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Latency Analysis of an Aerial Video Tracking System Using Fiacre and Tina

We describe our experience with modeling a video tracking system used to detect and follow moving targets from an airplane. We provide a formal model that takes into account the real-time properties of the system and use it to compute the worst and best-case end to end latency. We also compute a lower bound on the delay between the loss of two frames.

Our approach is based on the model-checking tool Tina, that provides statespace generation and model-checking algorithms for an extension of Time Petri Nets with data and priorities. We propose several models divided in two main categories: first Time Petri Net models, which are used to study the behavior of the system in the most basic way; then models based on the Fiacre specification language, where we take benefit of richer data structures to directly model the buffering of video information and the use of an unbounded number of frame identifiers.

Introduction

We describe our experience with modeling a video tracking system used on board an aircraft to detect and follow moving targets on the ground. This industrial case study has been submitted as a verification challenge during the 6th International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems. We propose an answer to the first challenge of this use case [START_REF] Henia | The 2015 fmtv challenge[END_REF]. Our solution is based on the use of a model-checking tool for an extension of Time Petri Nets with data and priorities. The models used in this study are available online at http://www.laas.fr/fiacre/ examples/videotracking.html.

The purpose of the video tracking system is to detect objects of interest inside a stream of images coming from a video camera (such as a moving vehicle for example); to estimate their future position; and to control the camera in order to track these objects over long periods of time. This system includes two high-level tasks: (1) a video processing system that process camera frames in order to embed tracking information and, ultimately, to display them on a monitor ; and (2) a tracking and control system that performs the motion prediction tasks and control the orientation of the camera based on the aircraft sensors data (position, direction and speed, etc..)

We focus on the real-time properties of the video frame processing system (the first challenge) and do not consider the scheduling issues raised by the interaction between the two high-level tasks. The video frame processing system is essentially a graphics pipeline, with four processing stages working concurrently but connected in series. The first stage of this pipeline is to fetch a new image frame from the camera; while the final stage consists in sending the processed frames to the display.

The main goal of the challenge is to compute the latency of the system, that is the best and worst-case delay from start (reception of a new frame) to finish (output to the display). Several factors complicate the problem. First, each step of this pipeline have different-and sometimes varying-computing times and are scheduled with different periods. Therefore some amount of buffer storage is needed and the occurrence time of the frames arrival at each stage of the pipeline cannot be defined with an analytical formula. Next, there is a small amount of uncertainty on the periods of the tasks. Whereas the stages in the pipeline are in sync when the periods are exactly those given in the specification, even a small divergence (accumulated over several periods) can lead to an arbitrary offset between tasks. We show that, in this case, video frames can be lost. More precisely, some frames will never reach the last stage of the pipeline because they will never be written in the display buffer; frames are discarded when the buffer is full. Finally, even though there is only a finite number of different frames in the processing pipeline at any given moment, the system deals with a potentially unbounded number of frame identifiers. In our approach, we use different modeling techniques to abstract away this unbounded number of identifiers. As a consequence, we can solve our problems using model-checking techniques developed for finite-state systems.

Our approach is based on the model-checking tool Tina [START_REF] Berthomieu | The tool Tina -construction of abstract state spaces for Petri Nets and time petri nets[END_REF], that provides state-space generation and model-checking algorithms for an extension of Time Petri Nets with data and priorities. We propose several models following two levels of accuracy. First, we use Time Petri Net (TPN) in order to study the behavior of the system in the most basic way. In this case, we restrict ourselves to the case where the buffer is of size one. Second, we use the Fiacre specification language [START_REF] Berthomieu | Fiacre: an intermediate language for model verification in the topcased environment[END_REF], where we take benefit of richer datatypes to model different sizes of buffers and an unbounded number of frame identifiers more simply. Both the extended TPN and the Fiacre models can be used for analysis by Tina.

