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A classical method for model-checking timed properties—such as those
expressed using timed extensions of temporal logic—is to rely on the use of
observers. In this context, a major problem is to prove the correctness of
observers. Essentially, this boils down to proving that: (1) every trace that
contradicts a property can be detected by the observer; but also that (2)
the observer is innocuous, meaning that it cannot interfere with the system
under observation. In this paper, we describe a method for automatically
testing the correctness of realtime observers. This method is obtained by
automating an approach often referred to as visual verification, in which the
correctness of a system is performed by inspecting a graphical representation
of its state space. Our approach has been implemented on the tool Tina, a
model-checking toolbox for Time Petri Net.

1 Introduction
A classical method for model-checking timed behavioral properties—such as those ex-
pressed using timed extensions of temporal logic—is to rely on the use of observers. In
this approach, we check that a given property, P, is valid for a system S by checking
the behavior of the system composed with an observer for the property. That is, for
every property P of interest, we need a pair (ObsP , φP ) of a system (the observer) and
a formula. Then property P is valid if and only if the composition of S with ObsP , de-
noted (S || ObsP ), satisfies φP . This approach is useful when the properties are complex,

∗This work was presented at TTCS 2015, the First IFIP International Conference on Topics in Theoret-
ical Computer Science, August 26-28, 2015. Institute for Research in Fundamental Sciences (IPM),
Tehran, Iran.
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for instance when they include realtime constraints or involve arithmetic expressions on
variables. Another advantage is that we can often reduce the initial verification problem
to a much simpler model-checking problem, for example when φP is a simple reachability
property.
In this context, a major problem is to prove the correctness of observers. Essentially,

this boils down to proving that every trace that contradicts a property can be detected.
But this also involve proving that an observer will never block the execution of a valid
trace; we say that it is innocuous or non-intrusive. In other words, we need to assure
that the “measurements” performed by the observer can be made without affecting the
system.
In the present work, we propose to use a model-checking tool chain in order to check

the correctness of observers. We consider observers related to linear time properties
obtained by extending the pattern specification language of Dwyer et al. [7] with hard,
realtime constraints. In this paper, we take the example of the pattern “Present a after
b within [d1, d2[”, meaning that event a must occur within d1 units of time (u.t.) of the
first occurrence of b, if any, but not later than d2. Our approach can be used to prove
both the soundness and correctness of an observer when we fix the values of the timing
constraints (the values of d1 and d2 in this particular case).
Our method is not enough, by itself, to prove the correctness of a verification tool.

Indeed, to be totally trustworthy, this will require the use of more heavy-duty software
verification methods, such as interactive theorem proving. Nonetheless our method is
complementary to these approaches. In particular it can be used to debug new or
optimized definitions of an observer for a given property before engaging in a more
complex formal proof of its correctness.
Our method is obtained by automating an approach often referred to as visual ver-

ification, in which the correctness of a system is performed by inspecting a graphical
representation of its state space. Instead of visual inspection, we check a set of branch-
ing time (modal µ-calculus) properties on the discrete time state space of a system.
These formulas are derived automatically from a definition of the pattern expressed as
a first-order formula over timed traces. The gist of this method is that, in a discrete
time setting, first-order formulas over timed traces can be expressed, interchangeably,
as regular expressions, LTL formulas or modal µ-calculus formulas.
This approach has been implemented on the tool Tina [4], a model-checking toolbox for

Time Petri Net [12] (TPN). This implementation takes advantage of several components
of Tina: state space exploration algorithms with a discrete time semantics (using the
option -F1 of Tina); model-checkers for LTL and for modal µ-calculus, called selt and
muse respectively; a new notion of verification probes recently added to Fiacre [3, 5], one
of the input specification language of Tina. While model checkers are used to replace
visual verification, probes are used to ensure innocuousness of the observers.

