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We present a modal analysis of metal-insulator-metal (MIM) based metamaterials in the far infrared region.
These structures can be used as resonant reflection bandcut spectral filters that are independent of the polar-
ization and direction of incidence because of the excitation of quasimodes (modes associated with a complex
frequency) leading to quasi-total absorption. We fabricated large area samples made of chromium nanorod
gratings on top of Si/Cr layers deposited on silicon substrate and measurements by Fourier Transform spec-
trophotometry show good agreement with finite element simulations. A quasimodal expansion method is de-
veloped to obtain a reduced order model that fits very well full wave simulations and that highlights excitation
conditions of the modes.
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1. Introduction

Structuration of metallic surfaces with typical size
smaller than the wavelength can lead to spectacular res-
onant effects. More than one century ago, anomalies in
reflection of metallic gratings have been discovered by
Wood [1], and substantial pioneering work [2, 3] have
highlighted the role of surface plasmons polaritons in
the anomalous reflection in mono and bi-periodic grat-
ings. These resonances can be used to fashion various
reflection and transmission spectra. In particular, to-
tal absorption phenomena in different metamaterial type
[4–8] from the micro wave to optical regime, have re-
cently attracted a lot of interest because of their poten-
tial application in sensing [9], tunable frequency selec-
tive microbolometers [10, 11] or solar cells [4]. One fam-
ily of metamaterial have been extensively studied which
is based on Metal-Insulator-Metal (MIM)configuration
[8, 12–14], because they can lead to polarization and an-
gle independent resonant perfect absorption. This is the
kind of structures we study both numerically and ex-
perimentally in this paper with the aim of using them
as bandcut reflection filters in the infrared that can be
tuned by adjusting the periodicity of the grating.
Besides the calculation of diffraction efficiencies and ab-
sorption spectra, our approach to study the resonant
phenomena in such metamaterials is to compute the
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eigenmodes and eigenfrequencies of such open electro-
magnetic systems. The study of poles and zeros of the
scattering operator [15, 16] and of their associated leaky
modes leads to significant insights into the properties of
metamaterials [17–20] and eases the conception diverse
optical devices [21–25] because it provides a simple pic-
ture of the resonant processes at stake. From the resolu-
tion of a spectral problem, one obtains complex eigenfre-
quencies. The real part is the resonant frequency and the
imaginary part the bandwidth. Resonant scattering is
expected when shining light with frequency around the
resonant frequency. We report here a numerical spec-
tral analysis of MIM arrays, that allows us to optimize
parameters for infrared reflection bandcut filters. The
spectral position od the reflection dip can be adjusted
by varying the periodicity of the grating. Large area
samples with different periods have been fabricated and
characterized by FTIR spectroscopy, and measured nor-
mal incidence reflection spectra agree well with the nu-
merical predictions of both calculated reflection spectra
and complex eigenvalues. Moreover, the high angular
tolerance of the filters is demonstrated experimentally
and numerically.
The eigenvectors and eigenvalues are intrinsic proper-
ties of the studied system that depends onto the opto-
geometrical parameters but are in essence independent
of the incident parameters. Our main contribution is
to provide a systematic method to characterize the ex-
citation of a given mode. By expanding the scattered
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field onto the eigenmode basis, we can compute the cou-
pling coefficient that characterizes the strength of the
interaction of incident light with a mode. This method
is illustrated in the case of a MIM array, showing the
resonant nature of the reflection dip and providing a
reduced-order model with two degenerate leaky modes
that fits very well full wave finite elements calculation.

2. Setup of the problem and theoretical background

(a) (b)

Fig. 1. Geometry of the studied structures. (a): schematic
representation and notations. (b): SEM image (top view) of
a fabricated grating.