Description of the Frame Processing System

We start by describing the architecture of the Frame Processing System pipeline (FPS) using a simple diagram, see Fig. 1 (above). The diagram outlines the intermediate data values (the "channel" v2, a register and a buffer) that are used as storage between each stage. The system is composed of four different functions that are each mapped to a unique task, T1 to T4, and executed on separate hardware: Task T1 is in charge of pre-processing the video frames coming from the camera. Each frame is assigned a unique identifier, that we call an id in the rest of the paper. New frames arrive strictly periodically with a period P1 that is a (constant) value in the range 40 ± 4.10 -3 . Once a new id arrives, T1 outputs a preprocessed frame, with the same identifier, after 28 ms. To compute the latency, we can abstract away the role of the camera and simply consider that T1 is a periodic task of period P1. Also, we do not need to model the actual image payload; we can simply consider that ids are the only data exchanged between tasks. T2 is a sporadic task, triggered by the arrival of a frame at its input (v2 in our diagram). The execution time of T2 may vary but is always in the interval [17,19]. The task overwrites its output register content when it is finished. The specification does not fix the initial values of the intermediate data values. We consider that v2, the register and the buffer are all initially empty. To this end, we will sometimes use a "dummy" id (denoted NIL) to distinguish the initial value. T3 is a periodic task, with a period P3 in the range 40 /3 ± 2 /3.10 -2 . When scheduled, T3 fetches an id in the register and outputs its result in a buffer after 8 ms; the result is not written-it is simply discarded-when the buffer is full. (We assume that T3 does not execute when the register is empty.) Since P1 is roughly three times bigger than P3, task T3 will often process the same register value more than once. Task T4 is periodic, with a period P4 that is in the same range than P1. When T4 is scheduled, and if the buffer is not empty, the last id is dequeued. In this case, the task takes 10 ms to compute its output for the display. Due to uncertainties on the hardware clocks, the periods of T1 and T4 may be slightly different but cannot deviate by more than 0, 02%. This very small difference between the timing constraints of the system is typically a source of combinatorial explosion when model-checking. Indeed, this means that we need roughly 10 000 periods before coming back to a "previously explored" configuration of the system. For this reason, we will use the amount of errors on the periods as a parameter of the system and study its influence on the complexity of our approach.

Since our state-space generation algorithms are based on dense-time techniques, our approach is insensitive to the choice of a scaling factor. Therefore, multiplying the timing constants by a fixed amount does not change the results or the performance of our tools. In all our experiments, we will mainly use three sets of timing constraints summarized in the following table. The last row gives the scaling factor (we choose the same values for T1 and T4): SPEC are the values obtained from the specification; WIDE are values obtained with an error in the order of 1%; EXACT are values without errors. 

A Simple Time Petri Net Interpretation

We provide a first set of solutions to the challenge based on Time Petri Nets (TPN). For reasons of brevity, we assume a basic knowledge of the semantics of Petri Nets and we refer the reader to e.g. [START_REF] Berthomieu | State Space Abstractions for Time Petri Nets. Handbook of Real-Time and Embedded Systems[END_REF] for an introduction to semantics of TPN. Time Petri Nets share the same graphical representation than standard Petri Net. In addition, a transition t can be decorated with a time interval, I(t). Informally: a transition t is enabled if there is enough tokens in the places connected to it; time can elapse, at the same rate, on all the transitions that are continuously enabled; finally, t can fire if it has been enabled for a time θ such that θ ∈ I(t). In particular, transitions associated to the interval [0, 0] should be fired immediately.

Description of the TPN model

We give a very simple interpretation of the frame processing system in Fig. 1. This net uses the WIDE set of timing constraints, therefore all timing constraints are multiplied by a factor of 3. The model was generated using the tool nd, which is an editor and simulator for TPN that is part of Tina (see the file initial-wide.ndr in our source files). For documentation, we have superimposed dashed boxes to the model in Fig. 1 in order to stress which parts of the TPN is related to which task.