1.1 Outline and contributions
The rest of the paper is organized as follows. In Sect. 2, we give a brief definition of
Fiacre and the use of probes and observers in this language. In Sect. 3, we introduce the
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technical notations necessary to define the semantics of patterns and time traces and
focus on an example of timed patterns. Before concluding, we describe the graphical
verification method and show how to use a model-checker to automatize the verification
process1.
The theory and technologies underlying our verification method are not new: model-

checking algorithms, semantics of realtime patterns, connection between path properties
and modal logics, . . . Nonetheless, we propose a novel way to combine these techniques
in order to check the implementation of observers and in order to replace traditional
“visual” verification methods that are prone to human errors.
Our paper also makes some contributions at the technical level. In particular, this

is the first paper that documents the notion of probe, that was only recently added to
Fiacre. We believe that our (language-level) notion of probes is interesting in its own
right and could be adopted in other specification languages.

2 The Fiacre Language
We consider systems modeled using the specification language Fiacre [3, 5]. (Both the
system and the observers are expressed in the same language.) Fiacre is a high-level, for-
mal specification language designed to represent both the behavioral and timing aspects
of reactive systems.
Fiacre programs are stratified in two main notions: processes, which are well-suited

for modeling structured activities, and components, which describes a system as a com-
position of processes. Components can be hierarchically composed. We give in Fig. 1 a
simple example of Fiacre specification for a computer mouse button capable of emitting
a double-click event. The behavior, in this case, is to emit the event double if there are
more than two click events in strictly less than one unit of time (u.t.).

2.1 Processes
A process is defined by a set of parameters and control states, each associated with a set
of complex transitions (introduced by the keyword from). The initial state of a process
is the state corresponding to the first from declaration.
Complex transitions are expressions that declares how variables are updated and which

transitions may fire. They are built from deterministic constructs available in classical
programming languages (assignments, conditionals, sequential composition, . . . ); non-
deterministic constructs (such as external choice, with the select operator); communica-
tion on ports; and jump to a state (with the to or loop operators).
For example, in Fig. 1, we declare a process named Push with four communication

ports (click to delay) and one local boolean variable, dbl. Ports may send and receive
typed data. The port type none means that no data is exchanged; these ports simply
act as synchronization events. Regarding complex transitions, the expression related to

1Code is available at http://www.laas.fr/fiacre/examples/visualverif.html
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process Push [click : none,
single : none,
double : none,
delay : none] is

states s0, s1, s2

var dbl : bool := false

from s0 click ; to s1

from s1
select

click ; dbl := true; loop
[] delay; to s2
end

from s2
if dbl then double
else single end;
dbl := false ; to s0

component Mouse [click : none,
single : none,
double : none] is

port delay : none in [1,1]

priority delay> click

par
Push [click , single , double, delay]

end

Figure 1: A double-click example in Fiacre

state s1 of Push, for instance, declares two possible transitions from s1: (1) on a click
event, set dbl to true and stay in state s1; and (2) on a delay event, change to state s2.

2.2 Components
A component is built from the parallel composition of processes and/or other compo-
nents, expressed with the operator par P0 || . . . || Pn end. In a composition, processes can
interact both through synchronization (message-passing) and access to shared variables
(shared memory).
Components are the unit for process instantiation and for declaring ports and shared

variables. The syntax of components allows to associate timing constraints with commu-
nications and to define priorities between communication events. The ability to express
directly timing constraints in programs is a distinguishing feature of Fiacre. For exam-
ple, in the declaration of component Mouse (see Fig. 1), the port statement declares a
local event delay and asserts that a transition from s1 to s2 should take exactly one unit
of time. (Time passes at the same rate for all the processes.) Additionally, the priority
statement asserts that a transition on event click cannot occur if a transition on delay is
also possible.
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2.3 Probes and Observers
The Fiacre language has been extended, recently, to allow the definition of observers,
which are a distinguished category of sub-programs that interact with other Fiacre com-
ponents only through the use of probes. A probe is used to observe modifications in the
system without interfering with it; probes react to the occurrence of an event without
engaging in it.
A typical probe declaration is of the form path/obs, where obs denotes the observable

and path defines its context, that is a path to the component (or process) instance where
obs is defined (see for example http://www.laas.fr/fiacre/properties.html). In our setting,
observable events are instantaneous actions involved in the evolution of the system: it
can be a synchronization over a port p (denoted event p); a process that enters the state
s (denoted state s); or an expression including shared variables, say exp, that changes
value (denoted value exp). For instance, in the case of the Mouse component of Fig. 1, a
probe triggered when the (only instance of) process Push is in state s2 would have the
form (Mouse/1/state s2).
The use of probes greatly simplifies the proof of innocuousness of an observer. In par-

ticular, with probes, an observer can only influence a system by “blocking the evolution
of time”, that is by performing an infinite sequence of actions in finite time. Therefore,
proving that an observer is innocuous amounts to prove that it has no Zeno behaviors,
which is always possible when a system is bounded.

