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The presen,t paper introduces a new techniques to generate several independent chaotic attractors by desingning a switching piecewise-constant controller in continuous-time systems. This controller can create chaos using an anticontrol of chaos feedback. It is shown that nonlinear continuous-time systems have several attractors, depending on initial conditions. We demonstrate here that the state space equidistant repartition of these attractors is on a precise zone of a precise curve, that depends on the parameters of the system. We determine the state space domains where the attractors are generated from different initial conditions. Finally, several examples are given to verifY the proposed methodology.

I. INTRODUCTION

The study of chaotic dynamics has evolved from the traditional trend of understanding and analyzing chaos to the new attempt of controlling and utilizing it. Recently, there has been increasing interest in exploiting chaotic dynamics in engineering applications, such as electrical engineering [1], [START_REF] Morel | Improvement of power supply electromagnetic compatibility by extension of chaos anticontrol[END_REF], telecommunications [START_REF] Jovica | A novel mathematical analysis for predicting masterslave synchronization for the simplest qulldratic chaotic flow and Ueda chaotic system with application to commWJications[END_REF] (4], [START_REF] Alvarez | Breaking two secure communication systems based on chaotic masking[END_REF], information processing [START_REF] Lukac | Bit-level -based secret sharing for image encryption[END_REF], whereas much attention has focused on effectively generating chaos.

It is well known that chaos can be generated via different approaches, such as linear feedback techniques or switching methods, to obtain various chaotic attractors [START_REF] Lu | Generating chaotic attractors with multiple merged basins of attraction: A switching piecewise-linear control approach[END_REF], [START_REF] Yu | Generating chaos with a switching piecewise-linear controller[END_REF], [START_REF] Aziz-Alaoui | Asymptotic analysis of a new piecewise-linear chaotic system[END_REF] from the new chaotic system [START_REF] Yu | Generating chaos with a switching piecewise-linear controller[END_REF], [START_REF] Ueta | Bifurcation analysis of Chen's equation[END_REF] or circuits [START_REF] Deane | Calculation of the periodic spectral components in a chaotic DC-DC converter[END_REF], [START_REF] Yu | Design and implementation of n-Scroll chaotic attractors from a general jerk circuit[END_REF]. Another technique to create chaos is to use a time-delay feedback perturbation on a system parameter or to employ an exogenous time-delay state-feedback input This chaotification reference method designs a simple nonlinear feedback controller with an arbitrarily small amplitude leading to chaotic dynamics in the controlled system [START_REF] Morel | Improvement of power supply electromagnetic compatibility by extension of chaos anticontrol[END_REF], [START_REF] Li | Generating chaos via feedback control from a stable ts fuzzy system through a sinusoidal nonlinearity[END_REF], [START_REF] Wang | Anticontrol of chaos in continuoustime systems via time-delay feedback[END_REF], [START_REF] Morel | Anticontrol of Chaos Reduces Spectral Emissions[END_REF].

The effect of time delay on the differential system can be observed in [START_REF] Ms | Bifurcation and chaotic behavior in the Euler method for a Kaplan-Yorke prototype delay model[END_REF], [START_REF] Peng | The use of the Euler method in identification of multiple bifurcations and chaotic behavior in numerical approximations of delay differential equations[END_REF], [START_REF] Peng | Symmetry breaking, bifurcations,periodicity and chaos in the Euler method for a class of delay differential equations[END_REF], with co-existing trivial attractors (fixed points or limit cycles) and strange attractors. A similar phenomenon generating various limit cycles is presented in [START_REF] Kennedy | Three steps to chaos -part 1: Evolution[END_REF] and [START_REF] Endersen | Limit cycle oscillations in pacemaker cells[END_REF]. In [START_REF] Kennedy | Three steps to chaos -part 1: Evolution[END_REF], two sets of the initial conditions produce two different limit cycles and a new limit cycle for each new initial condition selected is observed in [START_REF] Endersen | Limit cycle oscillations in pacemaker cells[END_REF].