Our modeling choices are quite simple. Actually, our main goal is to provide an interpretation that is as close as possible to the specification; we avoid possible optimizations in order improve readability of the model. We have two transition labels, SCHEDTi and Ti, for every periodic task Ti (with i in {1, 3, 4}). Transition SCHEDTi is used to start (schedule) the task periodically. When fired, it places a token in the place si that will stay for the duration of the task execution. The role of Ti is to model the end of the execution and the associated side-effect. For instance, transition T3 models the insertion in the buffer and T4 models sending the final frame to the display.

The one-place buffer between T3 and T4 is modeled using two places, where a token indicates the current state; empty or full. When T3 fires, and if the buffer is empty, then it becomes full after a zero delay (transition WRITE); otherwise the "write" is discarded. Task T3, the most complex component of our model, has two additional transitions, R0 and RR, that model reading from the register when it is either empty or full. In this case, we use inhibitor arcs (displayed with a -• arc) that block a transition when a token is present. We also use read arcs (-•) that can test the presence of a token without disturbing the enabled transitions.

The initial marking of the net states that every periodic task are scheduled at time 0 and that the buffer and register are empty.

Behavioral Verification with Tina

Tina [START_REF] Berthomieu | The tool Tina -construction of abstract state spaces for Petri Nets and time petri nets[END_REF], the TIme Petri Net Analyzer, provides a software environment to edit and analyze Time Petri Nets and their extensions. The core of the Tina toolset is an exploration engine, called tina, used to generate state space abstractions that can be later exploited by dedicated model checking and transition system analyzer tools. (Most of the components in Tina are command line tools and are available on the most common operating systems.) In our experiments, we use the tool sift instead of tina. Sift is a specialized version of tina that supports on the fly verification of reachability properties. It offers less options than tina but is typically faster and requires considerably less space when dealing with large models.

State space abstractions are vital when dealing with timed systems, such as TPN, that have in general infinite state spaces (because we work with a dense time model). Tina offers several abstract state space constructions that preserve specific classes of properties like absence of deadlocks, reachability of markings, linear time temporal properties, or bisimilarity. In the case of the FPS, most of the requirements can be reduced to safety properties, that is, checking that some "bad state" cannot occur. In this case, we do not need to generate the whole state class graph of the system and we can use "more aggressive" abstractions.

Tina implements two main state-space abstraction methods, a default method that preserves the set of states and traces of the system, and a method that preserves the states but over-approximate the set of traces. This second method can be used in Tina with the command line options -M; it is often much more efficient than the default exploration mode

To give a rough idea of the complexity of our initial model, it is possible to generate its exact state class graph and, for example, to check that the net is 1-safe (that the number of tokens in each place is always at most 1). This is done using the flag -b in Tina. The property is true and can be checked in less than 10 s on a modern laptop with 4GB of RAM. The same property can be checked almost instantaneously (≤ 0.01s) with the option -M. With the SPEC timing constraints, the same computation with option -M takes 28.8 s and use a peak memory of 110.7 MB.

We can already make a few "sanity checks" using our model. For instance, since the model is 1-safe, we prove that a task cannot receive a new id while it is still executing; otherwise one of the place si would hold more than one token. We can also use this model to check the impact of the initial conditions on the behavior of the system. For instance, if the pipeline starts with a frame in the register (there is a token in place register initially) then we can prove that the buffer cannot be empty when T4 is scheduled; that is the transition EMPTY is never enabled. As a consequence, except for a first few periods at the start of the system, we know that the execution of T4 will always takes 10 ms. On the other hand, we cannot use the model in Fig. 1 to compute the latency or to check that frames can be lost. The main reason is that we cannot distinguish two different id by looking at the marking (every id is represented as a token). We can easily change the model to consider a finite number of id by creating copies of each place (one copy for every possible value of id). We give an example of the TPN with two different id in Fig. 2: a token in place p3 (resp. p2) means that we generate a frame with id 1 (resp. 0). The net has an extra transition, t25, that can fire at most ∆ = 234 after a frame with id 0 is generated. At the other end of the pipeline, this frame is send to the display if transition t19 fires. Therefore, to test if the best-case latency is less than ∆, it is enough to prove that we cannot fire t19 while there is still a token in place p18. This is a reachability property that can be checked in Tina with the option -f. The following command executes in 0.4 s on the model with the WIDE timing constraints (and in 101.6 s without option -M):

