
HAL Id: hal-01202716
https://hal.science/hal-01202716

Submitted on 21 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

History and influence of the Danube delta lobes on the
evolution of the ancient harbour of Orgame (Dobrogea,

Romania)
Guénaëlle Bony, Christophe Morhange, Nick Marriner, Alexandre Baralis,

David Kaniewski, Ingrid Rossignol, Vasilica Lungu

To cite this version:
Guénaëlle Bony, Christophe Morhange, Nick Marriner, Alexandre Baralis, David Kaniewski, et
al.. History and influence of the Danube delta lobes on the evolution of the ancient harbour of
Orgame (Dobrogea, Romania). Journal of Archaeological Science, 2015, vol. 61, pp. 186-203.
�10.1016/j.jas.2015.06.003�. �hal-01202716�

https://hal.science/hal-01202716
https://hal.archives-ouvertes.fr


  

 

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 14251 

To link to this article : DOI:10.1016/j.jas.2015.06.003
URL : http://dx.doi.org/10.1016/j.jas.2015.06.003 

To cite this version : Bony, Guénaëlle and Morhange, Christophe and 
Marriner, Nick and Baralis, Alexandre and Kaniewski, David and 
Rossignol, Ingrid and Lungu, Vasilica History and influence of the 
Danube delta lobes on the evolution of the ancient harbour of Orgame 
(Dobrogea, Romania). (2015) Journal of Archaeological Science, vol. 
61. pp. 186-203. ISSN 0305-4403 

Any correspondance concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



History and influence of the Danube delta lobes on the evolution of
the ancient harbour of Orgame (Dobrogea, Romania)

Gu!ena€elle Bony a, *, Christophe Morhange a, Nick Marriner b, Alexandre Baralis c,
David Kaniewski d, Ingrid Rossignol d, Vasilica Lungu e

a CEREGE (UMR 6635 CNRS/AMU), Europôle M!editerran!een de l'Arbois, 13545 Aix-en-Provence, France
b Chrono-Environnement Laboratory (UMR 6249 CNRS), Franche-Comt!e University, UFR ST, 16 route de Gray, 25030 Besançon, France
c Louvre Museum, Department of Greek, Etruscan and Roman Antiquities, 75 058 Paris, cedex 01, France
d EcoLab (UMR 5245), 118, route de Narbonne; Bât. 4R1, 31062 Toulouse, France
e Institute of South-Eastern European Studies, Romanian Academy, Calea 13 Septembrie nr.13, O.P. 22 C.P. 159, 050711 Bucharest, Romania

Keywords:

Palaeoenvironments

Ancient harbour

Lagoon

Coastal barriers

Coasts

Orgame

Danube delta

Black Sea

a b s t r a c t

On the coast of Northern Dobrogea, south of the Danube delta, the Greek settlement of Orgame was

founded in the mid 7th c. BC, probably by Milesian colonists. The ancient city was located on the Cape

Dolojman which today overlooks a large lagoon complex. We undertook a chronostratigraphic study to:

(i) understand coastal changes around Cape Dolojman since ca. 5000 years BP in connection with the

construction of the Danube delta lobes, and (ii) identify potential sediment impacts related to human

occupation of the site. Three cores were extracted from the lagoon area. Sedimentological and biological

analyses were undertaken to reconstruct the evolution of the coastal palaeoenvironments. The results

show a closure of the marine bay around 3500 cal. BP and its transformation into a lagoon environment.

The first major environmental change was due to the construction of the lobe St. George I and the for-

mation of the barrier Lupilor. Around 2000 cal. BP, the formation of an intra-lagoonal lobe, the Dunavatz,

led to the gradual transformation of the lagoon into a fluvial-dominated system. Paradoxically, lagoon

waters today still wash the ancient Greek harbour environment, which has not been totally infilled by

alluvial sediments. To understand this paradox, in a context of coastal progradation, we compared and

contrasted the geomorphological data with the nearby city of Istros/Histria, which was already land-

locked at this time. The location of these two Greek colonies relative to the coastal sediment cell and

barriers partly explains their contrasting palaeoenvironmental evolution. Until 2650 cal. BP, the increase

in charcoal and organic matter in sedimentary archives is interpreted as an anthropogenic signal for a

more extensive use of the vegetation cover following the foundation of the city of Orgame (e.g. for

domestic use and funeral rites).

1. Introduction

Orgame constitutes one of the four earliest Greek settlements in
the Black Sea area. Founded in the mid-7th c. BC, on the coast of
Northern Dobrogea, the remains of the ancient city occupy the Cape
of Dolojman, today overlooking a large lagoon complex located
south of the mouths of the Danube (Fig. 1). Its location at the
proximal margin of the delta complex partially explains the
installation of Greek settlers in this very specific ecological area,

due to its rich wetland resources, while the latter in turn signifi-
cantly influenced the historical trajectory of the city. The archaeo-
logical research on this site began in 1926 with the work of P.
Nicorescu, before regular excavations were launched in 1965 and
have continued up to present day. Like many of the world's deltas,
human occupation of the Danube delta began during the Neolithic
period (around ~6000 BC; Stanley and Warne, 1997; Kennett and
Kennett, 2006; Giosan et al., 2012; Hu et al., 2013), when a slow-
down in relative sea-level rise favoured the outbuilding of the
deltaic plain and yielded a multiplicity of environmental resources
that could be exploited by societies (Carozza et al., 2012; Dimitriu,
2012). Nonetheless, the earliest attested traces of human occupa-
tion on Cape Dolojman date to the First Iron Age (~700 BC).
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Excavations conducted in 1972 by M. Coja on the southern areas of
the peninsula have unearthed several levels dated to the earliest
phases of the Babadag culture (8the7th c. BC according to Coja
(1972); 11the9th c. BC according to Ailinc$ai et al. (2006)). More
recently, the discovery of a collective burial, accommodating 13
individuals, has complemented these initial discoveries, testifying
to the existence of a Getic settlement (Thracian tribes inhabiting
the regions on either side of the Lower Danube andwho could be in
contact with the ancient Greeks) on this site before the arrival of
the Greek settlers (Alinc$ai et al., 2006). However, its geography is
still unclear, despite the recent identification of the two earth
anomalies located west of the late Roman fortification as the
possible remains of an Early Iron Age defensive system (Fig. 2).
Although no epigraphic documents corroborate the name of the
Greek city, which overlaps with the Getic levels on Cape Dolojman,
it has been largely attributed to Orgame on the basis of two oc-
currences of the latter in textual sources, as well as in three in-
scriptions (M$anucu-Adameşteanu, 2003). Its history is
characterized by twomain periods of occupation. The first is related
to the Greek colony. The exact date of its foundation is unclear, but
the ceramicmaterial found in the urban areas and at the necropolis'

