N

N
N

HAL

open science

Ontology in Coq for a Guided Message Composition

Line Jakubiec

» To cite this version:

Line Jakubiec. Ontology in Coq for a Guided Message Composition. Gala, Rapp, Bel-Enguix. Lan-
guage Production, Cognition, and the lexicon, 48, Springer, pp.331, 2014, Text, Speech and Language
Technology, 978-3-319-08042-0. 10.1007/978-3-319-08043-7_19 . hal-01202797

HAL Id: hal-01202797
https://hal.science/hal-01202797

Submitted on 21 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01202797
https://hal.archives-ouvertes.fr

Ontology in Coq for a Guided Message
Composition

Line Jakubiec-Jamet

Laboratoire d’Informatique Fondamentale de Marseille
Aix-Marseille Université, CNRS, LIF UMR 7279

163, Avenue de Luminy - Case 901

13288 Marseille Cedex 9 - France

Summary. Natural language generation is based on messages that represent mean-
ings, and goals that are the usual starting points for communicate. How to help
people to provide this conceptual input or, in other words, how to communicate
thoughts to the computer? In order to express something, one needs to have some-
thing to express as an idea, a thought or a concept. The question is how to represent
this. In 2009, Michael Zock, Paul Sabatier and Line Jakubiec-Jamet suggested the
building of a resource composed of a linguistically motivated ontology, a dictionary
and a graph generator. The ontology guides the user to choose among a set of con-
cepts (or words) to build the message from; the dictionary provides knowledge of
how to link the chosen elements to yield a message (compositional rules); the graph
generator displays the output in visual form (message graph representing the user’s
input). While the goal of the ontology is to generate (or analyse) sentences and
to guide message composition (what to say), the graph’s function is to show at
an intermediate level the result of the encoding process. The Illico system already
proposes a way to help a user for generating (or analyzing) sentences and guiding
their composition. Another system, the Drill Tutor, is an exercise generator whose
goal is to help people to become fluent in a foreign language. It helps people (users
have to make choices from the interface in order to build their messages) to pro-
duce a sentence expressing a message from an idea (or a concept) to its linguistic
realization (or a correct sentence given in a foreign language). These two systems
led us to consider the representation of the conceptual information into a symbolic
language; this representation is encoded in a logic system in order to automatically
check conceptual well-formedness of messages. This logic system is the Coq system
used here only for its high level language. Coq is based on a typed A-calculus. It
is used for analysing conceptual input interpreted as types and also for specifying
general definitions representing messages. These definitions are typed and they will
be instanciated for type-checking the conceptual well-formedness of messages.

2 Line Jakubiec-Jamet

1 Introduction

Natural language generation is typically based on messages, i.e. meanings,
and goals, the usual starting points. We present our views on how to help
people to provide this kind of input. Guiding a user to compose sentences
can be done in many ways, a lot depending on the user’s knowledge state.
We will present here Illico (Pasero and Sabatier)?, some of its shortcomings
and our solution. Illico can be helpful in many ways. For example, it can
analyze and synthesize expressions (words, phrases, clauses, sentences), as
well as offer possible continuations for a sentence that has not been completed
yet, whatever the reasons may be (lexical, syntactic, semantic, conceptual or
contextual). All the suggestions made by the system are possible expressions
fitting into this place and being in line with the constraints at hand. To achieve
this goal a powerful mechanism is used to process in parallel knowledge of
different sorts (lexical, syntactic, semantic, conceptual and even contextual
ones).

Written in Prolog, Illico’s engine is based on a mechanism of coroutine
processing. Both for analysis and synthesis, it checks and executes the dif-
ferent constraints (lexical, syntactic, semantic, conceptual and contextual) as
soon as the structures of the different representations on which they apply are
built, the process being dynamic and taking place in parallel. Representations
are processed non deterministically in a top-down manner. The implemented
strategy is powerful enough to allow for analysis and synthesis to be simul-
taneously performed in a single pass. The same principle is used for guiding
composition incrementally, i.e. by means of partial synthesis.

! The problem we are dealing with here is search. Obviously, knowledge available

at the onset (cognitive state) plays also a very important role in this kind of task,
regardless of the goal (determine conceptual input, lexical access, etc.). Search
strategies and relative ease of finding a given piece of information (concept, word)
depend crucially on the nature of the input (knowledge available) and the distance
between the latter and a given output (target word). Imagine that your target
word were 'guy’ while you’ve started search from any of the following inputs: ’cat’
(synonyme), ’person’ (more general term), or 'gars’ (equivalent word in French).
Obviously, the type of search and ease of access would not be the same. The
nature and number of items among which to choose would be different in each
case. The influence of formally similar, i.e. close words (’libreria’ in Spanish vs.
library’ in English) is well known. Cognates tend to prime each other, a fact that
depending on the circumstances can be helpful or sheer nuisance.
For more details and references concerning Illico and its applications (natural
language interfaces to knowledge bases, simultaneous composition of sentences in
different languages, linguistic games for language learning, communication aid for
disabled people, software for language rehabilitation, etc.) you may want to take a
look at http://pageperso.lif.univ-mrs.fr/~paul.sabatier/ILLICO/illico.
html.