In this paper, we develop and enhance the method proposed in [START_REF] Morel | Generating independent chaotic attractors by chaos anticontrol in nonlinear circuits[END_REF], where a switching piecewise-binary controller was used. This time we propose here a switching piecewiseconstant controller in continuous-time systems to generate several independent chaotic attractors. The attractors are reached from different initial conditions and are generated on a precise zone of a precise curve in the state space.

II. CHUA'S CIRCUIT

The Chua's circuit [START_REF] Deane | Calculation of the periodic spectral components in a chaotic DC-DC converter[END_REF] [14] has become, in recent years, a standard model for the study of chaos in systems described by finite-dimensional differential equations. The state equations of Chua's circuit [START_REF] Wu | Chaos control of the modified Chuas circuit system[END_REF][23] [START_REF] Li | Lag synchronization of Rossler system and Chua circuit via a scalar signal[END_REF]are:

XI ==a(x2 -~(2xf -px1 )) X2 ==X] -X2 +X3 X3 =-~X2 (1)
where a and ~ are real positive constants. The equilibria of the system ( 1) are founded by solving the equations x 1 = x 2 = x 3 = 0, which lead to the following relations: 2xf -px1 X2 = 7 two distinct domains: the first ~ .Jbi2,-.Ja/2] ofx 1 axis and [.J;72, .Jb I 2] of x 3 axis, the second [.J a I 2, .Jb I 2]

(2) ofx 1 axis and ~.Jbi2,-.Ja/2] ofx 3 axis. The two equilibria. s+ and s_ are symmetrically placed with respect to the y-axis. Let us study now the stability of the equilibrium point 8 0 • Linearizing the system (I) about S 0 provides the following characteristic equation:

P(~)=A. 3 +(1-o.; } 2 +(13-o.-o.; }-o.~p• (4)
The Routh-Hurwitz conditions lead to the conclusion that there are at least a real parts of the roots A. positive. The expression -exJ3p /7 is negative, which determines the instability of the equilibrium point S 0 • Applying the Cardan transformation [START_REF] Fujisakaa | Chaotic phase synchronization and phase diffusion[END_REF] for the particular values ex= 10, J3 = 24.5 (values used later in the simulation results) and p = 0.01, the eigenvalues corresponding to (4) are A.R = 1.4487 and A.*c = 1.217 and 1.43i. Locally, there exists a positive eigenvalue A.R and two conjugate complex eigenvalues, A.*c• Hence, the equilibrium point 8 0 is not stable: it is attracting in two direction but repelling in the other one.

The annulation ofX1 determines a direct relationship between p and x 1 : [START_REF] Alvarez | Breaking two secure communication systems based on chaotic masking[END_REF] In order to generate independent chaotic attractors for the system (1), we specify a piecewise-constant characteristic of the feedback controller p, defined analytically as follows:

{ b, p= a g(t) < u(x(t)) g(t) ~ u(x(t)) ( 8 
)
where g(t) = sin(yt) is a periodic function and u(t) the anticontrol of chaos state feedback. The application of the classical method [START_REF] Morel | Improvement of power supply electromagnetic compatibility by extension of chaos anticontrol[END_REF], [START_REF] Li | Generating chaos via feedback control from a stable ts fuzzy system through a sinusoidal nonlinearity[END_REF], [START_REF] Wang | Anticontrol of chaos in continuoustime systems via time-delay feedback[END_REF] of chaos anticontrol to obtain a chaotic dynamic in the controlled system (1) uses a simple nonlinear state feedback. We are interested by a simple sine function u(x(t)) = &sin(crxi(t)), [START_REF] Aziz-Alaoui | Asymptotic analysis of a new piecewise-linear chaotic system[END_REF] as in [START_REF] Wang | Anticontrol of chaos in continuoustime systems via time-delay feedback[END_REF], [START_REF] Morel | Generating independent chaotic attractors by chaos anticontrol in nonlinear circuits[END_REF].