oldest burial mound (Ta 95), suggests an installation of the Greek
settlers in the mid-7th c. BC (Lungu, 2000). Because of its consid-
erable size (42 m in diameter), this mound is a unique monument
in the burial area. It hosted ritual offerings spanning a long period
from the mid-7th c. BC to the 3rd c. BC, and has been interpreted as
a heroon e the tomb of the colony's founder. This official burial
clearly shows an autonomous political consciousness of the civic
community during the Archaic period (7the6th BC), underlining
the high probability that Orgame was an independent city during
this early period. Since 1988, extensive excavations carried out by V.
Lungu on various areas of the necropolis have unearthed around 80
burial mounds covering a total area of more than 100 ha. The
dominant ritual practice from the 7th to the mid-3rd c. BC,
remained the cremation of the deceased followed by the deposition
of their ashes in urns, a tradition that naturally consumed impor-
tant amounts of wood, accentuating the human impacts related to
the Greek city.

Moreover, the Greek harbour of Orgame is located south of the
settlement, in a lagoon naturally sheltered from the north-south
longshore drift by the Cape Dolojman (Fig. 2). This environment
faced an important natural outlet named Gura Portiţei (Fig. 1). A

Fig. 1. Location of Orgame's ancient harbour in the present RazelmeSinoe Lagoon, on the proximal margin of the Danube delta. The chronology of the deltaic lobes and barriers

derives from Giosan et al. (2006).



geoelectric survey has revealed the presence of parallel structures
that may correspond to harbour infrastructures (Fig. 2), including
warehouses, but the exact chronology remains unclear (Baralis
et al., 2010). The economic importance of Orgame declined, like
most Greek settlements in the region, during the first half of the 3rd
c. BC. This chronology appears similar to that found along the
Western Black Sea. During the 3rd c. BC, the agricultural system of
the ancient city of Apollonia Pontica (Bulgaria) also collapsed, as
attested by the abandonment of the agricultural buildings located
around the city (Baralis et al., 2012). A troubled period ensued,
which saw the Celtic invasions and wars led by Lysimachus after
the death of Alexander. It was not until the 2nd c. AD that Orgame
regained importance. It was known in ancient sources by its
Latinized name of Argamum. The military importance of the
Northern borders of the Roman Empire explained the increasing
attention of the authorities for the major settlements of Northern
Dobrogea, leading to a new period of prosperity in the region. A
new fortification wall was built to protect the city of Orgame/
Argamum while the regional agricultural system adopted a new
model characterized by the spread of individual farms along the
main roads joining the two gates of the city (Baralis and Lungu,
2015). Nevertheless, the invasions of the early 7th c. AD affected
the Roman administration of Dobrogea and also engulfed Orgame/
Argamum. The harbour remained active until the 7th c. AD.

This papers looks to better understand 5000 years of human-
eenvironment interactions at Orgame, located at the mouth of the
Danube, using geoscience techniques developed and refined during
the past 20 years (Reinhardt and Raban, 1999; Morhange, 2001;
Marriner and Morhange, 2007). Today, the harbour of ancient
Orgame/Argamum lies in RazelmeSinoe lagoon. The shoreline is
currently surrounded by a wetland dominated by Phragmites aus-

tralis, that we suggest is broadly consistent with the ancient
shoreline. The main objectives of the paper are: (1) to reconstruct
coastal changes from ca. 5000 years BP onwards and to determine
their impact on Orgame's development and abandonment; and (2)

to understand human impacts. A synthesis of these results is pre-
sented in Bony et al. (2013).

2. Geomorphological setting

The Danube delta is one of the world's major wave-dominated
deltas. Its morphogenesis has taken place during the Late Pleisto-
cene and Holocene (Panin, 1999, 2003; Panin et al., 2003; Olteanu,
2004; Giosan et al., 2006). Geologically, the Danube Delta is built
upon the Dobroudja and the pre-Dobroudja formation. The weight
of these sedimentary accumulations has led to some crustal
mobility. The subsidence rate of the Danube delta is estimated to be
between 1.2 and 2 mm y!1 (Giosan et al., 1997). The RazelmeSinoe
lagoon, composed of four lakes (Razelm, Golovita, Zmeica and
Sinoe) which are delineated by sandy barriers and beach ridge
plain, extends over two geotectonic units: i) the North Dobroudja,
made of Cretaceous limestone and delineated to the North by the
St. Geroges fault; ii) the Central Dobroudja caracterized by Pre-
cambrien green schists (Seghedi, 2012). The Cape Dolojman is
formed by Mesozoic limestone corresponding to the North
Dobroudja geotectonic units. The north-east side of the Cape of
Dolojman shelters most of the archaeological remains of the city. At
around 20 m in height, this active cliff is subject to intense erosion
by north-east waves whereas the south-west side of the Cape is
characterized by a gentle slope that dips into SinoeeRazelm lagoon.
This lagoonal shoreline, currently characterized by awetland rich in
organic matter, probably corresponds to the ancient coastline.

The development of the Danube delta took place in several
phases shaped by the formation of successive lobes, driven by
hydro-sedimentary changes in the Danube watershed. The delta
plain is divided into two areas, consisting of an upper and lower
part. The upper part is characterized by fluvial deposits and is
considered to be linked to the bay behind the initial barrier Letea-
Caraorman (Fig. 1), during the early development of the delta. The
lower part of the plain is composed of fossil sandbars (Fig. 1) and
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Table 1

Ecology of Ostracoda species, modified from Frenzel et al. (2010).