sift -M -f "t19 => -p18" initial-wide.ndr
Another problem is to model a buffer with n places. It is possible to encode this data structure using a TPN but it can quickly become awkward when the value of n grows big. Also, we would like to compute the minimal number of different id necessary to check our properties. For this reason we propose a high-level model of the Frame Processing System using the Fiacre specification language.

An Interpretation Using Fiacre

Fiacre is a specification language designed to represent both the behavioral and real-time aspects of systems (http://www.laas.fr/fiacre/). The language comes equipped with a set of dedicated tools, such as frac, a compiler from Fiacre to a format handled by Tina. In a nutshell, a Fiacre specification is compiled into an extension of TPN where transitions can test and modify a set of data variables. Therefore Fiacre provides a highlevel, compositional syntax for defining TPN. A formal definition of the language is given in [START_REF] Berthomieu | The syntax and semantics of fiacre[END_REF].

Fiacre programs are stratified in two main notions: processes, which is basically a notation for states machines, and components, which describe a system as a composition of process instances. Components can also be nested.

The language supports two of the most common coordination paradigms-communication through shared variable (shared-memory) and synchronization through synchronous communication ports (message-passing)-and allows to define timing constraints on the transition of a system. We give an example of process declarations in Fig. 3. This code corresponds to the tasks T3 and T4 of the FPS (we still use the WIDE timing constraints). We follow the same philosophy in our Fiacre specification than with our TPN solution; we provide a model that is as close as possible to the specification and we favor readability over optimization of the model.

Description of the Fiacre model

The whole system is defined in the component C (see Fig. 3), where we state that the system is the parallel composition of five different process instances, camera to T4. Components are the unit for process instantiation and for declaring ports and shared variables. The declaration of C states that the buffer is initially empty and that all the other variables are set to the id NIL.

Fiacre is strongly typed, meaning that type annotations are exploited in order to guarantee the absence of unchecked run-time errors. The language offers a large choice of data structures, such as natural numbers, arrays, records, . . . Type declarations for our model are listed in Fig. 4. The register is a variable holding values of type id. A value of type id can be of three kind: the constant NIL; a "common" frame with index i, denoted FRAME(i); a special constant, MAGIC, that is the frame id that we monitor when computing the latency. The buffer, of type mbuff, is a fifo queue of length CAPACITY that can hold values of type id. The fifo queue is a primitive type in Fiacre, but the insertion policy of the buffer in the FPS is not standard: the id is discarded when the buffer is full; otherwise we add a frame id only if it is not already present in the queue. To model this behavior, we define a dedicated insertion function in Fiacre (see the declaration of insertbuff in Fig. 4).

A Fiacre process is defined by a set of parameters and control states, each associated with a set of complex transitions (introduced by the keyword from). Complex transitions are expressions that declare which transitions may fire and how variables are updated. Expressions are built from classical programming languages constructs (assignments, con- -------------------------------------------------- type mbuff is queue CAPACITY of id function insertbuff ( q : mbuff , f : id ) : mbuff is var tmp : mbuff := q begin if ( full q ) then return q end ; while not ( empty tmp ) do if ( f = first tmp ) then return q end ; tmp := dequeue tmp end ; return enqueue (q , f ) end Figure 4: Types, constants and functions ditionals, pattern-matching, . . . ); non-deterministic constructs (such as external choice); jump to a state (to); etc. As an example, we describe the behavior of process T3. (The other processes are roughly similar.) Process T3 can access two shared variables, register and buffer. One can remark that the parameters of each process are exactly those defined in our schematic view of Fig. 1. When T3 has been in the state get for a duration in [15, 17], it copies the value of the register in a local variable, v3, and move to the state set. After waiting another 24, it then tries to insert the value of v3 in the buffer and move back to get. This models the behavior of a periodical task, with period 40 and jitter 1, that writes its into the buffer with a delay of 24.