Ontology in Coq for a Guided Message Composition

Sururrg weaIdg oof[] T *Stq

| uawom
| URwom
| saojewoy
| o0jewoy
| seay
| €33
| suos

f at 3o amgard e saves pyo ayy ||
uossaida || siasts
e
spejes
pejes
saoey0d
ojerod
sajddeaud
ajddesud
<> 4o aumgod e seyEl piys sabueio
abueio
siayow
Jaupow
uaw
Jorarpd e R uew
sy
<-> eseayd quea aseayd unou o saaInf 4y
aoin(3iny
ny
siauey
ayey
aagelensp sbop
6op
siaqbnep
Iaybrep
saayj00
pees ogejod gddeaud gdde aayon
sajejol0yn
ajepoo
ajejoooL> 3|qelsban Jny sayos eal adn(Ny 1saq uaipp
uewny Py
s
poocy plos sbelanag 1eo Bop piy> uewom uew 3
siayioiq
Jay0iq
[Le ey sizaq
1saq
sajdde
ajdde
seiqissod saang o 7]

uos

0 UNOU™ UOWWOoD 3oRJe” sjiuyap ased <-f-ffes <-> <-> <>

aseayd unou T qlea 0 UNOU™ UoWWOD 3|DRJe” sjluyap ased

doysT|ry asne|>

Jo aupid e e}

SO0 0000000000000 00000000000000000000000000

aply saieyin SadUaRlaid naddopagg ey

4 Line Jakubiec-Jamet

If you want to compose a sentence step-by-step, from left to right, Illico
automatically and dynamically offers at each step a list of candidates for
continuing the sentence built so far. Figure 1 illustrates this mode. Having
reached a certain point in the chain (" The child takes a picture of the...”) the
user is waiting for suggestions to be made by the system. Offering possible
continuations is but one way among others to assist a user in sentence com-
position. One can imagine richer kind of assistance where the user accesses
various kinds of knowledge (linguistic, conceptual, etc.) to select then the one
fitting best his communicative goals.

This aspect could concretely help a user in sentence composition to be
fluent in a foreign language. Becoming fluent in a language requires not only
learning words and methods for accessing them quickly, but also learning how
to place them and how to make the necessary morphological adjustments.
The Drill Tutor [ZL10] aims to help people to produce a sentence expressing
some message. In the system, the user chooses the goal of communication (to
introduce someone for example). The goals is tree-structured. The user can
either drill down to a given goal by clicking on a goal name to expand the
sub-goals until a pattern is displayed, or search for them via a term because
goals are indexed. The Drill Tutor gets from the starting point, the goal, to
its linguistic realization. The system presents sequentially:

1. a model: the user chooses one of the patterns proposed by the system (a
pattern is a general sentence needing to be instanciated; for example, to
introduce someone, one can use the model: This is <title><name> or
That is <title><name> from <origin>);

2. the stimulus (chosen word): this step allows the instanciation of the cho-
sen pattern. For example, for <title>, the user can use Mr, Mrs, Dr.,
Professor, and for <origin>, he can choose Japan, Germany, France;

3. the user’s answer and the system’s confirmation: the system has now all
the information needed to create the sentence (or the exercise) expressing
the conceptual input. Finally, a set of possible outputs representing the
message is depicted on the screen and the user can express his message.

This approach is much more economical for storing and accessing patterns,
than storing a pattern for every morphological variant. This approach also
allows faster authoring, i.e., message building, than long-winded navigation
through a conceptual ontology (for more details see [ZA09]).

2 Limitation of sentence completion or the need of
controlling conceptual input

The objectives of sentence completion systems are different from those of con-
ventional surface generators [RD00, BZ03]. The latter start from a goal and
a set of messages (input) in order to produce the corresponding surface form
(output). Working quietly in the background, Illico tries to be pro-active,

Ontology in Coq for a Guided Message Composition 5

making reasonable guesses about what the author could say next. Hence, it
supposes somehow that the author knows at least to some extent what he
is/was going to say®.

