I∩Supp(β∨)

γ, β∨〉.

Let γ ∈ R+
I \R

+
I∩Supp(β∨) (if it exists, if not we have nothing to prove). Then, since

sγ(β) = β − 〈β, γ∨〉γ is still in R+\R+
I , we must have 〈γ, β∨〉 ≤ 0.

We conclude that fI(β
∨)− fI∩Supp(β∨)(β

∨) ≥ 0.

To summarize, it is enough to prove Theorem 5.1 when I is connected and included in the
support of β∨. In particular, now, the result when β is a simple root is reduced to the case
where I = ∅ and known by Remark 5.2(i). Other small cases can be proved easily.

Proposition 5.4. If I = {α}, for any β in R+\R+
I , we have fI(β

∨) ≥ 0.

Proof. We compute in that case that fI(β
∨) = 〈̟α −α, β∨〉 = 〈sα(̟α), β

∨〉 = 〈̟α, sα(β
∨)〉.

But sα(β
∨) is a positive coroot (because β ∈ R+\R+

I and α ∈ I), and then fI(β
∨) ≥ 0.

Corollary 5.5. For any I and for any β in R+\R+
I such that Supp(β∨) is of cardinality 2,

we have fI(β
∨) ≥ 0.

Proof. We can suppose that I ⊂ Supp(β∨). If I = ∅ or if I = Supp(β∨) it is obvious. Then,
the only case remained is the case where I is of cardinality one, and we conclude by the
proposition.

The strategy to prove most of cases is to use Remark 5.2(iii) and make a proof by induction
on the cardinality of the support of β∨.

We define the type of β∨ (or β) to be the type of the root system generated by the simple
roots of the support of β∨.

Proposition 5.6. For any I, for any β ∈ R+\R+
I of type A, we have fI(β

∨) ≥ 0.

Proof. For type A1 and A2, we already proved it. Let n ≥ 3. And suppose that, for any I,
for any β ∈ R+\R+

I of type An−1, we have fI(β
∨) ≥ 0.

Write β∨ = α∨
1 + · · · + α∨

n with Bourbaki’s notation ([Bou75]). We can assume that
I  Supp(β∨) and that I is connected. In particular α1 or αn is not in I. By symmetry, we
can suppose that α1 /∈ I.

Note now that β∨ = α∨
1 + (α∨

2 + · · ·+α∨
n). Then by Remark 5.2(iii), if α∨

2 + · · ·+ α∨
n is in

R+\R+
I , we get fI(β

∨) ≥ 0 by induction hypothesis.
And if α∨

2 + · · ·+ α∨
n is not in R+\R+

I , then it is in R+
I ; in particular, I = {α2, . . . , αn}.

By computation, we get that

fI(β
∨) = fI(α

∨
1 ) + fI(α

∨
2 + · · ·+ α∨

n) = (0 − (−(n− 1)) + (−(n− 1)) = 0.

(We use Remark 5.2(ii) to compute fI(α
∨
2 + · · ·+ α∨

n).)
We have proved that, for any I, for any β ∈ R+\R+

I of type An, we have fI(β
∨) ≥ 0.
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We prove, in a very similar way, the same result in types B, C and D.

Proposition 5.7. For any I, for any β ∈ R+\R+
I of type B, we have fI(β

∨) ≥ 0.

Proof. For type B2, we already proved it (Corollary 5.5). Let n ≥ 3. And suppose that, for
any I, for any 2 ≤ m ≤ n− 1 and for any β ∈ R+\R+

I of type Bm, we have fI(β
∨) ≥ 0.

If β∨ is of type Bn, then it is one of the following coroot of Bn with i ∈ {1, . . . , n} (still
with Bourbaki’s notation ([Bou75]):

β∨
i = α∨

1 + · · ·+ α∨
i−1 + 2α∨

i + · · ·+ 2α∨
n−1 + α∨

n .

We can assume that I  Supp(β∨) and that I is connected. In particular α1 or αn is not in
I.

• Suppose first that α1 /∈ I.