// ---------------------------------------------------- component C

Latency Analysis of the Fiacre Model

Figure 5 gives the code for process camera, that is in charge of generating new frames. This process writes periodically a new id in the variable v1; it will write only once, nondeterministically, the special value MAGIC then go to state stop. In camera, we use the user-defined function nextid to compute, and reuse, the first frame identifier that does not occur in the system. In this way, we can prove that we need only a finite number of values of the form FRAME(i) without bounding a priori the value of i.

On the other end of the pipeline, values of type id are consumed by T4 (see Fig. 3). Process T4 will move to the state displayed as soon as it spots the special id MAGIC. We can use this state to compute the end-to-end latency of a frame; we only need to check the time between the creation of our special frame (when v1 equals MAGIC) to its eventual display (when T4 enters state displayed). In practice, this can be done by adding an the best-case latency, we need to check the property minlatency for several values of ∆ and select the "first value" such that the property is false. A similar approach can be used to compute the worst-case latency and the minimal time between the generation of two lost frames. We give the results of our analysis in the next section.

The second property in Fig. 5, max, can be used to check that it is not necessary to consider more than 5 different id when the buffer is of size 3; i.e. the variable v1 is always different from FRAME(5).

Experimental Results

The models used in our experiments are available online at: http://www.laas.fr/ fiacre/examples/videotracking.html. Most of the models were developed in the course of one week, but we were able to have our first TPN model in about one hour. The TPN and Fiacre models where done concurrently by two different people (we obtain the same values with the two approaches). This development speed can be explained by the fact that we can easily model-check our examples; a modification to the model can be tested in a few seconds. Also, the size of the models are quite reasonable and therefore it was possible to use our simulators to understand the behavior of the system and to analyze the counter-examples returned by the model-checker.

Most of the time was spent refactoring our models in order to simplify their presentation for this paper. We also spent some time analyzing examples of "execution traces" to understand which scenarios led to the loss of a frame or to the best-case latency. For instance, we found that the scenarios for the worst-case latency is almost the same than for a frame loss, which is not surprising as an afterthought; the "slowest" frame is the one that was almost lost. We give the values computed in our experiments using the different timing constraints (the result are converted into ms) for two possible sizes of the buffer, n = 1 and n = 3. Column BTW gives the minimal time between two lost frames; it is easy to understand that BTW is necessarily a multiple of the period P1.

Our models are not totally faithful to the specification. In particular, we use an interval to model the uncertainty on the period. This means that, inside the same execution trace, the periods of a task may vary. (It would be possible to have "an exact" model using an extension of TPN with stopwatches, but this is much more costly in terms of performances.) As a result, we obtain an over-approximation of the possible behaviors: this gives a lower-bound when computing the minimal latency and an upperbound for the maximal latency. The same observation is true when we over-approximate the possible error on the periods; results obtained in the case WIDE will give lower and upper-bound for the case SPEC (which bounds the optimal values).

Another possibility is to compute the latencies by iterating over a sample of values for P1, P3 and P4. If we denote by MIN FIX and MAX FIX the best latencies value obtained on a sample of periods values and by MIN and MAX the exact best and worst-cases we have the following relations. (The relations for BTW are the same than for MIN.) MIN Our experiments show that there is no loss of frames when the periods P1 and P4 are equal (even if P3 is not exact). We also observe that increasing the size of the buffer does not reduce the best-case latency but can aggravate the worst-case.