2.A. Diffraction problem

The geometry of the structures studied in this paper
is represented in Fig. 1(a) and consist of three layers.
The top layer is made of a square array with period d
along both Ox and Oy of cylindrical chromium nanorods
with diameter D and thickness hr. The bottom layer
is a continuous chromium film of thickness hm. These
two metallic layers are separated by an amorphous sili-
con film of thickness denoted hi. The incident medium
(superstrate) is air with permittivity ε+ = 1 and the
structure are deposited on a silicon substrate with per-
mittivity ε−. The permittivity of chromium is described
by a Drude-Lorentz model [26] and the refractive index
of bulk and amorphous silicon are taken from tabulated
data [27]. All materials are assumed to be non magnetic
(µr = 1).
We consider here the time-harmonic regime with e−iωt

dependance. The structure is illuminated by a plane
wave Einc = A0 exp(ik+ · r) with
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where ϕ0 ∈ [0, 2π], θ0 ∈ [0, π2 ], ψ0 ∈ [0, π], k0 = ω/c and

k+ = k0
√
ε+.

The problem we are dealing with is to find non trivial

solutions of Maxwell’s equation, i. e. to find the unique
electromagnetic field (E,H) such that

Lε,µ(E) := −∇×
(

µ−1
∇×E

)

+ k20 εE = 0, (1)

where the diffracted field Ed = E−Einc satisfies an out-
going wave condition (OWC) and where E is quasiperi-
odic along x and y

E(x+ dx, y + dy, z) = E(x, y, z)ei(αdx+βdy).

Under this form, the problem is not adapted to a reso-
lution by a numerical method because of infinite issues:
the sources of the plane wave are infinitely far above
the structure, the geometric domain is unbounded and
the scattering structure is itself infinitely periodic. To
circumvent these issues, we compute only the diffracted
field solution of an equivalent radiation problem with
sources inside the scatterers, we use PMLs to truncate
the unbounded domain at a finite distance, and we use
quasiperiodicity conditions to model a single period of
the grating.
Denoting ε1 and µ1 the tensor fields describing the mul-
tilayer problem, the function E1 is defined as the unique
solution of Lε1,µ1

(E1) = 0, such that Ed
1 := E1 − E0

satisfies an OWC. The expression of this function can be
calculated with a matrix transfer formalism extensively
used in thin film optics (See for example Ref. [28]). The
unknown function Ed

2 is thus given by Ed
2 = E −E1 =

Ed − Ed
1 . The scattering problem (1) can be rewritten

as:

Lε,µ(E
d
2 ) = −Lε1,µ1

(E1) := S1. (2)

The term on the right hand side can be seen as a source
term S1 with support in the diffractive objects Ωg′ and
is known in closed form [29].
The radiation problem defined by Eq. (2) is then solved
by the FEM [29–31], using PMLs to truncate the infinite
regions and by setting convenient boundary conditions
on the outermost limits of the domain. We apply Bloch
quasiperiodicity conditions with coefficient α (resp. β)
on the two parallel boundaries orthogonal to x (resp. y),
and homogeneous Dirichlet boundary conditions on the
outward boundary of the PMLs. The computational cell
is meshed using 2nd order edge elements. The final alge-
braic system is solved using a direct solver (PARDISO
[32]).

2.B. Spectral problem

The diffractive properties of open waveguides such as
those studied here are governed by their eigenmodes and
eigenfrequencies. The eigenproblem we are dealing with
consists in finding the solutions of source free Maxwell’s
equations, i.e. finding eigenvalues Λn = (ωn/c)

2 and
non zero eigenvectors Vn such that:

Mµ(Vn) := ∇×
(

µ−1
∇×Vn

)

= Λn εVn. (3)
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Note that we search for Bloch-Floquet eigenmodes so
Maxwell’s operator Mµ is parametrized by the real
quasiperiodicity coefficients α and β. Because we are
dealing with an open structure, the eigenvalues Λn are
complex even for Hermitian materials. The spectrum
of the associated Maxwell’s operator is constituted of
a continuous part corresponding to radiation modes
and a discrete set of complex eigenvalues associated
with the so-called quasimodes (also known as leaky
modes or resonant states). PMLs have proven to be a
very convenient tool to compute leaky modes in various
configurations [33–36] because they mimic efficiently
the infinite space provided a suitable choice of their
parameters. Indeed, if we choose a constant stretching
parameter ζ for the PMLs, it is sufficient to take
Re(ζ) > 0 and Im(ζ) > 0 to rotate the continuous
spectrum in the lower half complex plane Re(ω) < 0,
which reveals outgoing quasimodes (satisfying outgoing
wave conditions) [37]. It is well known that the asso-
ciated eigenvalues are poles of the scattering matrix.
In addition, the zeros Λz