Illico performs analysis by synthesis (top-down strategy) and, while it
does not need any help from the user for analysis, it does so for synthesis, as,
otherwise, it would produce unreasonably large sets of possible continuations,
most of which do not even correspond to the users’ intention. Figure 1 should
give you a rough idea of how Illico works. You’ll see basically three windows
with, at the bottom, the output produced so far (generally an incomplete
sentence, here: the child takes a picture of the); at the very left, the candidates
for the next slot (apple, beer, brother, ...) and in the main frame, various kinds
of representation, like the system’s underlying ontology, pragmatic, semantic
and syntactic information concerning the sentence in the making.

Offering rich assistance during sentence composition was not the main goal
of the designers of Illico. The production of possible continuations is but one
functionality among others, though a very useful one* and easily implemented
due to the power of Prolog’s core mechanisms.

A system providing more sofisticated assistance system would look quite a
bit differently: (a) the nodes of the tree would be categories (types) rather than
instances (words), the latter being shown only at the leave-level; (b) frequency
would be taken into account (the words’ likelihood varying with the topic);
(c) governors (eg. nouns) would precede their dependants (eg. determiners,
adjectives), and (d) wvariables would be used rather than extensive lists of
possible morphological values, etc.

Another problem linked to set size (i.e. great number of words from which
to choose) is the fact that large sets tend to be distracting and to cause
forgetting. Indeed, as the number of candidates grows (as is typically the
case at the beginning of a clause) the danger to get drowned. Likewise, with
the distance between the governor and its dependant increasing, grows the
danger to end up producing something that, while in line with the language,
does not correspond anymore to what one had in mind. Memory and divided
attention have taken their toll. In order to avoid this, we suggest to determine
the governing elements first and to keep the set of data from which to choose
small. In other words, filtering and navigation become a critical issue and
there are at least two ways to deal with them.

In order to reduce the number of candidates from which to choose, one
can filter out linguistically and conceptually irrelevant material. This strategy
is generally used both by the speaker and the listener as long as optimal
transmission of information, i.e. reasonable input/output are considered as a

3 Of course, we can also assume that the author does not even know that. But this
is a bit of an extreme case.

4 For example, it allows the testing of well-formedness and linguistic coverage of
the application one is about to develop. This being so, we can check now whether
all the produced continuations are expected and none is missing.

Line Jakubiec-Jamet

‘Jou ay} ol ybrens ¢ dayg

A

rauepiz 1} dois

JaquINU — e ”
urioy dysmaury I
Jrqissod |
wefao : lleq sy} passwwey " :Z dayg
I
7 I
- I
INJONI)S —— ~C— uoeip ‘Am_“—“““' usby — 3 ANVAIZ|
1emdaduod I | Joquinu — 3 [Jgj
AN ,
Jouuew s ” }
/ 0 w8ldo
[ros] | |
—===========c======ss===zccc======4d e‘ wooy—3[ANVAIZ
Auon o %
foustbere ki
bubeg. oun
P oz e P wopoemp 690 f0 JUBIL »
+ + GouBTIbeToD « wompode aminge 1965 Te /
TOMPUcd & ©0T008 = quspeide oA0U »
quenpe aaposfpe seodmd. Teofe P a3 e E
+ + + + omepue mmd. Some
emploqnse eUUESPe JWEBUH. eowide
ssutew jejs/Ayenb uopounfuos uomsodeid esusy qen INUIDIO00. EUYE UMMOOe IOQWOTe ToRIsda
< wonerss woreies 4m/m8°\n< A D S A —
sioyipow Ieai6o| |eneds ‘ojeys ‘uongoe (eap1) aysodwos ajdwis eAmpunfing. WOWLTEG
. 4/ oApmOPWe uoOmgebe
< Ty a0l + +
uonejaa / ajesipaid jo8lqo 4>~/:m_on poow esodund [Bmde Sumpe
bmoms. ooed.
\ Z\ bqumTe wosiede
aargoadszod/apnar: :
eop, 199! /oPNInIY o Ap— PUEImn .
\ purs aAmpunfs. yOemNEE .
- eAMROPUTe uopsbbe
TR
& d dind
azijeqJan Mui| aJo)sau |]ooued wuyuod Adoos Ajjpow aAowal aAow ppe «_E_“Zvoov.:
oarjoedsied/epniIny