Taxon Salinity Latitudinal distribution;

temperature

Water depth Habitate and susbtrate O2

Amnicythere longa Oligohalinef Black Sea, Caspian Seaa Very shallow, 0e5 mb Lagoonsc, estuarine systems

of the riversg

Amnicythere

quinquetuberculata

Up to 150 me Black Sea, Caspian Seaa Very shallowb Estuarine systems of the riversg

Amnicythere

striatocosta

Oligo to mesohalinec Black Sea, Caspian Seaa Very shallowb Lagoonsc, estuarine

systems of the riversg

Amnicythere

gracilloides

Oligohalinec,d Black Sea, Caspian Seaa Very shallowb Lagoonsc, estuarine

systems of the riversg

Amnicythere relicta Oligohalinec,d Black Sea, Caspian Seaa Very shallowb Lagoonsc, estuarine

systems of the riversg

Amnicythere

postbissinuata

Oligohalinec,d Black Sea, Caspian Seaa Very shallowb Lagoonsc, estuarine

systems of the riversg

Amnicythere volgensis Oligohalinec,d Black Sea, Caspian Seaa Very shallowb Lagoonsc, estuarine

systems of the riversg

Candona angulata Freshwater

to mesohaline

Britannic to moroccani;

mesothermj
Very shallowk

and shallowh
Ponds and estuariesi;

mud and sandh
Low oxygenh

Candona neglecta Freshwater

to mesohaline

Arcticl to moroccanm;

oligotherm

Very shallow

to deeph,k
(Coastali) Lakes, lagoons estuariesh

and open seai, mudh,k
Low oxygeni

Cyprideis torosa Holeuryhalinei Norwegianl to africanm;

polythermh
Very shallowk

to shallowh
Estuariesh, ponds and lagoonsh,i;

salt marshn; sedimenth, prefers mudk
Low oxygenh

Cypridopsis vidua Freshwater

to oligohaline

Artic to moroccanm;

polythermo
Very shallowk

to shallowh
Lagoonsh (coastali); mudh

and phytali; nectobenthici

Darwinula stevensoni Freshwater

to oligohaline

Articp to africanm;

eurythermo
Very shallowh,k

to shallowh
Ponds, lagoonsi and estuariesh;

sediment and phytalh

Eucypris virens Freshwater

to oligohalinei
Norwegian to

moroccanl; mesothermo
Very shallowh Pondsq, temporary alsoi

Euxinocythere bacuana Stenohalinee Black Sea, Caspian

Seag; mesothermr
All depthse Lagoons, estuaries;

soft muddy substratesr,a,b

Herpetocypris reptans Freshwater

to mesohaline

Arctic to africani;

eurythermj,o
Very shallowi

to shallowh
Lakes, ponds and estuariesi;

phytal and mudi; endobenthic

High oxygenh

Heterocyrpis salina Oligohaline

to mesohalinej
Cosmopolitans;

eurythermt
Very shallowk Permanenti and temporaryh

ponds; sediment and phytalk
Low oxygenk

Ilyocypris bradyi Freshwater

to oligohalineu
Norwegianl to moroccani;

polythermj
Very shallowm Springs, ponds, swamps and

estuaries, temporary waters alsoi,m
High oxygenh

Ilyocypris gibba Freshwater

to oligohalinek
Norwegianl to africani Very shallowi,k Ponds and estuariesi High oxygenh

Limnocythere inopinata Freshwater

to mesohalinek
Arctic to africani; polythermj Very shallow

to shallowh,k
Lagoons and estuariesh;

sediment and phytalh,k
Low oxygenh

Loxocaspia immodulata Mesohalinb Black Sea, Caspian Seaa,g Shallow, >10 ma,g Coastal, calm environment;

soft muddy substratea,g

Loxoconcha elliptica Oligohaline

to polyhalinej
Norwegian to morrocanm;

eurytherm

Very shallowh,k Lagoons and esturariesh,

salt marshn; sediment phytalh
Probably

low oxygenh

Loxoconcha pontica Klie Oligaohalins Black Sea, Azov Sea,

Mediterranean Seas
Inland sea, estuarie, lagoonss

Pseudocandona albicans Freshwater

to mesohalinek
Norwegian to morrocanl;

mesotherm

Very shallowh,k Lagoons ans estuariesh, swamps,

ponds and lakes, temporary

waters alsoi; phytalh

Low oxygenk

Pontocythere baceseoi Oligo to mesohalinev Black Sea, Azov Seas Lakes, lagoonsv

Potamocypris villosa Freshwaterw Cosmopolitanw Springs, ditches and small ponds.

It seems to be rather rare in lakesw

Semictyherura sulcata Mesohaline

to euhalinex
Mediterraneanx Shallowx Marine littoral to sublittoral; sandy to

silty or muddy substrates

frequently with algaex

Tyrrhenocythere

amnicola

Oligohaline

to mesohaliney
Black Sea, Azov Sea,

Caspian Sea, Tyrrhenian Seay
Flooding river valleys, lagoons, ponds;

muddy bottom with aquatic vegetationb

Tyrrhenocythere

pseudoconvexa

Oligohaliney Black Sea, Caspian Seay Shallowy Flooding river valleys, lagoons, ponds;

muddy bottom with aquatic vegetationb

(continued on next page)



corresponds to the development of the delta lobes outside the es-
tuary. It comprises the lobes of St. George I and II, Sulina lobe and
lobes Chilia I, II and III (Fig. 1). The secondary arm of St. George, the
Dunavatz, also formed a small lobe that developed in Sinoe
lagooneRazelm around 2000 years cal. BP (Giosan et al., 2005,
2006). Giosan et al. (2006) have demonstrated that this lagoon
was formed by sand spit accretion fed by Danube sediment input
and north-south longshore drift since 5000 years BP, in a context of
relative sea-level stability (Porotov, 2007; Brückner et al., 2010).
Three generations of coastal barriers (Zmeica, Istria-Lupilor and
Chituc) characterize the RazelmeSinoe lagoon. According to Giosan
et al. (2006), the barrier system of Zmeica is either the remnant of
the initial barrier that blocked the Danube bay (barrier-Letea Car-
aorman; Fig. 1) or a remnant sand spit linked to the development of
the asymmetric lobe St. George I, from 4900 to 4500 years cal. BP
(Fig. 1). The Lupilor barrier system stabilized between 3500 and
3100 years cal. BP, during the progradation of the St. George I lobe.
It appears synchronously with the first generation of barriers of the
strandplain of Istria, dated between 3700 and 3300 cal. BP. The
recent barrier was built at Istria between 1500 and 600 cal. BP,
followed by the barrier plain of Chituc. Finally, recent barriers
(<450 cal. yr BP), located inside the lagoon RazelmeSinoe are in
discordance with the coastline and are the product of intra-
lagoonal processes. Sediments brought into the lagoon by the
Dranov (now channelized) and Dunavatz channels (secondary arms
of St. Georges arms) and are redistributed to the south by the la-
goon's longshore drift. The natural opening of Gura Portiţei prob-
ably corresponding to a deep area, was artificially closed in 1969 for
touristic reasons (Mihailescu, 2006). It was located in front of the
ancient city. The RazelmeSinoe lagoon, corresponding to a low-
energy environment, is characterized by a sandyesilt sediment.
Sediments brought into the lagoon by the Dunavatz and Dranov
channels are redistributed to the south by the lagoon's longshore
drift. Wave heights in the lagoon complex can reach 1.2 m during
severe storms (Mihailescu, 2006). They can resuspend parts of the
bedload, leading to bio-detritic accumulations on the shore. The
lagoon system is characterized bymesohaline Ponto-Caspian fauna.