process NeverTwice [a:sync] is

states idle , once, error

from idle a ; to once

from once a ; to error

component Obs is

port p:sync is Mouse/event click

par NeverTwice [p] end

Figure 2: A simple observer example

An observer is a Fiacre component where ports are associated to probes (using the
keyword is); ports associated with a probe have the reserved type sync. We give a naive
example of observer in Fig. 2, where the component Obs monitors synchronizations on
the event click. In this example, the process neverTwice will reach the state error if its
probe parameter, a, is triggered more than once.
In the remainder of the text, we use the notation (Mouse || Obs) to denote the program

obtained by concatenating the declaration of these two components (i.e. the code from
Fig. 1 with the code from Fig. 2). As a consequence, we are able to detect if the system
can emit two single click events just by checking if the process neverTwice can reach the
state error in (Mouse || Obs). This can be easily achieved using an LTL model-checker
(the selt tool in our case) with the property []-(Obs/1/state error) (meaning that
never Obs/1 is in state error).

5



3 Timed Traces and First-Order Formulas over Traces
The semantics of Fiacre (and the properties we want to check) are based on a notion
of timed traces, which are sequences mixing events and time delays. In this context, a
“realtime property” can be defined as a set of timed traces, which define timing and
behavioral constraints on the acceptable execution of a system. In this work, we con-
sider properties derived from realtime patterns, that can be expressed using first-order
formulas over timed traces.

3.1 Timed Traces
In our context, observable events are: communication on a port; the change of state of a
process; and the change of value of a variable. We use a dense time model, meaning that
we consider rational time delays and work both with strict and non-strict time bounds.
Hence a timed trace is a (possibly infinite) sequence of events a, b, . . . and durations
δ ∈ Q+:

σ ::= ε | σ a | σ δ

Given a finite trace σ and a—possibly infinite—trace σ′, we denote σσ′ the concate-
nation of σ and σ′. We will also use the expression ∆(σ) to denote the duration (time
length) of a trace σ. The semantics of a system expressed with Fiacre, say S, can be
defined as a set [[S]] of timed traces. We use the notation σ |= S when the trace σ is in
the set [[S]]. The semantics of a property (timed pattern) will be expressed as the set
of all timed traces where the pattern holds. We say that a system S satisfies a timed
requirement P if [[S]] ⊆ [[P]].

3.2 Realtime Properties and their Semantics
We propose to define properties using First-Order Formulas over Timed Traces (FOTT).
A FOTT formula Φ(~x), with free variables ~x = (x1, . . . , xn), is a first-order logic formula
over traces with equality between traces (σ = σ′), comparison between a duration and
an interval (∆(σ) ∈ I) and concatenation (σ = σ1 σ2).

Φ(~x) ::= Φ ∧ Φ′ | ¬Φ | ∃x . Φ | (x = σ) | (x = y z) | (∆(x) ∈ I)

For instance, when referring to a timed trace σ and an event a, the following formula is
a tautology if the event a does not occur in σ:

(a /∈ σ) def= ¬ (∃x1, x2, x3 . (σ = x1 x2) ∧ (x2 = a x3))

Likewise, we can define the “scope” σ after b—that determines the part of a trace σ
located after the first occurrence of b—as the trace σ′ denoted by the first-order formula:
∃x, y . (σ = x y) ∧ (y = b σ′) ∧ (b /∈ x).
The semantics of a formula Φ(x1, . . . , xn) is a set of valuation functions ς associating

a trace σi = ς(xi) to each of the variable xi with i ∈ 1..n, also denoted [xi 7→ σi]i∈1..n.
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The semantics of Φ can be defined inductively as follows:

[[Φ(~x) ∧Ψ(~x)]] = [[Φ(~x)]] ∩ [[Ψ(~x)]] [[x = σ]] = {ς | ς(x) = σ}
[[∃y . Φ(~x)]] = {ς | ς + [y 7→ σ] ∈ [[Φ(~x)]]} [[x = y z]] = {ς | ς(x) = ς(y) ς(z)}
[[∆(x) ∈ I]] = {ς | ∆(ς(x)) ∈ I}

With these definitions, a regular set of time traces is the set of traces “solutions” of
an existential FOTT formula with a single free variable, Φ(x); that is the set of traces
σ such that the valuation [x 7→ σ] is in [[Φ(x)]].
In this paper, we will mainly restrict ourselves to the special case of timed traces

where events occur at integer dates; i.e. we restrict delays δ to be in N rather than in
Q+. These traces can be generated using a “discrete time” abstraction of the models,
where special transitions (labeled with t) are used to model the flow of time. Label t
stands for the “tick” of the logical clock.
The discrete time semantics will be enough to prove all the properties needed in

our study. Indeed, when a model contain only “closed timing constraints” (of the kind
[d1, d2] or [d1,∞[), the discrete time semantics is enough to check reachability properties.
Actually it is enough to check every formulas in the existential fragment of CTL∗ without
next operator [10].
With discrete time, a delay δ can be replaced by sequences of δ t’s, and therefore

a finite timed trace can be simply interpreted as a word. In the remainder, we also
consider a special symbol, z, that stands for internal actions of the system. Hence it is
possible to interpret the semantics of (discrete) FOTT specification as a language over
the alphabet A = {z, t, a, b, . . . }. Actually, in the discrete case, we can show that a
regular set of time traces is also a regular language. For example, the semantics of the
formula ∃y, z, w . ((x = y z) ∧ (z = aw)) is the regular language corresponding to the
expression A∗ · a ·A∗.
This connection between different type of logics is at the core of our approach. Our

method could be applied to more high-level property languages, such as timed extension
of temporal logic [11], but would require a more complex encoding into LTL when
modalities can be nested.

3.3 Our Running Example: the Present Pattern
Users of Fiacre have access to a catalog of specification patterns based on a hierarchical
classification borrowed from Dwyer [7]. Patterns are built from five basic categories—
existence, absence, universality, response and precedence—and can be composed using
logical connectives. In each category, generic patterns may be specialized using scope
modifiers—such as before, after, between—that limit the range of the execution trace
over which the pattern must hold. Finally, timed patterns are obtained using one of two
possible kind of timing modifiers that limit the possible dates of events referred in the
pattern: within I—used to constraint the delay between two given events to be in the
time interval I—and lasting d—used to constraint the length of time during which a
given condition holds (without interruption) to be greater than d.
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Due to limited space, we study only one example of timed pattern, namely Present a
after b within [d1, d2[. A complete catalog is available in [1]. This is a simple example
of existence patterns. Existence patterns are used to express that, in every trace of the
system, some events must occur. This pattern holds for traces such that the event a
occurs at a date t0 after the first occurrence of b with t0 ∈ [d1, d2[. The property is
also satisfied if b never holds. Hence traces σ that satisfy this pattern are models of the
existential FOTT formula:

Pres(x) def= (b /∈ x) ∨ ∃y, z, w . ((x = y b z aw) ∧ (b /∈ y) ∧ (∆(z) ∈ [d1, d2[))

process Present [a:sync, b:sync] is

states idle , start , watch, error , stop

from idle b; to start

from start wait [d1 , d1 ] ; to watch

from watch select
a; to stop

unless
wait [d2 − d1 , · · · [ ; to error

end

Listing 1: Observer for the pattern: Present a after b within [d1, d2[

With the discrete semantics, formula Pres(x) matches exactly the words of the form
w1 bw2 aw3 where w1 contains no occurrences of b and w2 contains exactly k occurrences
of t with k ∈ [d1, d2[. (This is a regular language.) We show in the next section how
to (semi-)automatically generate the regular expression corresponding to such FOTT
formulas.
We give an example of observer associated to this pattern in Listing 1. This observer