If i 6= 1 then β∨
i = α∨

1 +(α∨
2 +· · ·+α∨

i−1+2α∨
i +· · ·+2α∨

n−1+α∨
n). Then by Remark 5.2(iii),

if α∨
2 + · · · + α∨

i−1 + 2α∨
i + · · · + 2α∨

n−1 + α∨
n is in R+\R+

I , we get that fI(β
∨
i ) ≥ 0 by

induction hypothesis. Else, I = {α2, . . . , αn} and we compute that

fI(β
∨
i ) = fI(α

∨
1 ) + fI(α

∨
2 + · · ·+ α∨

i−1 + 2α∨
i + · · ·+ 2α∨

n−1 + α∨
n)

= (2n− 3)− (2n− i− 1) = i − 2 ≥ 0.

If i = 1 then β∨
1 = α∨

1 + β∨
2 , and we conclude by the previous case.

• Suppose now that αn /∈ I. Then β∨
i = (α∨

1 + · · ·+ α∨
n−1) + (α∨

i + · · ·+ α∨
n).

If i > 1 and α∨
1 + · · ·+ α∨

n−1 is in R+\R+
I , we get that fI(β

∨
i ) ≥ 0 with Proposition 5.6

(α∨
1 + · · ·+α∨

n−1 is of type An−1) and by induction hypothesis (α∨
i + · · ·+α∨

n is of type
Bn−i+1 or A1).

If i = 1, and α∨
1 + · · ·+α∨

n−1 is in R+\R+
I , we get that fI(β

∨
1 ) ≥ 0 with Proposition 5.6

and using that we have just proved in the latter paragraph (fI(β
∨
n ) ≥ 0).

If α∨
1 + · · ·+ α∨

n−1 is not in R+\R+
I , then I = {α1, . . . , αn−1}, and we compute that

fI(β
∨
i ) = fI(α

∨
1 + · · ·+ α∨

n−1) + fI(α
∨
i + · · ·+ α∨

n−1) + fI(α
∨
n)

= −(n− 1)− (n− i) + 2(n− 1) = i− 1 ≥ 0.

Proposition 5.8. For any I, for any β ∈ R+\R+
I of type C, we have fI(β

∨) ≥ 0.

Proof. For type C2, we already proved it (Corollary 5.5). Let n ≥ 3. And suppose that, for
any I, for any 2 ≤ m ≤ n− 1 and for any β ∈ R+\R+

I of type Cm, we have fI(β
∨) ≥ 0.

If β∨ is of type Cn, then it is one of the following coroot of Cn with i ∈ {1, . . . , n}:

β∨
i = α∨

1 + · · ·+ α∨
i + 2α∨

i+1 + · · ·+ 2α∨
n .

We can assume that I  Supp(β∨) and that I is connected. In particular α1 or αn is not in
I.

• Suppose first that α1 /∈ I.

If i ≥ 2 we can write β∨
i = α∨

1 + (α∨
2 + · · · + α∨

i + 2α∨
i+1 + · · · + 2α∨

n). Then, if

α∨
2 + · · · + α∨

i + 2α∨
i+1 + · · ·+ 2α∨

n is in R+\R+
I , we get that fI(β

∨
i ) ≥ 0 by induction

hypothesis. Else, I = {α2, . . . , αn} and we compute that

fI(β
∨
i ) = fI(α

∨
1 )+fI(α

∨
2 +· · ·+α∨

i +2α∨
i+1+· · ·+2α∨

n) = 2(n−1)−(2n−i−1) = i−1 > 0.

If i = 1 we can write β∨
1 = (α∨

1 + α∨
2 ) + (α∨

2 + · · · + α∨
i + 2α∨

i+1 + · · · + 2α∨
n). If

α∨
2 + · · · + α∨

i + 2α∨
i+1 + · · ·+ 2α∨

n is in R+\R+
I , we get that fI(β

∨
1 ) ≥ 0 by induction

hypothesis (and the result in type A2). Else, I = {α2, . . . , αn} and we compute that

fI(β
∨
1 ) = fI(α

∨
1 ) + fI(α

∨
2 ) + fI(α

∨
2 + 2α∨

3 + · · ·+ 2α∨
n) = 2(n− 1)− 1− (2n− 3) = 0.
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• Suppose now that αn /∈ I.