Since the 1970s, the lagoon has gradually infilled and is nowadays a
polluted oligohaline system (Vadineanu et al., 1997; Alexetrov et al.,
2004).

The city of Orgame is located 60 km southwest of St. George's
arm, 20 Km Dunavatz arm, 14 km from Gura Portiţei and 2.5 km
from the island of Bisericuta with archaeological remains, vintage
Late Roman and Proto-Byzantine (Manucu-Adamesteanu, 2003).
This location makes it a strategic site of human occupation.

3. Methods

The Holocene palaeoenvironments in the region of Orgame have
been reconstructed using sedimentological, palaeo-biological and
chronostratgraphic methods on three stratigraphic cores. These
cores have been extracted on the shoreline of Razelm lagoon, in
front of the city of Orgame (Fig. 2). The coring campaign was un-
dertaken in November 2009 using a Cobra TT percussion corer. Core
descriptions (texture, Macrofauna, organic remains) and sampling
were undertaken in the field. The sampling interval depends on the
nature of the sediment but varied between 5 and 10 cm. In the
laboratory, the sediment texture was determined by sieving and
laser granulometry (Blott et al., 2004). Three granulometric indices
were used in order to characterize the depositional sedimentary
processes: mean grain size, the sorting index and skewness (Folk
and Ward, 1957). Organic matter content has been quantified us-
ing the Loss of Ignition method (LOI; Bengtsson and Enell, 1986;
Heiri et al., 2001; Sanisteban et al., 2004). Concerning palaeo-
biological analyses, we paid particular attention to Macrofauna
(present in the sedimentary fraction >2 mm) and Ostracoda (pre-
sent in dry sand fraction >150 mm). 88 samples were been analysed.
729 specimens of Macrofauna covering 12 taxa were picked and
identified using the following references: D'Angelo and Garguillo
(1978); Poppe and Gotto (2000a,b). The autoecological groups
were defined according to P!eres and Picard (1964), a molluscan
ecological classification system for Mediterranean species, and to
the salinity gradient. Concerning Ostracoda, 5314 specimens
covering 30 taxa were picked and determined. For each sample we

Table 1 (continued )

Taxon Salinity Latitudinal distribution;

temperature

Water depth Habitate and susbtrate O2

Xestoleberis aurantia Oligohaline to

euhalinej
Britannic to lusitaniany Very shallow

to shallowh
Ponds, lagoons and open sea; phytalh

a Opreanu (2008).
b Gliozzi and Grossi (2008).
c Olteanu (2004).
d Schornikov (2011a).
e Gofman (1966).
f Schornikov (1972).
g Schornikov (2011b).
h Frenzel et al. (2010).
i Meisch (2000).
j Vesper (1975).
k J€avekülg (1979).
l L€offer and Danielopol (1978).

m Klie (1938).
n Penney (1987).
o Hiller (1972).
p Delorme and Zoltai (1984).
q Sywula (1966).
r Chekhovskaya et al. (2014).
s Kiliç (2001).
t Mischke et al. (2012).
u Usskilat (1975).
v Altinsaçh et al. (2014).
w Meisch (1985).
x Cabral et al. (2006).
y Tunoglu and Gokçen (1997).



normalised the ostracod density to a standard dry sample weight
(40 g). The Danube delta region is characteristed by its relatively
low salinity and for the presence of Ponto-Caspian species. There-
fore, species observed in these three cores have a similar ecology.
They are eurythermal and live on sandy substrata in shallow, low
salinity environments. A list of all Ostracoda species with refer-
ences and the species ecology is given in Table 1. The ecological
groups are based on the salinity gradient which separates oligaline
species from oligo tomesohaline species tomesohaline species. The
chronological framework is provided by radiocarbon dates per-
formed at Poznan (Poland) and the Artemis laboratory (Saclay,
France). All the radiocarbon dates have been corrected for atmo-
spheric 14C variations using the calibration curve IntCal09 (Reimer
et al., 2009; Table 2). Concerning the dates obtained on marine
shells, a marine reservoir age of 498 ± 41 14C years BP (Siani et al.,

2000) has been subtracted from the radiocarbon dates before
calibration with IntCal09 (Table 2). The age model was made using
all accepted dates (Table 2) and a simple linear regression was
applied. Principal components analysis (PCA) was performed to test
the ordination of samples by assessing major changes in palaeo-
biological proxies and sediment deposits. PCA ordination was
selected because it is a nonparametric method of extracting rele-
vant information from complex datasets (Kaniewski et al., 2008,
2011). Most of the variance is accounted for by the first PCA-Axis,
with 72.59% of total inertia (Ostracoda), 57.7% (Macrofauna) and
64.22% (granulometry). The PCA-Axes1 (Ostracoda, Macrofauna
and granulometry) have been plotted on a linear age-scale with the
organic matter scores and the fire history. The numerical analyses
were performed using the software PAST (Version 2.14 Paleonto-
logical statistic, Hammer et al., 2001).

Table 2

Radiocarbon determinations and calibrations.