Let us take ex =10, 13=24.5, as in [START_REF] Wang | Anticontrol of chaos in continuoustime systems via time-delay feedback[END_REF]. These values impose the stability of the equilibria S+ and S •• We consider the anticontrol switching piecewise constant controller p given by [START_REF] Yu | Generating chaos with a switching piecewise-linear controller[END_REF].

We take the values : y = 1000, cr = 100 and E = 5. The numerical simulations of the modified Chua's circuit (1) present independent chaotic attractors, as shown in Fig. 1, and their projections x 1 -x 2 plane, in Fig. 2 respectively. The attractors, generated from different initial conditions, are situated in the plane x 2 = 0, and on the line x 1 = -x 3 represented in the Figs. 1 and 2 with the fine curve.

I .

As discussed previously, ( 5) and [START_REF] Morel | Improvement of power supply electromagnetic compatibility by extension of chaos anticontrol[END_REF] enable the calculation os • of equilibria intervals for a variation of p between the limits aandb:

onthex 1 axis: [-~.-~]u[~•~J. onthex 3 axis: [~.~~ ]u[-~.-~J (6) (7) 
The independent chaotic attractors will be generated inside the state space ofEqs. (6) (7) around x 2 = 0, partitioned into ,. 

III. MOORE-SPIEGEL SYSTEM

Let us take an other example, a three-dimensional dynamical system, the Moore-Spiegel system. The inclusion of the anticontrol switching piecewise-constant controller p in the Moore-Spiegel [START_REF] Moore | A thermally excited nonlinear oscillator[END_REF] [START_REF] Baker | Aperiodic behaviour of a nonlinear oscillator[END_REF] system is described by:

1 Xi = X2 +p X2 =X3 x3 =-X3 -( T-R+Rx?)x2 -Txt (10)
where T "" 26 and R = IOO. The initial Moore-Spiegel system with p = 0, generate one chaotic attractor as in the Fig. 6. The physical background to the model is in fluid mechanics. In essence, the model describeds a small fluid element osciiiating in a temperature gradient with a linear restoring force. The element exchanges heat with the surrounding fluid and its buoyancy dependes upon temperature. In other words, the system is a nonlinear thermo-mechanial oscillator with displacement x(t). The parapeter R corresponds to the Rayleigh number and T to the tension constant that quantifies that quantifies the restoring force. Further details of the model can be found in [START_REF] Moore | A thermally excited nonlinear oscillator[END_REF], [START_REF] Baker | Aperiodic behaviour of a nonlinear oscillator[END_REF].

The equilibria of the system [START_REF] Ueta | Bifurcation analysis of Chen's equation[END_REF] can be easily found by solving the three equations jq == x2 == XJ :::.0, hich lead to the following relations: X2 +p =0,

XJ = 0, (11) 
Rx2xf +Tx1 +(T-R)X2 =0. (12) 
There are two equilibria: s_ = ,-p.o,

( T-~T 2 -p 2 R(T-R) J 2pR (14) (15) 
The T and R values impose the stability of the equilibria s •. We consider the anticontrol switching piecewise constant controller p given by ( 8) and ( 9), with a small amplitude. The annulation of x1 determines a direct relationship between p and x2:

(13) led to:

X2 =- • 2 Rx 1 +T-R (17) 
This time, we want to have chaotic attractors on the state space between the limits c and d for an x 1 axis projection: XI e[c,dJ. [START_REF] Peng | Symmetry breaking, bifurcations,periodicity and chaos in the Euler method for a class of delay differential equations[END_REF] The state space domain for an x 2 axis projection:

[ Tc Td ] X2 E - ; , Rc 2 +T-R Rd 2 +T-R (19) 
By substituting [START_REF] Kennedy | Three steps to chaos -part 1: Evolution[END_REF] into p = -x 2 , the anticontrol switching piecewise-constant controller p has the following form:

[ Td Tc } p-- . - Rd 2 +T-R' Rc 2 +T-R (20) 
The numerical simulations of the modified Moore-Spiegel system (10) present independent chaotic attractors, as shown in Fig. 7.