If i = n we can write β∨
n = (α∨

1 + · · · + α∨
n−1) + α∨

n . Then, if α∨
1 + · · · + α∨

n−1 is in
R+\R+

I , we get that fI(β
∨
n ) ≥ 0 with Proposition 5.6. Else, I = {α1, . . . , αn−1} and we

compute that

fI(β
∨
n ) = fI(α

∨
1 + · · ·+ α∨

n−1) + fI(α
∨
n) = −(n− 1) + (n− 1) = 0.

If i ≤ n−1 we can write β∨
n−1 = β∨

n+(αi+1+· · ·+α∨
n) and fI(β

∨
i ) = fI(β

∨
n )+fI(α

∨
n) ≥ 0

by induction hypothesis (α∨
i+1 + · · · + α∨

n is of type Bn−i) and using that we have just
proved in the latter paragraph.

Proposition 5.9. For any I, for any β ∈ R+\R+
I of type D, we have fI(β

∨) ≥ 0.

Proof. Let n ≥ 4. And suppose that, for any I, for any 4 ≤ m ≤ n−1 and for any β ∈ R+\R+
I

of type Dm, we have fI(β
∨) ≥ 0. If β∨ is of type Dn, then it is one of the following coroot of

Dn with i ∈ {1, . . . , n− 2}:

β∨
i = α∨

1 + · · ·+ α∨
i + 2α∨

i+1 + · · ·+ 2α∨
n−2 + α∨

n−1 + α∨
n .

We can assume that I  Supp(β∨) and that I is connected. In particular α1, αn−1 or αn is
not in I. By symmetry, we can suppose that α1 or αn is not in I

• Suppose first that α1 /∈ I.

If i ≥ 2 we can write β∨
i = α∨

1 +(α∨
2 + · · ·+α∨

i +2α∨
i+1+ · · ·+2α∨

n−2+α∨
n−1+α∨

n). Then,

if α∨
2 + · · ·+α∨

i +2α∨
i+1+ · · ·+2α∨

n−2+α∨
n−1+α∨

n is in R+\R+
I , we get that fI(β

∨
i ) ≥ 0

by induction hypothesis (or, if n = 4, by the result in type A3). Else, I = {α2, . . . , αn}
and we compute that

fI(β
∨
i ) = fI(α

∨
1 ) + fI(α

∨
2 + · · ·+ α∨

i + 2α∨
i+1 + · · ·+ 2α∨

n−2 + α∨
n−1 + α∨

n)

= 2(n− 2)− (2n− i− 3) = i− 1 > 0.

If i = 1 we can write β∨
1 = (α∨

1 +α∨
2 )+(α∨

2 + · · ·+α∨
i +2α∨

i+1+ · · ·+2α∨
n−2+α∨

n−1+α∨
n).

If α∨
2 + · · ·+α∨

i +2α∨
i+1+ · · ·+2α∨

n−2+α∨
n−1+α∨

n is in R+\R+
I , we get that fI(β

∨
1 ) ≥ 0

by induction hypothesis (or, if n = 4, by the result in type A3; and the result in type
A2). Else, I = {α2, . . . , αn} and we compute that

fI(β
∨
1 ) = fI(α

∨
1 ) + fI(α

∨
2 ) + fI(α

∨
2 + 2α∨

3 + · · ·+ 2α∨
n−2 + α∨

n−1 + α∨
n)

= 2(n− 2)− 1− (2n− 5) = 0.

• Suppose now that αn /∈ I.

We can always write β∨
i = (α∨

1 + · · ·+α∨
n−1)+(αi+1+ · · ·+α∨

n−2+α∨
n). If α

∨
1 + · · ·+α∨

n−1

is in R+\R+
I , we get that fI(β

∨
i ) ≥ 0 with Proposition 5.6. Else, I = {α1, . . . , αn−1}

and we compute that

fI(β
∨
i ) = fI(α

∨
1 + · · ·+ α∨

n−1) + fI(α
∨
i+1 + · · ·+ α∨

n−2) + fI(α
∨
n)

= −(n− 1)− (n− i − 2) + 2(n− 2) = i− 1 ≥ 0.

It remains the four exceptional cases E6, E7, E8 and F4 (the result in type G2 is already
known by Corollary 5.5).