Lab code Sample n" Depth

(cm)

Material Age 14C BP s d 13C (‰) Corrected

Age 14C BP

s corrected Calibrated Age

BP (2s)

Calibrated Age

BC/AD (2s)

Status

Poz-43347 O1 228 228 Organic sediment 3830 35 !28.5 4099e4407 cal BP 2458 cal BCe

2150 cal BC

Accepted

Poz-43349 O1 277 277 Marine shell

Donax variegatus

5165 35 !3.2 4667 54 5303e5580 cal BP 3631 cal

BCe3354cal BC

Accepted

Lyon-8279 O1 330 330 Organic matter 5630 35 !27.18 6317e6482 cal BP 4533 cal

BC e 4368 cal BC

Accepted

Lyon-8289 O1 385 385 Organic matter 6050 35 !27 6795e6991 cal BP 5042 cal

BCe4846 cal BC

Refused

Lyon-8281 O1 395 395 Organic matter 5835 35 !26.64 6545e6991 cal BP 4791 cal

BCe4596 cal BC

Accepted

Poz-43348 O1 420 420 Wood 4685 35 !29.5 5318e5576 cal BP 3627 cal

BCe3369 cal BC

Refus!ee

Lyon-8282 O2 86 86 Plants

(monocotyledon)

!29.06 !29.06 moderne Refused

Poz-51363 IRO2 35 92 Charcoal 295 30 v.n.d 291e459 cal BP 1491e1659 cal AD Accepted

Lyon-9404 O2 150e160 145 Plants

(monocotyledon)

180 30 v.n.d 74e297 cal BP 1653e1876 cal AD Refused

Poz-43350 O2 202 202 Freshwater shell

Melanopsis

praemorsa

2060 60 !25.2 1881e2294 cal BP 345 cal

BCe69 cal AD

Accepted

Poz-51364 IRO2 67 210 Charcoal 2575 30 v.n.d 2518e2759 cal BP 810e519 cal BC Refused

Beta-325708 IRO2 73 222 Charcoal 2310 30 !22.5 2183e2358 cal BP 409e234 cal BC Accepted

Poz-51362 IRO2 100 282 Charcoal 2560 30 v.n.d 2503e2753 cal BP 804e554 cal BC Accepted

Lyon-8276 O2 382 382 Wood 2900 30 v.n.d 2950e3160 cal BP 1211 cal

BCe1001 cal BC

Accepted

Lyon-9405 O2 420e430 425 Organic matter 3655 30 v.n.d 3894e4084 cal BP 2135e1495 cal BC Accepted

Beta-325709 IRO2 153 460 Charcoal 4790 30 !24.6 5470e5593 cal BP 3644e3521 cal BC Refused

Lyon-8277 O2 528 528 Organic matter 6010 35 v.n.d 6749e6945 cal BP 4996 cal

BCe4800 cal BC

Refused

Poz-43351 O2 610e620 615 Marine shell

Donax

variegatus

5160 35 !6 4662 54 5299e5580 cal BP 3631

cal BCe3350 cal BC

Accepted

Poz-43353 O2 850e860 855 Marine shell

Donax

variegatus

5630 40 !3.6 5132 57 5739e5993 cal BP 4044 cal

BCe3790 cal BC

Accepted

Poz-51366 O3 140e150 145 Charcoal 770 30 669e733 cal BP 1217e1281 cal AD Refused

Lyon-8283 O3 200 200 Plants

(monocotyledon)

715 30 !25.16 566e720 cal BP 1230 cal

ADe1384 cal AD

Accepted

Lyon-9402 O3 250e260 255 Plants

(monocotyledon)

182.9 v.n.d moderne Refused

Lyon-8284 O3 288 288 Wood 720 30 v.n.d 568e722 cal BP 1228 cal

ADe1382 cal AD

Refused

Lyon-9401 O3 290e300 295 Plants

(monocotyledon)

730 30 v.n.d 654e726 cal BP 1234e1296 cal AD Refused

Lyon 8275 O3 358 358 Organic matter !26.33 !26.33 moderne Refused

Poz-43354 O3 479 479 Organic matter 6190 40 !27 6974e7241 cal BP 5292 cal

BCe5025 cal BC

Refused

Lyon-9403 O3 490e500 495 Marine

shell Abra alba

5225 30 v.n.d 4727 50 5323e5585 cal BP 3636e3574 cal BC Refused

Poz-43355 O3 630e650 640 Marine shell

Donax variegatus

5275 35 !1.2 4777 54 5326e5603 cal BP 3654 cal

BCe3377 cal BC

Accepted

Radiocarbon Calibration Curve IntCal09 (Reimer et al., 2009). Marine reservoir Age 498 ± 41 14C BP (Siani et al., 2000). Corrected Age¼ Age adjusted for marine Reservoir Age.
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The fire history of the lagoon was reconstructed by counting
charcoal particles (50e200 mm) from the slides prepared for pollen
analysis as well as from larger charcoal remains (>200 mm) (Gavin
et al., 2006; Higuera et al., 2007). The 50 mm size criterion was
chosen to avoid confusion of microscopic charcoal fragments with
opaque minerals, which are typically <50 mm (Parshall and Foster,
2002; Pederson et al., 2005). Macroscopic charcoal, extracted
with Na2HPO4, were sorted and counted under a binocular micro-
scope (at $36). Charcoal accumulation rates (CHAR) were subse-
quently estimated (number of particles g!1 y!1).

4. Results

Sedimentary cores O1 and O2 were taken from inside the
ancient harbour environment while core O3 is located southwest of
the city, beyond its zone of influence (Fig. 2). They show a trans-
formation of the Orgame coastline. This paper describes the bio-
sedimentological results of core O2, which is the best-dated core
(Figs. 3e5). These results are subsequently compared to cores O1
and O3 (Fig. 6).

4.1. Palaeoenvironmental evolution of Orgame bay and

characterization of the ancient harbour environments

In the absence of a core that attained the bedrock, we suggest
that the onset of marine sedimentation began with the reconnec-
tion of the Black Sea to the Mediterranean Sea ca. 9400 years cal. BP
ago (Soulet et al., 2011).

4.1.1. Unit A: a marine bay at the distal margin of the Danube delta

The basal unit (Unit A) is located between 4.1m and 8.5m depth.
It consists of an accumulation of shelly sandy-silt sediments,
reflecting a dynamic depositional environment. Three samples
were taken for radiocarbon dates; two on marine shells (Donax
variegatus) situated at 8.5 m and 6.15 m depth, and one on organic
sediment at 4.25 m depth (Table 2). The organic sediment was
dated to 3894e4084 cal. yr BP (2135e1945 cal. yr BC). This sample
is located at the transition between the sandy-silts facies (Unit A)
and the overlying silty facies (Unit B). Marine shells have been
dated to 5739e5993 cal. yr BP (4044e3790 cal. yr BC) and
5299e5580 cal. yr BP (3631e3350 cal. yr BC). This unit consists of
50% sands and 50% clayey silt. The gravels fraction is almost absent
and comprises marine shell fragments. At 4.7 m, the sand fraction
decreases slightly and drops abruptly at the transition with the
overlying unit. The sand fraction comprises 90% fine sand which is
confirmed by a mode of 100 microns. The importance of the sands
fraction is translated by a skewness index between 0.3 and 0.6 and
a sorting index between 1.5 and 2 (Fig. 3). The sedimentation rate at
the base of the unit is relatively high (ca. 5 mm yr!1; Fig. 3).