azijeq4aAn Mul| a103)sa1 |9ouEed WIPUOD

azijeq4aA Mul| alojsaa |9oues

Adoo

Appow

wiuod

\

aAowas dAow ppe

Adoo Ajjpow 8Aowaa

pd

aanoadsiad/epnitny

\

aAnow

PUBTIOIO0 o
eATIOUDfqnSe qUSTISIEIRe
oAIEOpw. TopsenDe

poow esodind

\1

ppe

Fig. 2. An Interactive Graph Editor for Incremental Message Composition

Ontology in Coq for a Guided Message Composition 7

major means to achieve a given communication goal (default case). Hearing
someone say: “I’d love to smoke a....”, our mind or ears will be “tuned” to
smokeable items (cigar, cigarette, pipe) rather than to any noun, no matter
how correct all of them may be from a syntactic point of view. With regard to
our problem (sentence completion or message composition) this means that
the list to be presented should be small and contain but “reasonable” items?®.
How can this be achieved without sacrificing coverage? Indeed, even a filtered
list can still be quite large. Imagine that you were to talk about people, food,
or a day of the year, etc. The number of representatives of each category
is far too big to allow for fast identification, if the candidates are presented
extensively in an unstructured or only alphabetically structured list. This can
be avoided and navigation can considerably be eased by categorizing items,
presenting them as a conceptually structured tree (type hierarchy) rather than
as a flat list. Instead of operating at the concrete level of instances (all days of
the year) the user will now operate (navigate or choose) at a much higher level,
using more abstract words (generic concepts, type names, hyperonymes) like
month, weekdays, hour, etc. Of course, ultimately he will have to choose one of
the concrete instances, but having eliminated rapidly, i.e. via categories, most
of the irrelevant data, he will now choose from a much smaller list. The gain
is obvious in terms of storage (at the interface level) and speed of navigation.

3 Incremental building and refining a message graph

To show what we have in mind, take a look at figure 2. It is reminiscient
of SWIM, an ontology-driven interactive sentence generator [Zoc91]. Let’s
see how this is meant to work. Suppose you were to produce the underlying
message of the following sentence “Zidane hammered the ball straight into
the net”. This would require several walks through the conceptual network,
one for each major category (Zidane, hammer, ball, straight, net)%. The path
for “Zidane” would be “scene/idea/objects/entity/person”, while the one for
the shooting-act would be “scene/idea/relation/action/verb”. Concerning this
yet-to-be-built resource, various questions arise concerning the components
(nature), their building and usage. The three problems are somehow related.

What are the components? In order to allow for the interactive building
of the message graph we will need three components: a linguistically moti-
vated ontology, a dictionary and a graph generator. The ontology is needed for

5 This idea is somehow contained in Tesni¢re’s notion of valency [Tes59], in Schank’s
conceptual dependancy [Sch75] and McCoy and Cheng’s discourse focus trees
[MC91].

5 The upper part shows the conceptual building blocks structured as a tree and the
lower part contains the result of the choices made so far, that is, the message built
up to this point. To simplify matters we have ignored the attitude or speech-act
node in the lower part of our figure.

8 Line Jakubiec-Jamet

guiding the user to make his choices concerning the elements to build the mes-
sage from concepts/words. The fact that the user has chosen a set of building
blocks (concepts, i.e. class names, or words) does not mean that we have a
message. At this point we have only a set of elements which still need to be
connected to form a coherent whole (conceptual structure or message graph).
To this end the system might need additional information and knowledge.
Part of this can be put into the dictionary. Hence, nouns can be specified in
terms of subcategorial information (animate, human, etc.), verbs in terms of
case-frames and roles, etc. These kinds of restrictions should allow the con-
nection of the proper arguments, for example, baby and milk, to a verb like
drink. The argument connected via the link agent is necessarily animate, the
information being stated in the lexicon. In spite of all this, the system still
cannot build the graph (suppose the user had given only the equivalent of two
nouns and two adjectives), it will engage in a clarification dialogue, asking
the user to specify which attribute qualifies which object. Once all objects
(nodes) are linked, the result still needs to be displayed. This is accomplished
via the graph generator which, parallel to the input, incrementally displays
the message structure in the making.

How to use the resource? Obviously, as the ontology or conceptual tree
grows, access time increases, or more precisely, the number of elements from
which to choose to reach the terminal level (words). In addition, the metalan-
guage (class names) will become more and more idiosyncratic. Both of these
consequences are shortcomings which should definitely be avoided. This could
be done in several ways: (1) allow the message to be input in the user’s mother
tongue. Of course, this poses other problems: lexical ambiguity, structural
mismatches between the source and the target language; (2) start navigation
at any level. Indeed, when producing a sentence like, ”give me a cigarette”,
hardly anyone would start at the root level, to reach eventually the level of
the desired object. Most people would immediately start from the hyperonym
or base level; (3) allow access via the words’ initial letters, or, even better, (4)
via associatively linked concepts/words.”.