Proposition 5.10. For any I, for any β ∈ R+\R+
I of type E, we have fI(β

∨) ≥ 0.
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Proof. Let n ∈ {6, 7, 8}. And suppose that, for any I, for any 6 ≤ m ≤ n − 1 and for any
β ∈ R+\R+

I of type Em, we have fI(β
∨) ≥ 0. Let β∨ be of type En, we still use Bourbaki’s

notation. We can assume that I  Supp(β∨) and that I is connected. In particular α1, α2

or αn is not in I.

• Case 1: α1 /∈ I and 〈̟α1 , β
∨〉 = 1.

Let β∨
2 be the maximal coroot of R+

{α2,...,αn}
smaller than β∨. Then, it is easy to check

that β∨
2 is of type Dn−1. In particular, by Proposition 5.9, if I 6= {α2, . . . , αn}, we have

fI(β
∨
2 ) ≥ 0.

It is also not difficult (just a little long) to check that β∨
1 := β∨ − β∨

2 is a coroot such
that 〈̟α1 , β

∨
1 〉 = 1 and of one of the following types: A1, A2, A3 and A4, for any

n ∈ {6, 7, 8}; A5 and D5 only for n ∈ {7, 8}; and E6 only for n = 8. In particular, β∨
1 is

in R+\R+
I . Then, by Propositions 5.6 and 5.9, and also by induction when n = 8, we

have fI(β
∨
1 ) ≥ 0.

Hence, by Remark 5.2(iii), we only have to check the case where I = {α2, . . . , αn}. For
such I, we compute that

fI(β
∨) = fI(α

∨
1 ) + fI(β

∨
1 − α∨

1 ) + fI(β
∨
2 ) =

(n− 1)(n− 2)

2
− 〈

n∑

i=2

̟αi
, β∨

1 − α∨
1 + β∨

2 〉.

To conclude Case 1, we check that, for each β∨ here, (n−1)(n−2)
2 − 〈

∑n
i=2 ̟αi

, β∨〉 ≥ 0:

for n = 6, (n−1)(n−2)
2 = 10 and 〈

∑n
i=2 ̟αi

, β∨〉 ≤ 10; for n = 7, (n−1)(n−2)
2 = 15 and

〈
∑n

i=2 ̟αi
, β∨〉 ≤ 15 (with the hypothesis 〈̟α1 , β

∨〉 = 1); and for n = 8, (n−1)(n−2)
2 =

21 and 〈
∑n

i=2 ̟αi
, β∨〉 ≤ 21 (still with the hypothesis 〈̟α1 , β

∨〉 = 1).

• Case 2: α1 /∈ I and 〈̟α1 , β
∨〉 = 2 (and then n ∈ {7, 8}).

Let β∨
2 be the maximal coroot of R+ smaller than β∨ such that 〈̟α1 , β

∨
2 〉 = 1. In

particular, by Case 1, fI(β
∨
2 ) ≥ 0. It is not difficult to check that β∨

1 := β∨ − β∨
2 is a

coroot such that 〈̟α1 , β
∨
1 〉 = 1 and of one of the following types: A1 for any n ∈ {7, 8};

and Ai with i ∈ {2, . . . , 7} only for n = 8. In particular, β∨
1 is in R+\R+

I . Then, by
Proposition 5.6, we have fI(β

∨
1 ) ≥ 0.

Then, we conclude that case by Remark 5.2(iii).

• Case 3: α2 /∈ I and 〈̟α2 , β
∨〉 = 1.

Let β∨
2 be the coroot α∨

1 +α∨
3 +· · ·+α∨

n (of type An−1). In particular, by Proposition 5.9,
if I 6= {α1, α3, . . . , αn}, we have fI(β

∨
2 ) ≥ 0.

It is not difficult to check that β∨
1 := β∨ − β∨

2 is a coroot such that 〈̟α2 , β
∨
1 〉 = 1

and of one of the following types: A2, A3 and D4 for any n ∈ {6, 7, 8}; A4 and D5

only for n ∈ {7, 8}; and D6 only for n = 8. In particular, β∨
1 is in R+\R+

I . Then, by
Propositions 5.6 and 5.9, we have fI(β

∨
1 ) ≥ 0.