The Macrofauna analysis (Fig. 4) shows an ecological assem-
blage of autochtonous and allochthonous molluscan taxa. The
assemblage of autochtonous molluscan taxa is delimited by
lagoonal species and marine species from the infralittoral zone on
sandy substrate (Abra alba, D. variegatus). A. alba lives in fine sed-
iments having a mode between 50 and 250 microns (Huber and
Gofas, 2012). Some of the optimal development conditions for
this species are identical to the particle size data for this unit. The
lagoonal assemblage comprises Hydrobia ventrosa and Cera-

stoderma glaucum. C. glaucum is a brackish species living in lagoonal
environments but that is also typical of coastal environments close
to river mouths (Peres and Picard, 1964). The mixing of these two
assemblages is entirely consistent with coastal environments.
Allochthonous molluscan taxa consist of Macrofauna common to
the Danube River (Theodoxus danubialis, Theodoxus fluviatilis and
Dreissena polymorpha; Murphy, 2012). This assemblage of common
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freshwater species can only be explained by the proximity of the
Danube flows to this environment. From 4.70 m deep, infralittoral
marine species decline in favour of T. fluviatilis and C. glaucum
species. The environment becomes more oligohaline.

Concerning the microfauna, we observed a mixture of oligo to
mesohaline lagoon taxa, coastal and Pontic species (Fig. 5). The
Pontic ostracods are characteristic of oligo to mesohaline environ-
ments andmarginal environments such as lagoons. They have good
affinity withMediterranean coastal mesohaline species and oligo to

mesohaline Mediterranean species (Candona spp, Cypridopsis spp,
Darwinula spp and the species Cyprideis torosa). The ecological
assemblages that we observed in the sediments of unit A are
consistent with the ostracodological data of the Black Sea coast. For
the ostracod C. torosa, most shells have nodules. The nodules
develop when the species evolves in lacustrine to brackish envi-
ronments of low salinity (Carbonel, 1980; Bordegat et al., 1991;
Gliozzi and Mazzini, 1998; Frenzel and Boomer, 2005; Cabra et al.,
2006). According to the literature, the salinity thresholds at
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which these nodules appear varies between 5‰ (Keyser and Aladin,
2004) and 8‰ (Carbonel, 1980; Gliozzi andMazzini, 1998). We infer
that the salinity recorded for this sedimentary unit is less than 10‰.
The salinity of the Black Sea is not very high (18‰) and is lower at
the coast (Schokalsy and Nikitin, 1927). This is consistent with the
ostracod assemblages that we observed.

Unit A corresponds to an open coastal environment of low
salinity (oligo mesohaline) typical of Black Sea coastal environ-
ments and the Danubian area. However, the decrease in grain size
observed after 4.7 m is paradoxical. Indeed, the sedimentary
characteristics of the sandy bottom deposit is a rise of coarse par-
ticles towards the coastline and the wave breaking zone. In this
case, it could mark the beginning of a naturally protected envi-
ronment. Deltaic progradation of the Danube delta (started around
5200 yr BP; Giosan et al., 2006) has led to a natural protection of the
environment by building coastal barriers opposite the Cape
Dolojman (Fig. 1).

4.1.2. Unit B: semi-enclosed lagoon

Unit B, located between 2.2 m and 4.1 m depth, is characterized
by silt accumulation (mode <50 microns; Fig. 3), which contrasts
with the sandy texture of the underlying unit (5% of the sands
fraction versus 50% for unit A). The sediment is poorly sorted but is
enriched in fine particles (0.1 > SKI > 0.3; Fig. 3), confirming a low-
energy context. The transition between unit A and unit B is rela-
tively abrupt indicating a rapid transformation of the dynamic
marine environment into a protected and calm environment. The
top of the unit (2.22 m depth) is dated to 2183e2358 cal. yr BP
(409e234 cal. yr BC; Table 2). A piece of wood located at 3.82 m
depth and a charcoal located at 2.82 m depth has been dated
respectively to 2950e3160 cal. yr BP (1211e1001 cal. yr BC) and
2503e2753 cal. yr BP (804e554 cal. yr BC; Table 2). The sedimen-
tation rate is about 2 mm yr!1 (Fig. 3).

The unit is devoid of Macrofauna and shell debris (Fig. 4).
Concerning the microfauna, coastal assemblages are completely
absent (Fig. 5), only a few oligo to mesohalines lagoon species
(Candona neglecta, Tyrrenocythere pseudoconvexa, Darwinula ste-

vensoni, Pseudocandona albicans…) and some Pontic species are
present (Amnicythere longa and Amnicythere striatocosta). At 3.5 m
depth, the ostracofauna is dominated by the species C. torosa

(Fig. 5). According to Carbonel (1980), protected environments (like
lagoons) are generally marked by a monospecific population and
the dominance of euryhaline species such as C. torosa. The trans-
formation of the environment into a monospecific environment is
consistent with a rise in organic matter content (Fig. 3). A protected
turbid environment like a lagoon, rich in organic matter, can often
lead to a decrease in photosynthetic activity and thus a decrease in
Macrofauna and a monospecific population (Guelorget, and
Perthuisot, 1983; Akouminanki and Nicolaidou, 2007).

This stratigraphic unit records a changing environment marked
by the transition from a marine-protected bay to a semi-closed
mesohaline lagoon between ca. 3000 and 2000 cal. yr BP.

4.1.3. Unit C: fluvial oligohaline lagoon

Unit C is located between 2.4 m and 0.5 m depth. Its deposit is
contemporary of 1881e2294 cal. yr BP (345e69 cal. yr BC). At
0.92 m depth a charcoal has been dated to 291e459 cal. yr BP
(1491e1659 cal. yr BC; Table 2). The grain-size analyses indicate a
sedimentary texture similar to unit B but composed of 15% sands
made-up of shelly fragments (Fig. 3).