The sensitive dependence on initial conditions of the Moore-Spiegel system (I 0) is a generic property of chaotic systems. Fig. 8 presents two time trajectories starting from distinct, but almost identical, initial conditions (x10; x 20 ;

x 30 ) and (x 10 + 0,000001; x 20 ; x 30 ). At the beginning (i.e. for t=O), the trajectories are undistinguishable. After a few iterations, the sequences differ widely, even if the Xo initial condition differ less than 0.000001%. The positive largest Lyapunov exponent has become the standard characteristics of a chaotic system. At the end of the present section, we introduce the Lyapunov exponent as a simple measure of sensitive dependence on initial conditions, distinguishing a chaotic from a nonchaotic trajectory by its positive value.

For a linear increasing variation of e parameter, the Lyapunov exponent has positive values as in Fig. 9, decreasing to negative values. The Lyapunov exponent of the Moore-Spiegel system (10) is calculated for distinct initial conditions (almost identical) near an equilibrium point (i.e. near the basin of attraction).

3.5

2.5 Fig. 9. The Largest Lyapunov exponents of the Moore-Spiegel system [START_REF] Ueta | Bifurcation analysis of Chen's equation[END_REF].

With almost identical initial conditions, but far away of the equilibrium points (outside of the basin of attraction), the Moore-Spiegel system (10) could reach different regimes of operation (two different attractors), as in Fig. 10. This choice of initial conditions is a source of errors in the calculation of the Lyapunov exponent.

We show that the switching piecewise-constant controller of Eqs. (8) (9) can drive the Moore-Spiegel system from nonchaotic (with nonzero equilibrium point) to chaotic (with several equilibria points) behaviors. 

IV. CONCLUSIONS

The present paper introduces a method to generate several independent chaotic attractors, in continuous-time systems based on a switching piecewise-constant controller. We determined the equation of attractors curve, which depends on the controlled system dynamics and on its parameters.

We determine the state space domains where the attractors are generated from different initial conditions. A control engineering application is to make nonlinear system converge to some attractors of interest, starting from different initial conditions, in order to reach different regimes of operation.
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 234 Fig.[START_REF] Morel | Improvement of power supply electromagnetic compatibility by extension of chaos anticontrol[END_REF]. The projections of independent chaotic attractors of the modified Chua's circuit (I) onto x 1 -x 2 plane. Fig.3presents one attractor onto 3D state space. This attractor reaches the ~egime of operation x 1 = 0.48, x 2 = 0 and x 3 = -0.47.To demonstrate the sensitivity to initial conditions, we compute two orbits with initial points (x 10 ; x 20 ; x 30 ) and (x 10 + 0,00002; x 20 ; x 30 ) , respectively. The results are shown in Figs.4 and 5. Let take the initial conditions in one of attracted basin area of the any many independent chaotic attractor. The state variables X~o x 2 and x 3 have a chaotic behaviors and rest inside of attraction basin of choosing attractor as in the Fig.4.With two initial conditions far ways of the any basin of attractions, the state variables x., x 2 and x 3 can archived two independent chaotic attractors, as in the Fig.5.
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 5 Fig. 5. The modified Chua's circuit {1): sensitive dependence on initial conditions of the x 1 state variable (the x 1 -coordinate of the initial condition differ by 0.0002, the others are kept equal).
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 6 Fig.[START_REF] Lukac | Bit-level -based secret sharing for image encryption[END_REF]. Chaotic attractors of the Moore-Spiegel system[START_REF] Ueta | Bifurcation analysis of Chen's equation[END_REF], with p=O.
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 78 Fig. 7.1ndependent chaotic attractors ofthe Moore-Spiegel system (10).
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 10 Fig.10. The time waveform of the x 1 state variable of the Moore-Spiegel system[START_REF] Ueta | Bifurcation analysis of Chen's equation[END_REF] starting from distinct initial conditions (almost identical) far away of the equilibrium points.