Hence, by Remark 5.2(iii), we only have to check the case where I = {α1, α3, . . . , αn}.
For such I, we compute that

fI(β
∨) = fI(α

∨
2 ) + fI(β

∨
1 − α∨

2 ) + fI(β
∨
2 ) = 3(n− 3)− 〈̟α1 +

n∑

i=3

̟αi
, β∨〉.

To conclude Case 3, we check that, for each β∨ here, 3(n − 3) − 〈
∑n

i=2 ̟αi
, β∨〉 ≥ 0:

for n = 6, 3(n − 3) = 9 and 〈̟α1 +
∑n

i=3 ̟αi
, β∨〉 ≤ 9; for n = 7, 3(n − 3) = 12

and 〈̟α1 +
∑n

i=3 ̟αi
, β∨〉 ≤ 12 (with the hypothesis 〈̟α2 , β

∨〉 = 1); and for n = 8,
3(n− 3) = 15 and 〈̟α1 +

∑n
i=3 ̟αi

, β∨〉 ≤ 15 (still with the hypothesis 〈̟α2 , β
∨〉 = 1).

• Case 4: α2 /∈ I and 〈̟α2 , β
∨〉 = 2.
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Let β∨
2 be the maximal coroot of R+ smaller than β∨ such that 〈̟α2 , β

∨
2 〉 = 1. In

particular, by Case 3, fI(β
∨
2 ) ≥ 0. It is not difficult to check that β∨

1 := β∨ − β∨
2 is a

coroot such that 〈̟α2 , β
∨
1 〉 = 1 and of one of the following types: A1 for any n ∈ {6, 7, 8};

A2, A3 and A4 only for n ∈ {7, 8}; D4 and D5 only for n = 8. In particular, β∨
1 is in

R+\R+
I . Then, by Propositions 5.6 and 5.9, we have fI(β

∨
1 ) ≥ 0.

Then, we conclude that case by Remark 5.2(iii).

• Case 5: α2 /∈ I and 〈̟α2 , β
∨〉 = 3 (and then n = 8).

Let β∨
2 be the maximal coroot of R+ smaller than β∨ such that 〈̟α2 , β

∨
2 〉 = 2. In

particular, by Case 4, fI(β
∨
2 ) ≥ 0. It is not difficult to check that β∨

1 := β∨ − β∨
2 is a

coroot such that 〈̟α2 , β
∨
1 〉 = 1 and of one of the following types: Ai with i ∈ {1, . . . , 6}.

In particular, β∨
1 is in R+\R+

I . Then, by Proposition 5.6, we have fI(β
∨
1 ) ≥ 0.

Then, we conclude that case by Remark 5.2(iii).

• Case 6: αn /∈ I and 〈̟αn
, β∨〉 = 1.

By the symmetry of E6, the result in that case is already known by Case 1. Suppose
now that n ∈ {7, 8}. If n = 8, we suppose that the result for E7 is known.

Let β∨
2 be the maximal coroot of R+

{α1,...,αn−1}
smaller than β∨. Then, it is easy to check

that β∨
2 is of type En−1. In particular, by induction hypothesis, if I 6= {α1, . . . , αn−1},

we have fI(β
∨
2 ) ≥ 0.

It is not difficult to check that β∨
1 := β∨ − β∨

2 is a coroot such that 〈̟αn
, β∨

1 〉 = 1 and
of one of the following types: Ai with i ∈ {1, . . . , 6} for any n ∈ {7, 8}; and D7 only
for n = 8. In particular, β∨

1 is in R+\R+
I . Then, by Propositions 5.6 and 5.9, we have

fI(β
∨
1 ) ≥ 0.

Hence, by Remark 5.2(iii), we only have to check the case where I = {α1, . . . , αn−1}.
For such I, we compute that

fI(β
∨) = fI(α

∨
n) + fI(β

∨
1 − α∨

n) + fI(β
∨
2 ) = A− 〈

n−1∑

i=2

̟αi
, β∨〉,

where A = 16 if n = 7 and A = 27 if n = 8. To conclude Case 6, we check that, for each
β∨ here, we have: if n = 7, 〈

∑n−1
i=2 ̟αi

, β∨〉 ≤ 16; and if n = 8, 〈
∑n−1

i=2 ̟αi
, β∨〉 ≤ 27.