is composed of one process that monitors the system through the ports a and b (that
should be instantiated with the relevant probes). The process is initially in state idle and
moves to start when b is triggered. When in state start for d1 unit of time, the observer
moves to state watch (this is the meaning of the wait operator). The select operator
is a non-deterministic choice, with unless coding priorities. Hence, in state watch, the
observer moves to ok if an a occurs, unless a duration equals to (d2 − d1) elapses, in
which case it moves to the state error. As a consequence, the pattern is false whenever
the probe (Present/state error) is reachable. Hence the formula associated to the pattern
is φP

def= [] - (Present/state error).
To prove that an observer Obs for the pattern P is correct, we need to prove that,

for every system S, the program (S || Obs) satisfies the formula φP if and only if [[S]] ⊆
[[P]]. In [1], we have defined a mathematical framework to formally prove these kind
of properties, but this framework relies on manual proofs and is not supported by any

8



tooling. Efforts are also under way to completely mechanize these proofs using the
Coq proof assistant [8]. Nonetheless, formal proofs of correctness can be quite tedious.
Therefore, to detect possible problems with an observer early on (that is, before spending
a lot of efforts doing a formal proof of correctness) we also rely on a “visual” verification
method, that is akin to debugging our observers.
In the next section, we show how to apply the visual verification approach on our

running example. One of the objective of our work is to replace this visual verification
step with a more formal approach. This is done in Sect. 5.

4 Visual Verification of Observers
In the remainder of this section, we describe the visual verification method using the
particular case of the pattern Present a after b within [4, 5[; we assume that Obs is the
observer Present defined in Listing 1, that d1 = 4 and that d2 = 5.
To prove that the observer Present is correct, we need to prove, for every system S, the

equivalence between two facts: (1) the state (Present/state error) is not reachable in the
program (S || Present[a, b]); and (2) the traces of P are valid for the property Pres, i.e.
[[S]] ⊆ [[Pres]].
The first step is to get rid of the universal quantification on all possible systems, S,

that is introduced by our definition of correctness. The idea is to check the observer on a
particular Fiacre program—called Universal—that can generate all possible combinations
of delays and events a, b and z. We give an example of universal process in Listing 2.
The process Universal has only one state and three possible transitions. Each transition
changes the value of a shared integer variable, x. The first and second transitions of
Universal can be fired without time constraints. In our context, the probe a will be
triggered to the event “setting x to 1” and b to “setting x to 2”. The third transition
reset the value of x to 0 immediately and corresponds to the internal event z.
We can now use our verification toolchain to generate the state graph for the program

(Universal || Present) using a discrete time exploration construction. This can be obtained
using the flag -F1 in Tina (it is possible to generate a state graph with many different
abstractions with Tina, including dense time models).
The resulting graph is displayed in Fig. 3. This state graph has been generated and

printed using the tool nd, which is also part of the Tina toolset; nd is an editor and
animator for extended Time Petri Nets that can export nets and state graphs in several,
machine readable formats. This graph has only 26 states and can therefore be easily
managed manually. The main factor commanding the number of states is the value of
the timing constraints used in the pattern; in our observations, all the generated state
graphs were of manageable size.
The transitions in the state graph are also quite straightforward: we find the visible

and internal transitions as before, labeled with a, b, z and t. For ease of reading, we have
also changed the labels of internal transitions in the observer Present. For instance, the
transition from state 2 to 3 corresponds to the observer entering the state start; likewise
for the transitions labeled with watch, stop and error. The states where the observer is

9



process Universal (&x : nat) is

states s0

from s0 select
x := 1; to s0 /∗ setting x to 1 ∗/

[] x := 2; to s0 /∗ setting x to 2 ∗/
unless

on (x<> 0); wait [0,0]; x := 0; to s0
end

component Main is

var x : nat := 0

port a : sync is value (x = 1), b : sync is value (x = 2)

par Universal (&x) || Present [a, b] end

Listing 2: Universal program in Fiacre

in state error (the states that contradict the property φP
def= [] - (Present/state error)) are

Errors = {20, 22, 23}.
We can already debug the pattern Present a after b within [4, 5[ by visually inspecting

the state graph.
For soundness, we need to check that, when the pattern is not satisfied—for traces

σ that do not satisfy formula Pres—then the observer will detect a problem (observer
Present eventually reaches a state in the set Errors).
For innocuousness we need to check that, from any state, it is always possible to reach

a state where event a (respectively b and t) can fire. Indeed, this means that the observer
cannot selectively remove the observation of a particular sequence of external transitions
or the passing of time.
This graphical verification method has some drawbacks. As such, it relies on a discrete

time model and only works for fixed values of the timing parameters (we have to fix the
value of d1 and d2). Nonetheless, it is usually enough to catch many errors in the observer
before we try to prove the observer correct more formally.