n of the scattering matrix
are associated with incoming quasimodes (satisfying
incoming wave conditions), that we can compute
by setting Re(ζ) > 0 and Im(ζ) < 0 leading to a
displacement of the continuous spectrum in the upper
half complex plane Re(ω) > 0. A real zero Λz indicates
total absorption of incident light.
Note that the incident angles θ0 et ϕ0 appear in a
subtle way through the quasiperiodicity coefficients
α et β, but the polarization angle ψ0 does not come

into play in the spectral problem. It is thus neces-
sary to thoroughly study eigenmodes in order to find
the polarization state that can excite the modes at stake.

The eigenvalue problem defined by Eq. (3) is solved
with the FEM as described in section 2.A. We have sup-
posed here that the material are non dispersive, which
makes the problem in Eq. (3) linear. To take into ac-
count dispersion, the eigenvalue problem is solved iter-
atively with updated values of permittivity. This pro-
cedure converges rapidly due to the slow variations of
the permittivity of the considered materials in the far
infrared range.

2.C. Quasimodal expansion method

We first define the classical inner product of two func-
tions F and G of L2(Ω), Ω ⊂ R

3:

〈F |G〉 :=
∫

Ω

F (r)·G(r) dr. (4)

Unlike self-adjoint problems, 〈εVn |Vm〉 6= δnm, in other
words the eigenmodes Vn are not orthogonal with re-
spect to this standard definition. This is the reason why
we consider an adjoint spectral problem with eigenval-
ues Λn = (ωn/c)

2 and eigenvectors Wn. The adjoint
operator M†

µ
is defined by

〈

Mµ(V )
∣

∣W
〉

=
〈

V
∣

∣M†
µ(W )

〉

(5)

with complex conjugate coefficients for the boundary
conditions in comparison with the direct spectral prob-

lem [38], and is such that M†
µ
= Mµ⋆ , where A⋆ =A

T

is the conjugate transpose of matrix A. The associated
adjoint problem that we shall solve is:

M†
µ
(Wn) = ∇×

(

µ⋆−1
∇×Wn

)

=Λn ε
⋆ Wn. (6)

We know from spectral theory that the eigenvectors Vn

are bi-orthogonal to their adjoint counterparts Wn [39]:

〈εVn |Wm〉 :=
∫

Ω

ε(r)Vn(r)·Wm(r) dr = Knδnm,

(7)

where the normalization coefficient Kn = 〈εVn |Wn〉.
Relation (7) provides a complete bi-orthogonal set to
expand every field solution of Eq. (2) propagating in the
open waveguide as:

Ed
2 (r, ω, ψ) =

+∞
∑

n=1

Pn(ω, ψ)Vn(r)

+

∫

Γc

Pν(ω, ψ)Vν(r) dν, (8)

where Γc is the continuous spectrum (a curve, with
possibly a denombrable set of branches in the complex
plane). The coefficients Pk(ω, ψ), k = {n, ν}, are given
by:

Pk(ω, ψ) =
1

Kk

〈

εEd
2

∣

∣Wk

〉

=
Jk(ω, ψ)

ω2 − ω2
k

, (9)

with

Jk(ω, ψ) =
c2

Kk

〈S1 |Wk〉

=
c2

Kk

∫

Ω
g′

S1(r, ω, ψ)Wk(r) dr, (10)

where the integration is only performed on the inhomo-

geneities Ωg′ since the source term S1 is zero elsewhere.
Note that the last integral has to be taken in the distri-
butional meaning which leads to a surface term on ∂Ωg′

because of the spatial derivatives in S1.
We are thus able to know how a given mode is excited
when changing the incident field. This modal expan-
sion can be approximated by a discrete sum since the
spectrum of the final operator we solve for involves only
discrete eigenfrequencies, and in practice only a finite
number M of modes is retained in the expansion, so
that we can write:

Ed
2 (r, ω, ψ) ≃

M
∑

m=1

Pm(ω, ψ)Vm(r). (11)

This leads to a reduced modal representation of the
field which is well adapted when studying the resonant
properties of the open structure, as illustrated in the
sequel.
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3. Modal analysis of MIM arrays

The parameters employed are hr = 100nm, hi = 530nm,
hm = 200nm, and we fix the ratio between the rod
diameter and the period f = D/d = 0.5. We study the
influence of the period d on the reflection spectrum of
the metamaterial.

3.A. Fabrication and characterization of the samples

Samples with parameters described above and varying
period of 4.0, 4.4, 4.8, 5.2 and 5.6µm have been fabri-
cated (a SEM image showing a top view of the filter with
d = 4µm is given in Fig 1(b)). The different layers have
been deposited by magnetron sputtering on a standard
silicon wafer of diameter 100mm and thickness 525µm.
Large area samples (1 cm × 1 cm) were patterned with
a standard photolithography process with a positive re-
sist deposition followed by a chemical etching of the top
chromium layer.
Reflection spectra have been recorded with a Thermo
Fisher-Nicolet 6700 Fourier Transform InfraRed (FTIR)
spectrophotometer. The measurements were performed
with a focused unpolarized light beam with ±16◦ di-
vergence and a spot diameter of 4mm. An accessory
composed of a set of mirrors allows us to record reflec-
tion spectrum for incident angles between 0 and 90◦. All
the spectra are normalized with a background recorded
from a reference gold mirror.

3.B. Reflection spectra

Figure 2(a) shows the reflection spectra at normal inci-
dence in the specular order for bi-gratings with different
periods, calculated by the FEM formulation described
in section 2.A. These spectra show a clear resonant be-
havior in the region 12 − 24µm with a large reflection
dip. Increasing the period d shifts this dip to larger
wavelengths and broadens the resonance. It can also be
noted that for d = 4.8µm, the reflection is almost zero at
resonance. Since the transmission is negligible because
the thickness of the bottom metal layer is nearly twice
the skin depth of chromium in this spectral range, the
incident power is nearly totally absorbed by the meta-
material at resonance and dissipated by Joule heating.
The measured reflection spectra of the fabricated sam-
ples are reported in Fig. 2(b) and show very good agree-
ment with numerical simulations. For example for d =
4.8µm, both experimental and simulated reflection dips
are located at 18.5µm, although experimentally, the re-
flection minimum is 10%, more than the 0.3% simulated
value. For all samples, the disagreements originates from
spectral broadening of the measured reflection, wich is
mainly due to size dispersion on the rod diameter over
the fabricated samples.

3.C. Influence of the periodicity: a pole-zero ap-
proach

To highlight the resonant properties of the studied
MIM arrays, we report here a modal analysis of such
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(b) Experiments.

Fig. 2. Reflexion spectrum at normal incidence in the spec-
ular order R0,0 as a function of incident wavelength λ for
different values of the period d (in µm). (a): FEM simula-
tions, (b): FTIR measurements.

structures. We solved numerically the spectral problem
(3) as described in section 2.B, with quasiperiodicity
coefficients α = β = 0. Due to the symmetry of the
problem in these conditions, we find two degenerate
outgoing leaky modes (associated with poles of the
complex reflection coefficient r0,0) and two degenerate
incoming leaky modes (associated with zeros of r0,0).
The degenerescence corresponds to eigenmodes with
TE and TM polarization.