We have not been able to compute the value of BTW for the 3-place buffer in the case SPEC (we stop computations that takes more than an hour). We can provide a lowerbound for BTW, obtained using finer intervals than with WIDE. Based on the observations made during the computation for the FIX case, we believe that the "exact value" of BTW could be much bigger than this bound (it appears that BTW is inversely proportional to the difference between periods, |P1 -P4|). Our best upper-bound for BTW was obtained using an optimized model; we find a bound of approx. 4 000 periods for FIX using the values P1 = 39.996 ms, P3 = 13.333 ms and P4 = 40.004 ms. This is the only question in the challenge for which we need to use a "more clever approach" than the simple, straight solution that was enough up to now. Nonetheless, more work is still needed in order to obtain a satisfactory value for BTW.

Conclusion

We have used a real-time model-checker to compute the maximal (worst-case) and minimal (best-case) end to end latency of the Frame Processing System, as well as to find a lower bound on the delay between the loss of two frames. Therefore, instead of using model-checking for validation, as is usual, we use it as a tool for architecture exploration. This case study is interesting for several reasons. First, it is well-suited for componentbased modeling languages (since the description is highly modular) and it is a good example for real-time verification methods (since the specification has plenty of timing constraints). Also, this case study provides a good motivation for the use of high-level data structures in a specification language. In our Fiacre models, for instance, we use a queue of identifiers with a dedicated insertion function to elegantly model the buffer's behavior.

Finally, our experiments show that the very low level of inaccuracy on the periodstypically a hundredth of a percent in the specification-is a major source of combinatorial explosion. (We are in a case where bigger errors leads to better performances). In this context, we show that we can use dedicated state space abstraction techniques (in this case the option -M of Tina) in order to solve problems where the most general approach fail to scale up. This stress the importance to provide a full verification toolbox that gives access to a range of optimizations and modeling help.
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 1 Figure 1: The Video Frame Processing Pipeline: schematic view (above) and initial TPN model (below)
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 2 Figure 2: A TPN model for computing the best-case latency (using two frame identifiers)

  is var v1 : id := NIL , v2 : id := NIL , register : id := NIL , buffer : mbuff := {||} par camera (& v1 ) || T1 (& v1 , & v2 ) || T2 (& v2 , & register ) || T3 (& register , & buffer ) || T4 (& buffer ) end
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 3 Figure 3: Excerpt from our Fiacre solution

  WIDE ≤ MIN SPEC ≤ MIN ≤ MIN FIX ≤ MIN EXACT MAX EXACT ≤ MAX FIX ≤ MAX ≤ MAX SPEC ≤ MAX WIDE

	n = 1	MIN	MAX BTW	
	EXACT	130 ms 130 ms n.a.	(no loss)
	WIDE	88 ms 147 ms 78 ms	(2 periods)
	SPEC	89.65 ms 145 ms 79.99 ms (2 periods)
	FIX	90 ms 144 ms 79.99 ms (2 periods)
	n = 3	MIN	MAX BTW	
	EXACT	130 ms	130 ms n.a.	(no loss)
	WIDE	88 ms	229 ms 429 ms	(11 periods)
	SPEC	89.65 ms	225 ms > 1.4 s	(35 periods)
	FIX	90 ms 223.33 ms < 163 s (4085 periods)

"observer" process to the component C that monitors the time between these two events. ------------------------------------------------ Figure 5: The camera process with Fiacre properties

We give an example of observer in Fig. 5. Process observer enters the state deadline as soon as the guard (v1 = MAGIC) is true. The process cannot stay in this state for more than ∆ = 234. As a consequence, the "latency" of the frame MAGIC is bigger than ∆ if and only if we can reach a state such that T1 is in the state displayed while observer is not yet in state stop. We can express this property directly in the Fiacre code using a property declaration; we give two examples of property in Fig. 5. Therefore, to compute