7 Suppose you were looking for the word mocha (target word: t,), yet the only
token coming to your mind were computer (source word: s,,). Taking this latter
as starting point, the system would show all the connected words, for example,
Java, Perl, Prolog (programing languages), mouse, printer (hardware), Mac, PC
(type of machines), etc. querying the user to decide on the direction of search
by choosing one of these words. After all, s/he knows best which of them comes
closest to the t,,. Having started from the s, ’computer’, and knowing that the
tw is neither some kind of software nor a type of computer, s/he would probably
choose Jawva, which is not only a programming language but also an island. Taking
this latter as the new starting point s/he might choose coffee (since s/he is looking
for some kind of beverage, possibly made from an ingredient produced in Java,
coffee), and finally mocha, a type of beverage made from these beans. Of course,
the word Java might just as well trigger Kawa which not only rhymes with the

Ontology in Coq for a Guided Message Composition 9

Last, but not least, there is no good reason to have the user give all the
details necessary to reach the leaf-, i.e. word-level. He could stop anywhere
in the hierarchy, providing details later on. This being so, he can combine
breadth-first and depth-first strategies, depending on his knowledge states
and needs. Obviously, the less specific the input, the larger the number of
words from which we must choose later on. Yet, this is not necessarily a
shortcoming, quite the contrary. It is a quality, since users can now decide
whether they want to concentrate first on the big picture (general structure
or frame of the idea) or rather on the low level details (which specific words
to use). Full lexical specification is probably not even wanted, as it is not only
tiresome as soon as the ontology grows (imagine the time it might take just to
produce the conceptual equivalent to a message like 'a beer, please!’), but also
it may pose problems later on (surface generation), as the words occurring in
the message graph might not be syntactically compatible with each other.
Hence, we will be blocked, facing a problem of expressibility [Met92].

4 Conceptual, computational and psychological issues

Building the kind of editor we have in mind is not a trivial issue and various
problems need be addressed and solved:

e coverage: obviously, the bigger the coverage, the more complex the task.
For practical reasons we shall start with a small domain (soccer), as we
can rely already on a good set of resources both in terms of the ontol-
ogy and the corresponding dictionary [Sab97]. Kicktionary, developped by
Thomas Schmidt (http://www.kicktionary.de/Introduction.html), is
a domain-specific trilingual (English, German, and French) lexical resource
of the language of soccer. It is based on Fillmore’s Frame Semantics
[BFL98] and uses WordNet style semantic relations [Fel98] as an addi-
tional layer to structure the conceptual level.

e language specificity: there are good reasons to believe that the concep-
tual tree will be language dependant. Think of Spanish or Russian where
verb-form depends on aspect, that is, on the speaker’s choice of considering
an action as completed, i.e perfective, or not, yielding two, morphologically
speaking, entirely different lemmas (ser/estar, meaning to be in Spanish,
or “uchodits” vs “uitsi” to walk in Russian).

e ergonomic aspects (readability): the graph’s readability will become
an issue as soon as messages grow big. Imagine the underlying graph of a
multiple embedded relative-clause. Also, rather than frightening the user
by showing him the entire tree of figure 2, we intend to show only the
useful (don’t drown the user), for example, the children nodes for a given
choice.

Sw, but also evokes Kawa Igen, a javanese volcano, or familiar word of coffee in
French. For more details, see [ZS08].

10 Line Jakubiec-Jamet

e the limits of symbolic representation: as shown elsewhere for time
[LZ92] and space [BZ94], symbolic representations can be quite cumber-
some. Just think of gradient phenomena like colors or sounds, which are
much easier represented analogically (for example, in terms of a color-
wheel) than categorially.

e the problem of metalanguage: we will discourage the user if learn-
ing the target language is only possible by learning yet another (meta)
language.

e the conceptual tree: there are basically two issues at stake: which cat-
egories to put into the tree and where to place them. Indeed, there are
various problematic points in figure 2. Where shall we put negation? Shall
we factor it out, or put it at every node where it is needed?

There are several other issues that we have hardly touched upon, yet they
are all relevant for natural language generation, in particular for interactive
language generation which is our case:

. in what terms to encode the message (concepts vs. words),

. at what level of abstraction (general vs. specific);

. size of the planning unit (concepts vs. messages);

. processing strategy: is planning done as a one-shot process or is it per-
formed in various steps, i.e. incrementally?;

. direction: is planning done left to right or top to bottom?

6. processing order. Do thoughts precede language, and if so, is this always

the case?

[ENEUCR R

ot

We will touch upon these points here only very briefly (for more details see
[Zoc96]). Let’s suppose you wanted to produce the following sentence: When
the old man saw the little boy drowning in the river, he went to his canoe in
order to rescue him. Obviously, before producing such a sentence its content
must be planned and represented somehow, but how is this done? There are
several good reasons to believe that this sentence has not been planned entirely
in advance, neither from left to right, nor in a single pass.