5 Automating the Visual Verification Method
A problem with the previous approach is that it essentially relies on an informal inspec-
tion (and on human interaction). We show how to solve this problem by replacing the
visual inspection of the state graph by the verification of modal µ-calculus formulas. (the
Tina toolset includes a model-checker for the µ-calculus called muse.) The general idea
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Figure 3: State graph for (Universal || Present)

rests on the fact that we can interpret the state graph as a finite state automaton and
(some) sets of traces as regular languages. This analogy is generally quite useful when
dealing with model-checking problems. We start by defining some useful notations.

5.1 Label Expressions
Label expressions are boolean expressions denoting a set of (transition) labels. For
instance, Aext = (a∨b) denotes the external transitions, while the expression -(a∨ b∨ t)
is only matched by the silent transition label. We will also use the expression > to denote
the conjunction of all possible labels, e.g. > = (-b) ∨ b. The model checker muse allows
the definition of label expressions using the same syntax.

5.2 Regular (Path) Expressions
In the following, we consider regular expressions build from label expressions. For exam-
ple, the regular expression t · (- t)∗ denotes traces of duration 1 with no events occurring
at time 0.

Tick def= t · (-t)∗ (1)

We remark that it is possible to define the set of (discrete) traces where the FOTT
formula Pres holds using the union of two regular languages: (1) the traces where b
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never occurs, R1 = (- b)∗; and (2) the traces where there is an a four units of time
after the first b. In this particular case, R2 is a regular expression corresponding to the
property (x = y b z aw) ∧ (b /∈ y) ∧ (∆(z) ∈ [4, 5[ )

Pres
def= (- b)∗ ∨ R2 (2)

R2
def= (-b)∗ · b · (- t)∗ · Tick · Tick · Tick · Tick · a · >∗ (3)

By construction, the regular language associated to R1 ∨ R2 is exactly the set of finite
traces matching (the discrete semantics) of Pres. In the most general case, a regular
expressions can always be automatically generated from an existential FOTT formula
when the time constraints of delay expressions are fixed (the intervals I in the occurrences
of (∆(x) ∈ I) ).
The next step is to check that the observer agrees with every trace conforming to

R2. For this we simply need to check that, starting from the initial state of (Universal ||
Present), it is not possible to reach a state in the set Errors by following a sequence of
transitions labeled by a word in R2.
This is a simple instance of a language inclusion problem between finite state au-

tomata. More precisely, if Present is the set of states visited when accepting the traces
in R1∨R2, we need to check that Errors is included in the complement of the set Present
(denoted Present). In our example of Fig. 3, we have that Present = {17, 20, 22, 23},
and therefore Errors ⊆ Present.
This automata-based approach has still some drawbacks. This is what will motivate

our use of a branching time logic in the next section. In particular, this method is not
enough to check the soundness or the innocuousness of the observer. For innocuousness,
we need to check that every event may always eventually happen. Concerning soundness,
we need to prove that Errors ⊇ Present; which is false in our case. The problem lies in
the treatment of time divergence (and of fairness), as can be seen from one of the counter-
example produced when we use our LTL model-checker to check the soundness property,
namely: b.start.z.t.t.t.t.watch.t.t.· · · (ending with a cycle of t transitions).
This is an example where the error transition is continuously enabled but never fired.

5.3 Branching Time Specification
We show how to interpret regular expressions over traces using a modal logic. In this
case, the target logic is a modal µ-calculus with operators for forward and backward
traversal of a state graph . (Many temporal logics can be encoded in the µ-calculus,
including CTL∗). In this context, the semantics of a formula ψ over a Kripke structure
(a state graph) is the set of states where ψ holds.