Figure 3 shows the evolution of the pole and its
associated zero in the complex ω-plane as a function
of d (we only represented the pole and zero of the TE
mode because of degeneracy). The real parts of the pole
and of the zero are almost equal and shift to smaller
frequencies as the period increases. For d = 4.8µm,
the zero crosses the real axis, which means that the
reflection is suppressed for a real incident frequency
close to this zero. This is consistent with the previous
observations from reflection spectra.
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Fig. 3. Location of pole (green squares) and zero (orange
circles) in the complex plane as a function of d (we only
represented the pole and zero of the TE mode because of
degeneracy). The values of d are indicated in µm, and the
boxed values indicates the fabricated structures. The black
dashed line represents the real axis.

We reported in Fig. 4 the values of the resonant
wavelength and the spectral width of the resonances
extracted from the calculated (green circles) and from
measured (black triangles) reflection spectra as well as
those derived from the pole eigenfrequencies (orange
squares). As it can be seen in Fig. 4(a), the position of
the resonance increases linearly with d, with the values
calculated from simulated reflection spectra minima and
from the spectral problem being in excellent agreement,
which indicates that the resonant reflection dip stems
from the excitation of the leaky mode associated with
this eigenfrequency. In addition, experimental values
well agree with the positions predicted by the two
numerical approaches. Moreover, the spectral width of
the dip increases with d as can bee seen in Fig. 4(b).
In that case the values obtained from the diffraction
problem and from the spectral problem are in good
agreement but slightly differs because the spectral width
extracted from reflection spectra may be influenced
by the presence of other modes whereas the linewidth
associated with a leaky mode is valid for an isolated
resonance. The experimental values are larger as said
before but show a variation with d similar to the
calculated ones.

To highlight the physical mechanism responsible for
these resonant total absorption (or equivalently sup-
pressed reflection), we plotted in Fig. 5 the magnetic
field associated with the TE outgoing quasimode for
d = 4.8µm. The electric displacement represented by
arrows is very strong with opposite directions in the rod
and the metal layer, which creates a strong magnetic re-
sponse (see colormap) confined in the silicon layer below
the nanorod. Note that the nature of the resonance is
not related to Fabry-Pérot type mechanism because the
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(a) Resonant wavelength.
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Fig. 4. Spectral parameters of the resonance as a function of
the period d obtained with different methods: extracted from
calculated (green circles) and measured (black triangles) re-
flection spectra and extracted from the pole eigenfrequency
(orange squares). (a): resonant wavelength, (b): spectral
width.

silicon layer is very thin (< λ/30), but rather to localized
electric and magnetic dipoles [8].

Fig. 5. Field map of the TE outgoing leaky mode in the Oxz

plane for d = 4.8 µm. The left colormap represents the norm
of the magnetic field H, the arrows represent the direction of
the displacement current D and their colors (right colormap)
and size are proportional to its intensity.
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(a) Simulations, TE. (b) Simulations, TM.

(c) Simulations, unpolarized. (d) Experiments.

Fig. 6. Influence of the incidence. Colormap : reflection spectrum in the specular order R0,0 as a function of frequency ω

and quasiperiodicity coefficient β for d = 4.8 µm. (a): simulations TE polarization, (b): simulations TM polarization , (c):
simulations unpolarized, (d): FTIR measurements. In Figs. (a) and (b), the black circles indicate the real (top) and imaginary
(bottom) parts of the eigenfrequency ω1 of the corresponding leaky mode as a function of β.

3.D. Angular tolerance

One of the key features of MIM arrays is the angular tol-
erance of the first order resonance, which is crucial for
filtering applications. The colormap on Fig 6 shows the
reflection spectrum as function of frequency ω and trans-
verse wavenumber β for d = 4.8µm. Figs. 6(a) and 6(b)
are calculated values in TE and TM polarization respec-
tively. We also plotted the evolution of the real part ω′

1

of the eigenfrequency ω1 associated with either TE or
TM mode, the so-called dispersion diagram. In both
cases the real part of the eigenfrequency remains almost
constant, with a slight redshift (resp. blueshift) for TM
(resp. TE) polarization at large angles and matches very
well the position of the resonant reflection dip. As β

increases, the resonance sharpens in the TE case and
broadens in the TM case. These observations are con-
firmed by the evolution of imaginary part ω′′