Psychological reasons: The sentence is simply too long for a speaker to
hold all its information in short-term-memory. It is highly unlikely that the
speaker has all this information available at the onset of verbalization. The
need of planning, that is, the need to look ahead and to plan in general terms,
increases with sentence length and with the number and type of embeddings
(for example, center embedded sentences). There is also good evidence in the
speech error literature for the claim that people plan in abstract terms. False
starts or repairs, like ”I’ve turned on the stove switch, I mean the heater
switch” suggest that the temperature increasing device has been present in
the speakers mind, yet at an abstract level [Lev89, Fro93].

Linguistic reasons: as is well known, the order of words does not nec-
essarily parallel the order of thought. For example, the generation of the first
word of the sentence here above, the temporal adverbial ”when”, requires

Ontology in Coq for a Guided Message Composition 11

knowledge of the fact that there is another event taking place. Yet, this infor-
mation appears fairly late in the sentence.

5 Checking Conceptual Well-formedness

Obviously, messages must be complete and well-formed, and this is something
which needs to be checked. The problem of well-formedness is important, not
only in systems where a message is built from scratch or from incomplete
sentence fragments (ILLICO), but also in message-specification systems 5.
Suppose you were to make a comparison, then you must (at least at the be-
ginning) mention the two items to be compared (completeness), and the items
must be comparable (well-formedness). In other words, having chosen some
predicate, a certain number of specific variables or arguments are activated,
waiting for instantiation. Arguments are, however, not only of a specific kind,
playing a given role, they also have specific constraints which need to be sat-
isfied. While checking well-formedness for single words does not make sense
(apart from spell checking, which is not our concern here), it does make sense
to check the compatibility and well-formedness of the combination of concepts
or words, to see whether they produce an acceptable conceptual structure.

To illustrate this further, lets take up again the sentence illustrated in Fig.
2, Zidane hammered the ball straight into the net. This means that, having
received as input something like to shoot (or, to hammer), we know that
there is someone, performing this action, with a specific target in mind (the
goal), and that the action can only be performed in so many ways (manner).
While not all of this information is mandatory, some of it is (agent, object,
target), and there are definitely certain constraints on the various arguments
(the agent must be animate, the object some kind of sphere, typically used in
soccer games, etc.). Being formalized and stored in a conceptual dictionary,
this information can now be used by our system to check the well formedness
of a given structure and its compatibility with the users’input.

The idea according to which types allow well-formedness checking of math-
ematical objects is well-known. We use them them for a different domain
(messages and sentences), because they allow the checking of the adequacy of
the elements used to build or complete a message. Having a rigorous repre-
sentation, we can reason about objects not only to check the well-formedness
of the users’input, but also its soundness.

To test this hypothesis we rely on the Coq proof assistant (Coq Develop-
ment Team 2008) as it allows us to:

e take advantage of its type system and its powerful representation mecha-
nisms: polymorphism, dependent types, higher-order logic...;

8 Of course, conceptual well-formedness, i.e. meaningfulness, does not guarantee
communicative adequacy. In other words, it does not assure that the message
makes sense in the context of a conversion. To achieve this goal additional mech-
anisms are needed.

12 Line Jakubiec-Jamet

e propose natural and general specification;
e check automatically the well-formedness of the users’input.

The Coq system provides a formal language to specify mathematical defini-
tions and prove them. The Coq language implements a higher-order typed
A-calculus, the calculus of constructions. Its logic is constructive and relies on
the Curry-Howard isomorphism. Each Coq proposition is of type Prop and
describes a predicate. There are also objects of type Set, but they are not
used in the context of this work.

Coq allows an hierarchical organization of types via the coercion mech-
anism. In other words, it contains a mechanism to represent conceptual in-
formation in the form of a tree of concept types. We use coercions here to
inject terms implicitly from one type into another, which can be viewed as a
subtyping mechanism. Given this facility a user may apply an object (which
is not a function, but can be coerced to a function) to the coercion, and more
generally, consider that a term of type A is of type B, provided that there is
a declared coercion between the two.

For example, in Fig. 2 we see that a Scene contains both an Atti-
tude_Perspective (speech-act, if you prefer) and an Idea (core part of the
message). This is expressed in Coq as follows:

Coercion Attitude_Perspective_is_Scene :
Attitude_Perspective >-> Scene.

Coercion Idea_is_Scene : Idea >-> Scene.

where Attitude_Perspective, Idea and Scene are declared as parameters
of type Prop. These coercions declare the construction of the conceptual
type Scene that can be seen as the composition of an Idea and an Atti-
tude_Perspective.