Marine Macrofauna are absent from this unit. Other molluscan
taxa are similar to unit A but in higher abundance indicating an
oligo tomesohaline lagoon disconnected frommarine flows (Fig. 4).
The presence of species common to the Danube river attests to
Danube flows into this lagoonal environment. The occurrence of

Planorbis corneus (a gastropod living in vegetated areas with <4‰
salinity), reflects the input of continentally-derived freshwater and
suggests a progradation and continentalisation of the lagoon mar-
gins. At a depth of 1.60 m, Buccinum undatum shells suggest marine
water input (Fig. 4). Currently, on the Chituc barrier at the ancient
pass of Gura Portiţei, present Black Sea storm deposits constitute
accumulations of B. undatum. Therefore, the presence of this spe-
cies suggests a sedimentary record of a storm. Concerning micro-
fauna, the assemblage is characterised by abundant C. torosa,
coastal and pontic species, whereas the underlying interval B was
dominated by lagoonal species (Fig. 5). The presence of marine
adults species confirms marine water flow from storms into the
lagoonal environment. The decrease in organic matter, between 2.1
and 1.5 m depth, can be explained by the sedimentation of lagoonal
and fluvial shells on the shore due to the reopening of the envi-
ronment to fluvial inputs in the lagoon.

4.1.4. Unit D: Phragmites australis wetland

Unit D corresponds to the uppermost unit. The sediment is an
organic black mud (with high gravels content) rich in leaves and
stems of Phragmites australis (Fig. 3). This grass thrives in fresh-
water to lightly brackish environments (salinity of around 5‰) and
on sandy loam soils. These are concomitant with the freshwater
species, D. polymorpha and T. pseudoconvexa (Figs. 4 and 5). This
unit corresponds to the onset of the Phragmites australis wetland,
observed on the current margins of the RazelmeSinoe lagoon
complex. It corresponds to the final stage in the infilling of the
lagoon margins.

5. Discussion

5.1. Reconstruction of the palaeoenvironmental changes around

Orgame lagoon

The stratigraphy of these three cores is similar and indicates a
classic environmental transformation (Fig. 6). The reduction in ac-
commodation space gradually led to the transition from a marine
environment to a quasi-closed lagoon (3660 cal. yr BP) to an oli-
gohaline lagoon (2300 cal. yr BP) whose margins were progres-
sively transformed into a coastal wetland dominated by Phragmites

australis (1000 cal. yr BP). Seaward development is, however, recent
(Fig. 3). On the shoreline (core O1), the transition from amarine bay
to a lagoon environment occurred at 4300 cal. yr BP due to the
progradation of the coastline (Fig. 6).

Units A and A0 correspond to subtidal sand deposits related to
relative sea-level rise. The high sedimentation rates recorded at the
bottom of the core O2 (ca. 5 mm yr!1; Fig. 3) could be explained by
an increase in the discharge of the Danube river around
5000 cal. yr BP, when sea level stabilized (Giosan et al., 2006). At the
top of unit A core O2 (4.7 m depth), the environment records an
increase in silty particles in concordance with a rise in lagoonal
Macrofauna to the detriment of coastal Macrofauna (Fig. 4). This
unit is characterized by organic deposits which are older than the
sediments they overlie (Fig. 3). For example, the organic deposit
located at a depth of 5.3 m is dated to 6010 ± 35 14C yr BP
(6749e6945 cal. yr BP; 4996e4800 cal. yr BC; Table 2) and is not
compatible with sea shell dates located below (Table 2, Fig. 3). We
observed the same deposit in core O1 and O3 (Fig. 6). The organic
matter located at approximately the same depth is of the same age
and is also not compatible with dates located below. These organic-
rich deposits suggest a homogenous sedimentary event possibly
linked to the high sedimentation rate around 5000 cal. yr BP.
Stanley (2001) has suggested that on delta margins like the Nile
Deltawhich is similar to the Danube delta in terms of processes, old
carbon can be reworked in the watershed by fluvial action and



Fig. 7. Statistical analysis using Principal Components Analysis (PCA) on bio-sedimentological results from core O2.



Fig. 8. Palaeo-geographical reconstruction of Orgame's coastal landscapes at the Danube delta scale (A, B, C) and at the Razelm lagoon scale (A0 , B0 , C0) around 5200e3500 yr cal. BP

(A, A0); 3500e2000 yr cal. BP (B, B0); 1200 yr cal. BP and present day (C, C0).



deposited in coastal depocentres. Based on the facies model for
wave-dominated deltas, shoreline sediments derive directly from
the associated river (Bhattacharya and Giosan, 2003). In a context of
radiocarbon dating, sedimentary processes at work in the Danube
Delta (wave action opposed to fluvial processes) have a strati-
graphic impact. Although, in the absence of stable isotope analyzes
of the organic matter, however, we can suggest that the organic
material comes from the Danube and is an indicator of the Danube
flows.

Units B, C and D correspond to aggradation dynamics (Fig. 6).
The gradual closure of the marine embayment occurred well
before the foundation of the city of Orgame on the Cape. We did
not observe any bio-sedimentological differences between cores
located inside and outside the harbour environment. Therefore,
this environmental change cannot be ascribed to a human
modification of the environment, as in the case of many ancient
coastal harbours (e.g. Bony et al., 2011). The Greek harbour of
Orgame comprised a natural lagoon environment which was not
artificially modified to accommodate shipping vessels. From a
geomorphological point of view, this location is calm, protected by
the Cape and in front of the natural inlet (Fig. 1). Possible ware-
houses, identified by the resistivity profiles, are located in the
coastal area (Baralis et al., 2010, Fig. 2). This naturally protected
environment possessed the environmental endowments to host
harbour activities.

After this first environmental change, the sedimentation rate
doubled but remained low for a harbour environment in a deltaic
context. For instance, at Fr!ejus, the rate of shoreline progradation
outside the harbour environment was ca. 170 cm yr!1 during the
1st c. AD (Excoffon et al., 2010). Such coastal progradation processes
are similar for all Mediterranean deltaic areas (Dubar, 2004;
Brückner et al., 2005; Stefaniuck et al., 2005; V€ott, 2007; Goiran
et al., 2010, 2011).