ψ ::= φ ∧ ψ | ¬ψ | <A>ψ | ψ<A> | X | (minX |ψ)

The basic modalities in the logic are <A>ψ and ψ<A>, where A is a label expression. A
state s is in <A>ψ if and only if there is a (successor) state s′ in ψ and a transition from s
to s′ with a label in A. Symmetrically, s is in ψ<A> if and only if there is a (predecessor)
state s′ in ψ and a transition from s′ to s with a label in A. In the following, we will also
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use two constants, T, the true formula (matching all the states), and ‘0, that denotes
the initial state of the model; and the least fixpoint operator min X | ψ(X).
For example, the formula <a>T matches all the states that are the source of an a-

transition, likewise Reach_a def= min X | (<a>T ∨ <Z>X) matches all the states that can
lead to an a-transition using only internal transitions. As a consequence, we can test
innocuousness by checking that the formula (Reach_a ∧ Reach_b ∧ Reach_t) is true
for all states.
The soundness proof rely on an encoding from regular path expressions into modal

formulas. We define two encodings: ((R)) that matches the states encountered while
firing a trace matching a regular expression R; and ((R))e that matches the state reached
(at the end) of a finite trace in R. These encodings rely on two derived operators. (Again,
we assume here that A is a label expression.)

ψ o A def= ψ<A> ψ *A def= min X | ψ ∨ X<A>

((R ·A))e
def= ((R))e oA ((R ·A)) def= ((R)) ∨ ((R ·A))e

((R ·A∗))e
def= ((R))e *A ((R ·A∗)) def= ((R)) ∨ ((R ·A∗))e

((R · Tick))e
def= (((R))e o t) * (-t) ((R · Tick)) def= ((R)) ∨ ((R · Tick))e

((R1 ∨R2))e
def= ((R1))e ∨ ((R2))e ((R1 ∨R2)) def= ((R1)) ∨ ((R2))

((ε))e
def= ‘0 ((ε)) def= ‘0

Lemma 1. Given a Kripke structure K, the states matching the formula ((R))e (respec-
tively ((R))) in K are the states reachable from the initial state after firing (resp. all the
states reachable while firing) a sequence of transitions matching R.

Sketch. By induction on the definition ofR. For example, if we assume that ψ correspond
to the regular expression R, then ψ *A matches all the states reachable from states
where ψ is true using (finite) sequences of transition with label in A; i.e. formula ψ * A
corresponds to R ·A∗. Likewise, we use the interpretation of the empty expression, ε, to
prefix every formula with the constant ‘0 (that will only match the initial state). This
is necessary since µ-calculus formulas are evaluated on all states whereas regular path
expressions are evaluated from the initial state.

For example, we give the formula for ((R2))e below, where ψ o Tick stands for the
expression (ψ o t) * (-t):

((R2))e
def= ‘0 * (-b) o b * (-t) o Tick o Tick o Tick o Tick o a * T

If ψErr is a modal µ-calculus formula that matches the error condition of the observer,
then we can check the correctness and soundness of the observer Present by proving that
the equivalence (EQ), below, is a tautology (that it is true on every states of (Universal
|| Present)).

((Pres)) ⇔ −ψErr (EQ)

Again, we can interpret the “error condition” using the µ-calculus. The definition of
errors is a little bit more involved than in the previous case. We say that a state is
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in error if the transition error is enabled (the formula <error>T is true) or if the state
can only be reached by firing the error transition (which corresponds to the formula
(T<error> * T)∧ (‘0 * (- error)). Hence ψErr is the disjunction of these two proper-
ties:

ψErr
def= <error>T ∨ ((T<error> * T) ∧ - (‘0 * (-error)))

The formula (EQ) can be checked almost immediately (less than 1 s on a standard
computer) for models of a few thousands states using muse. Listing 3 gives a muse
script file that can be used to test this equivalence relation.
# Results are displayed as set of states. Use "output card" to see the cardinality
output set;