The coercions used for this study are described by an inheritance graph
in Coq. Moreover, Coq detects ambiguous paths during the creation of the
tree, and it checks the uniform inheritance condition according to which at
most one path must be declared between two nodes. The relevant part of the
inheritance graph for our example is:

Parameter hammer : Agent -> Object -> Target -> Prop.
Parameter Zidane : human.

Parameter ball : soccer_instrument.

Parameter net : soccer_equipment.

These four parameters describe the variables used in our example of Fig. 2.
Prop stands in Coq for the type of proposition. Roles (Agent, Object, Target)
and features (human, soccer_instrument, soccer_equipment) are generic types.
To express conceptual constraints such as Agents must be animate, Coq uses
the subtype principle in order to check that all constraints are satisfied, defin-
ing human, soccer_instrument and soccer_equipment respectively as subtypes
of Agent, Object and Target.

Ontology in Coq for a Guided Message Composition 13

When all constraints are satisfied, the semantics of a sentence can be
represented, which yields in our case “there is an agent who did something in
a specific way, by using some instrument”. In other words: “there is a person p,
an object o and a target ¢ that are linked via an action performed in a specific
way”. The user message can be defined generically and typed as follows:

Parameter is_someone : Agent -> Prop.

Parameter is_something : Object -> Prop.

Parameter is_manner : Target -> Prop.

Parameter relation : Agent -> Object -> Target -> Prop.

Definition message := exists p, exists o, exists t,
is_someone p/\is_something o/\
is_manner t/\relation p o t.

This definition is a A-expression taking as parameters the following vari-
ables (type names are referred to via their initial capital):

As:A—=P)(ro:0—=P)X:T—-P)(M:A—-O0—=T— P)

Hence, to produce the global message Zidane hammered the ball straight
into the net, we must instantiate the composite propositions respectively
by is_Zidane (of type human — Prop), is_ball (of type soccer_instrument
— Prop), is_net (of type soccer_equipment — Prop). Hammer is already de-
clared. Once this is done, the parameters Zidane, ball and net can be applied
to produce the desired result, the system type-checking the compatibility of
the involved parameters.

More generally speaking, checking the conceptual well-formedness and con-
sistency of the messages amounts basically to type-checking the composite
elements of the message.

Another approach implemented in Coq allows the formalization of general
patterns used for representing sentences. Then, these patterns are instanciated
and a semantic analysis of simple sentences can been performed. This analysis
relies on a hierarchy of types for type-checking the conceptual well-formedness
of sentences in the same spirit of this paper?. The motivation for using Coq is
to define general representations in order to have a more economical way for
storing and analysing sentences that are built according patterns (for more
details see [JJ12]).

9 Actually I gratefully acknowledge Michael from many fruitful discussions about
this approach. He always has been very attentive to others’works and our collab-
oration is due to him.

14 Line Jakubiec-Jamet

6 Conclusion and perspectives

The goal of this paper has been to deal with a problem hardly ever addressed
in the literature on natural language generation, conceptual input. In order
to express something, one needs to have something to express (idea, thought,
concept) to begin with (input, meaning). The question is how to represent
this something. What are the building blocks and how shall we organize and
index them to allow for quick and intuitive access later on?

Dealing with interactive sentence generation, we have suggested the build-
ing of a linguistically motivated ontology combined with a dictionary and graph
generator. While the goal of the ontology is to generate (or analyse) sentences
and to guide message composition (what to say), the graph’s function is to
show at an intermediate level the result of the encoding process. This reduces
memory load, allowing at the same time the checking of well formedness. Does
the message-graph really encode the author’s intention?

Of course, there are many ontologies. Unfortunately, we cannot draw on
any of them directly, as they have not been built for message composition.
As we have seen, different applications may require different strategies for
providing input. In Illico it was driven via an ontology, taking place fairly
late. Part of the message was known and expressed, thus, constraining further
inputs.

Michael Zock also worked on another message-specification system (the
SPB system), a multi-lingual phrasebook designed to convert meanings into
speech. In SPB, conceptual input consisted mainly in searching (for existing
sentences or patterns) and performing local changes. Rather than starting
from scratch, data are accommodated. Given the fact that we have a trans-
lation memory, input can be given in any language (mother tongue) we are
confortable with, provided that it is part of the translation memory. If there is
a translation between two sentences, any element is likely to evoke its equiv-
alent and the sentence in which it occurs in the target language. Obviously,
this is a nice feature, as it allows not only for natural input, but also to speed
up the authoring process!®.