1 of eigen-
frequencies (See bottom plot in Figs. 6(a) and 6(b)):
because the real part ω′ is almost constant the quality
factor of the resonance Q = ω′/∆ω = ω′

1/2ω
′′
1 increases

(resp. decreases) for TE (resp. TM) polarization. To
compare with experimental results of Fig. 6(d), we also
plotted the calculated unpolarized case in Fig. 6(c). The
agreement between simulations and measurements is ex-
cellent except a slight spectral broadening and higher
minimum values for experimental results and demon-
strates the angular tolerance up to 70◦ of the fabricated
filters.
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(b) ψ = π/2 (TM)
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Fig. 7. Excitation coefficients Pn for the two degenerate
modes (right ordinate, TE blue, TM red, real parts: solid
line, imaginary part: dashed line) and reflection coefficient
R0,0 computed with full wave FEM diffraction problem (DP,
black solid line) and with the QMEM with these two modes
(orange dashed line).

3.E. Leaky mode excitation and reduced order
model

Finally, we computed the diffracted field using Eq. (11)
with the two leaky modes TE and TM. Because of the

mode degeneracy, every linear combination of the two
eigenmodes is also solution of Eq. (3) for the eigenvalue
denoted ω1 = ω′

1 + iω′′
1 . We define the TE mode such

that JTE(ω
′
1, ψTE) = 1 and JTE(ω

′
1, ψTM) = 0, where

ψTE = 0 and ψTM = π/2. The TM mode is then
obtained by standard Gram-Schmidt orthogonalization
procedure, and the two modes are finally normalized
such that KTE = KTM = 1.

The study of the coupling coefficients Pn reveals the
resonant nature of the interaction of a plane wave with
the modes. On Fig. 7, we plot these coefficients as a
function of wavelength for different polarization cases:
(a) ψ = 0 (TE), (b) ψ = π/2 (TM) and (c) ψ = π/4.
The real (solid line) and imaginary (dashed line) parts of
the excitation coefficients show strong variations around
the resonant frequency in all cases. For ψ = 0 (resp.
ψ = π/2), only the TE (resp. TM) mode is excited while
the value of Pn for the TM (resp. TE) mode is negligi-
ble. For ψ = π/4 both modes participate equally to the
resonant diffraction process as their coupling coefficients
are equal in absolute value (opposite sign is arbitrarily
set for display purpose). These observations illustrate
the independence of the reflection dip with regards to
polarization. We have also computed R0,0 with the field
reconstructed by the QMEM with only two leaky modes.
The results (orange dashed line on Fig. 7) are in all cases
in excellent agreement with full wave FEM simulations
of the diffraction problem (DP, black solid line). This
means that the diffractive properties of the structure are
dominated by these two modes in the considered wave-
length range. The small discrepancies at small wave-
lengths are attributed to other modes with higher reso-
nant frequencies not taken into account in the reduced
order model.

4. Conclusion

We have studied metamaterial based on MIM designed
to serve as reflection bandcut filters in the thermal in-
frared spectral range. These structures shows quasi to-
tal absorption of light at the resonant wavelength that
can be tuned by varying the lateral dimensions of the
metallic nanorods grating. The reflection dip spectral
position is also independent of incident angle up to 70◦

and is not affected by the polarization state of the inci-
dent light. Our study provides an in depth modal anal-
ysis revealing the resonant nature of the interaction of
light with leaky modes of the structure. We developed a
quasimodal expansion method (QMEM) that allows us
to compute coupling coefficients between a plane wave
and the modes. This method leads to a reduced or-
der model with two modes that fits very well full wave
FEM diffraction problem simulations. Large area sam-
ples have been fabricated and FTIR measured reflection
spectra are in good agreement with the different numer-
ical approaches, demonstrating the potential practical
application of those polarization independent and angu-
lar tolerant resonant filters. Although the filters studied
here have been designed to work between 15 and 22µm,
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the concepts studied here can be applied to higher fre-
quency ranges (e.g. band III of the infrared between 7
and 13µm) by scaling down the dimensions of the struc-
tures.
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