# definition of derived operators

infix X ∗ L =min Y | X ∨Y〈L〉; infix X o L =X〈L〉;
op TICK X =min Y | X〈t〉 ∨Y〈−t〉; op NEVER L = (‘0) ∗ (−L);
op EXT = a ∨ b ∨ t; # labels of the external transitions
op REACH L =min X | (〈L〉T) ∨ 〈−EXT〉X;

# INNOCUOUSNESS

op Innocuous = (REACH a) ∧ (REACH b) ∧ (REACH t);

# SOUNDNESS

op A0 = (NEVER b) o b; op S0 = (NEVER b) ∨A0;
op A1 =A ∗ (−t); op S1 =S0 ∨A1;
op A2 =TICK(A1); op S2 =S1 ∨A2;
op A3 =TICK(A2); op S3 =S2 ∨A3;
op A4 =TICK(A3); op S4 =S3 ∨A4;
op A5 =TICK(A4); op S5 =S4 ∨A5;
op A6 =A5 o a; op S6 =S5 ∨A6;
op A7 =A6 ∗ T; op S7 =S6 ∨A7;

op R1 =NEVER b; op R2 =S7
op Pres =R1 ∨R2;
op ERRORS = 〈error〉T ∨ (((T〈error〉) ∗ T) ∧− ((‘0) ∗ (−error)));

Pres ⇔ (− ERRORS); # this is a tautology if all the states are listed

Listing 3: Script file for muse to check that ((Pres)) ⇔ −ψErr is a tautology
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6 Related Work and Conclusion
Few works consider the verification of model-checking tools. Indeed, most of the existing
approaches concentrate on the verification of the model-checking algorithms, rather than
on the verification of the tools themselves. For example, Smaus et al. [16] provide
a formal proof of an algorithm for generating Büchi automata from a LTL formula
using the Isabelle interactive theorem prover. This algorithm is at the heart of many
LTL model-checker based on an automata-theoretic approach. The problem of verifying
verification tools also appears in conjunction with certification issues. In particular,
many certification norms, such as the DO-178B, requires that any tool used for the
development of a critical equipment be qualified at the same level of criticality than the
equipment. (Of course, certification does not necessarily mean formal proof!) In this
context, we can cite the work done on the certification of the SCADE compiler [15], a
tool-suite based on the synchronous language Lustre that integrates a model-checking
engine. Nonetheless, only the code-generation part of the compiler is certified and not
the verification part.
Concerning observer-based model-checking, most of the works rely on an automatic

way to synthesize observers from a formal definition of the properties. For instance, Aceto
et al. [2] propose a method to verify properties based on the use of test automata. In
this framework, verification is limited to safety and bounded liveness properties since the
authors focus on properties that can be reduced to reachability checking. In the context
of Time Petri Net, Toussaint et al. [17] also propose a verification technique based on
“timed observers”, but they only consider four specific kinds of time constraints. None
of these works consider the complexity or the correctness of the verification problem.
Another related work is [9], where the authors define observers based on Timed Automata
for each pattern. Our approach is quite orthogonal to the “synthesis approach”. Indeed
we seek, for each property, to come up with the best possible observer in practice. To
this end, using our toolchain, we compare the complexity of different implementations
on a fixed set of representative examples and for a specific set of properties and kept
the best candidates. The need to check multiple implementations for the same patterns
has motivated the need to develop a lightweight verification method for checking their
correctness.
Compared to these works, we make several contributions. We define a complete verifi-

cation framework for checking observers with hard realtime constraints. This framework
has been tested on a set of observers derived from high-level timed specification patterns.
This work is also our first public application of the probe technology, that was added to
Fiacre only recently. To the best of our knowledge, the notion of probes is totally new
in the context of formal specification language. Paun and Chechik propose a somewhat
similar mechanism in [6, 14]—in an untimed setting—where they define new categories
of events. However our approach is more general, as we define probes for a richer set of
events, such as variables changing state. We believe that this (language-level) notion of
probes is interesting in its own right and could be adopted by other formal specification
languages. Finally, we propose a formal approach that can be used to gain confidence
on the implementation of our model-checking tools and that replaces traditional “visual
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verification methods” that are prone to human errors. This result also prove the useful-
ness of having access to a complete toolbox that provides different kind of tools: editors,
model-checkers for different kind of logics, . . .
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