In the case of Drill Tutor, conceptual input is distributed over time, spec-
ification taking place in three steps: first via the choice of a goal, yielding
an abstract, global structure or sentence pattern (steps 1), then via the vari-
ables’concrete lexical- and morphological values (steps 2 and 3). In the case of
Drill Tutor, input is clearly underspecified at the earliest stage. Messages are
gradually refined: starting from a fairly general idea, i.e., sentence pattern,
one proceeds gradually to the specifics: lexical and morphological values. This
seems a nice feature with respect to managing memory constraints. Many
ideas presented here are somehow half-baked, needing maturation, but, as
mentioned earlier, conceptual input is an area in Natural Language Genera-
tion where more work is badly needed.

10 For a similar goal, but with a quite different method, see [CPET07)

Ontology in Coq for a Guided Message Composition 15

References

[BFL98] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The berkeley
framenet project. In COLING/ACL-98, pages 8690, Montreal, 1998.

[BZ94] Xavier Briffault and Michael Zock. What do we mean when we say to the
left or to the right? how to learn about space by building and exploring a
microworld? In 6th International Conference on ARTIFICIAL INTELLI-
GENCE: Methodology, Systems, Applications, pages 363-371, Sofia, 1994.

[BZ03] John Bateman and Michael Zock. Natural language generation. In

R. Mitkov, editor, Ozford Handbook of Computational Linguistics, chap-
ter 15, pages 284-304. Oxford University Press, 2003.

[CPE*07] C.Boitet, P.Bhattacharyya, E.Blanc, S. Meena, S.Boudhh, G.Fafiotte,

[Fel9s]
[Fro93]
[7312]
[Levay]
[L292]

[MC91]

[Met92]
[RDOO]
[Sab9T]

[Sch75]

[Tes59]

[ZA0Y]

[ZL10]

A.Falaise, and V.Vacchani. Building Hindi-French-English-UNL resources
for SurviTra-CIFLI, a linguistic survival system under construction. In
Seventh international symposium on natural language processing, 2007.
Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database
and some of its Applications. MIT Press, 1998.

Victoria Fromkin. Speech production. In Jean Berko-Gleason and
N. Bernstein Ratner, editors, Psycholinguistics. 1993.

Line Jakubiec-Jamet. A Case-study for the Semantic Analysis of Sen-
tences in Coq. Research report, LIF, 2012.

William Levelt. Speaking : From Intention to Articulation. MIT Press,
Cambridge, MA, 1989.

Grard Ligozat and Michael Zock. How to visualize time, tense and aspect.
In Proceedings of COLING 92, pages 475-482, Nantes, 1992.

Kathleen McCoy and J. Cheng. Focus of attention: Constraining what can
be said next. In Ccile Paris, William Swartout, and William Mann, edi-
tors, Natural Language Generation in Artificial Intelligence and Compu-
tational Linguistics, pages 103—124. Kluwer Academic Publisher, Boston,
1991.

Marie W. Meteer. Expressibility and the Problem of Efficient Text Plan-
ning. Pinter, London, 1992.

Ehud Reiter and Robert Dale. Building Natural Language Generation
Systems. Cambridge University Press, 2000.

Paul Sabatier. Un lexique-grammaire du football. Linguvistic Investiga-
tiones, XXI(1):163-197, 1997.

Roger Schank. Conceptual dependency theory. In R. C. Schank, edi-
tor, Conceptual Information Processing, pages 22—-82. North-Holland and
Elsevier, Amsterdam and New York, 1975.

Lucien Tesnitre. Eléments de syntaxe structurale. Klincksieck, Paris,
1959.

Michael Zock and Stergos Afantenos. Using e-learning to achieve fluency
in foreign languages. In N. Tsapatsoulis (Eds.) A. Tzanavari, editor,
Affective, interactive and cognitive methods for e-learning design: creating
an optimal education experience. Hershey: IGI Global, 2009.

Michael Zock and Guy Lapalme. A Generic Tool for Creating and Using
Multilingual Phrasebooks. In Natural Language Processing and Cognitive
Science, Funchal, 2010.

16 Line Jakubiec-Jamet

[Zoc91] Michael Zock. Swim or sink: the problem of communicating thought.
In M. Swartz and M. Yazdani, editors, Intelligent Tutoring Systems for
Foreign Language Learning, pages 235—247. Springer, New York, 1991.

[Zoc96] Michael Zock. The power of words in message planning. In International
Conference on Computational Linguistics, Copenhagen, 1996.

[ZS08] Michael Zock and Didier Schwab. Lexical access based on underspecified
input. In Proceedings of the Workshop on Cognitive Aspects of the Lexicon
(COGALEX 2008), pages 9-17, Manchester, United Kingdom, August
2008. Coling 2008.