• Case 7: αn /∈ I and 〈̟αn
, β∨〉 = 2.

Then, n = 8 and β∨ is the maximal coroot of E8, in particular β∨ = α∨
n + β∨

2 , where β∨
2

is a coroot of E8 such that 〈̟αn
, β∨〉 = 1. We conclude that case with Case 6.

Proposition 5.11. For any I, for any β ∈ R+\R+
I of type F4, we have fI(β

∨) ≥ 0.

Proof. Let β∨ be of type F4. We can assume that I  Supp(β∨) and that I is connected. In
particular α1 or α4 is not in I.

• Case 1: α1 /∈ I and 〈̟α1 , β
∨〉 = 1.

Let β∨
2 be the maximal coroot of R+

{α2,α3,α4}
smaller than β∨. Then, it is easy to check

that β∨
2 is of type C3. In particular, by Proposition 5.8, if I 6= {α2, α3, α4}, we have

fI(β
∨
2 ) ≥ 0.

It is not difficult to check that β∨
1 := β∨ − β∨

2 is a coroot such that 〈̟α1 , β
∨
1 〉 = 1 and

of type A1 or A2. In particular, β∨
1 is in R+\R+

I , and by Proposition 5.6, we have
fI(β

∨
1 ) ≥ 0.

Hence, by Remark 5.2(iii), we only have to check the case where I = {α2, α3, α4}. For
such I, we compute that

fI(β
∨) = fI(α

∨
1 ) + fI(β

∨
1 − α∨

1 ) + fI(β
∨
2 ) = 6− 〈

4∑

i=2

̟αi
, β∨〉.

11



To conclude Case 1, we check that, for each β∨ here, we have 〈
∑4

i=2 ̟αi
, β∨〉 ≤ 6.

• Case 2: α1 /∈ I and 〈̟α1 , β
∨〉 = 2.

Let β∨
2 be the maximal coroot of R+ smaller than β∨ such that 〈̟α1 , β

∨
2 〉 = 1. In

particular, by Case 1, fI(β
∨
2 ) ≥ 0. It is not difficult to check that β∨

1 := β∨ − β∨
2 is a

coroot such that 〈̟α1 , β
∨
1 〉 = 1 and of type Ai with i ∈ {1, . . . , 4}. In particular, β∨

1 is in
R+\R+

I , and by Proposition 5.6, we have fI(β
∨
1 ) ≥ 0. We conclude by Remark 5.2(iii).

• Case 3: α4 /∈ I and 〈̟α4 , β
∨〉 = 1.

Let β∨
2 be the maximal coroot of R+

{α1,α2,α3}
smaller than β∨. Then, it is easy to check

that β∨
2 is of type B3. In particular, by Proposition 5.7, if I 6= {α1, α2, α3}, we have

fI(β
∨
2 ) ≥ 0.

It is not difficult to check that β∨
1 := β∨ − β∨

2 is a coroot such that 〈̟α4 , β
∨
1 〉 = 1 and

of type A1, A2, A3 or C3. In particular, β∨
1 is in R+\R+

I , and by Propositions 5.6 and
5.8, we have fI(β

∨
1 ) ≥ 0.

Hence, by Remark 5.2(iii), we only have to check the case where I = {α1, α2, α3}. For
such I, we compute that

fI(β
∨) = fI(α

∨
1 ) + fI(β

∨
1 − α∨

4 ) + fI(β
∨
2 ) = 9− 〈

3∑

i=1

̟αi
, β∨〉.

To conclude Case 3, we check that, for each β∨ here, we have 〈
∑3

i=1 ̟αi
, β∨〉 ≤ 9.

• Case 4: α4 /∈ I and 〈̟α4 , β
∨〉 = 2.

Then, β∨ is the maximal coroot of F4, in particular β∨ = α∨
4 + β∨

2 , where β
∨
2 is a coroot

of F4 such that 〈̟α4 , β
∨〉 = 1. We conclude that case with Case 3.
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