5.2. Influence of the Danube Delta's morphogenesis on the

palaeoenvironmental evolution of Orgame's coastline

Our results highlight chronological parallels between coastal
changes at Orgame and the construction of various barriers that
form the RazelmeSinoe lagoon. The sedimentological and palaeo-
ecological data have been analysed using PCA (Fig. 7). The age
model is based on radiocarbon dates obtained and accepted for core
O2. Loadings of the PCA-Axis 1 (Fig. 7) are used to determine the
main environmental factors that generate the variance in the
sedimentological and palaeo-ecological data. For the grain-size
data, the negative PCA-Axis 1 scores correspond to sand particles
(and ballast) and reflect the development of a dynamic depositional
environment (Fig. 7). For the molluscan data, positive PCA-Axis 1
scores correspond to the development of coastal species, and for
the ostracod data, to the euryhaline species C. torosa (Fig. 7). The
organic matter content was compared to the CHAR influx observed
in sediment samples from core O2. These data were compared with
data from Giosan et al. (2006), focussing on the chronology of the
Danube's deltaic fans and on the timing of spit formation in the
RazelmeSinoe lagoon.

Until ca. 1500 cal. yr BC (3500 cal. yr BP), statistical analyses
reflect the establishment of a depositional environment charac-
terized by a sandy sedimentation and a rich coastal fauna, with
some fluvial species from the Danube river. According to Giosan
et al. (2006), the Danube delta began forming around 3500 cal. yr
BC (5000 cal. yr BP; Fig. 7). Thus, the environment corresponds to
an open marine bay at the margins of the Danube Delta (Fig. 8).
From 2500 cal. yr BC (4500 cal. yr BP), we observe a transition to-
wards finer-grained sediments and the fauna becomes more
lagoonal (Fig. 7). Progradation of the St. George I lobe leads to the

gradual growth of the Zmeica barrier resulting in a natural coastal
protection of the Orgame coastline (Fig. 8). From 1500 years cal. BC
(3500 cal. yr BP), the statistical analyses suggest a radical trans-
formation of the depositional environment characterized by
organic silty clay sedimentation and C. torosa, an Ostracoda species
that is typical of lagoon environments (Carbonel, 1980; Fig. 7). The
environment is very well protected. This landscape change was due
to the construction of the Lupilor barrier leading to the pro-
gradation of the Sulina lobe (Fig. 8). After 2000 cal. yr BP, the
growth of the Dunavatz lobewithin the lagoon, led to an increase in
freshwater inputs (Figs. 7 and 8). The numerical analyses under-
score an increase in sediment particle size and the development of
fluvial fauna from the river Danube. The margins of the lagoon
gradually infilled and became a wetland. From 1000 cal. yr AD, the
progradation of the lobe of St. George II led to the formation of
Chituc barrier. However, this did not affect the shoreline of Orgame,
which was already protected by Lupilor barrier. Environmental
changes due to outgrowth of the Dunavatz lobe cannot be probed
due to the absence of sedimentary archives for this period (Figs. 7
and 8). Giosan et al. (2006) linked the formation of its barriers to
the construction of different Danubian lobes (in particular St.
George I, Sulina, St. George II, Dunavatz). The chrono-stratigraphy
of sediment cores translates the different stages of Danube delta
growth according to Giosan et al. (2006). The hypothesis that the
erosion of the Cosna-Sinoe lobe led to the formation of the Lupilor
barrier (Panin, 1983; Vespremeanu et al., 2013) cannot be
confirmed by our results given the absence of sedimentary archives
for this period.

The environmental changes of Orgame's coastline are charac-
teristic of coastal environments at the distal margin of deltaic areas.
They are induced by bottom aggradation related to the infilling of
the accommodation space by alluvial sediment from the River
Danube and spit formation. This infilling is due to the progradation
of the coastline and the environmental transition to an oligohaline
wetland. The protection of the coast is due to the construction of
offshore coastal barriers. This naturally protected environment was
particularly conducive to the foundation of a harbour, open to the
sea and linked to a major fluvial system and located inside a pro-
tected lagoon.

5.3. Human occupation of Cape Dolojman

Charcoal appears from 1500 cal. yr BC (3000 cal. yr BP) and an
increase is clearly observed from 700 cal. yr BC (2650 cal. yr BP;
Fig. 8). This increase in charcoal may explain the variations in
organic matter content between 1500 and 300 cal. yr BC
(3000e2250 cal. yr BP; Fig. 7).

The absence of dating inversions for the charcoal-derived
radiocarbon dates of core O2 (Table 2, Fig. 3) showed no signifi-
cant alterations and suggests a direct sedimentation in the lagoon,
probably as a result of colluvial processes. This is consistent with an
increase in sedimentation rates recorded for core O2 during this
period (2.4 mm yr!1 for unit B compared to 1.3 mm yr!1 for unit A;
Fig. 3). Micro-charcoal mainly reflects a local signal of vegetation
cover. They display a vitreous texture but correspond to hardwood
charcoals. Does the presence of charcoal at the end of the Iron Age
reflect an increase in human impacts?. The new palynological re-
sults suggest the onset of a steppe vegetation on the coast
(Rossignol, 2014). Giosan et al. (2012) date the installation of this
land cover to around 2600 cal. BP and have attributed it to an in-
crease in human occupation. Meanwhile, the archaeological data
attest to a human occupation of the Cape since the end of the Iron
Age (Ailincai et al., 2006). Part of the Cape Dolojman trees could be
used for agricultural purposes (clearance by fire) or for domestic
use (wood for heating). This would explain the presence of charcoal



particles from 1500 cal. yr BC onwards (3000 cal. yr BP). The
installation of the Greek settlers along the Dobrogea shoreline
during the foundation of the city of Orgame resulted in changes in
the types of human occupation such as the introduction of
cremation in funeral rites (Lungu, 2006). Domestic uses, land
clearing by fire, the use of wood for cremations and more generally
human pressures certainly played a significant role in the evolution
of vegetation cover and soil erosion.

5.4. Influence of these environmental changes on the organization

of Orgame

At ca. 650 cal. yr BC, the Greek city of Orgame followed on from
the first occupation of the Iron Age. Orgame overlooked a huge
lagoon, the Danube delta, the channel of Gura Portiţei and was
protected from the east and north-east, where cliffs act as natural
barriers (Lungu, 2006). This location, a natural environment pro-
tected from river flooding and marine agents, made the site
particularly attractive to human societies. This strategy is consis-
tent with the location of Greek and Roman ports in the Mediter-
ranean including, for example, Marseille's ancient harbour at the
eastern margin of the Rhône delta (Morhange et al., 2003),
Oiniadai's ancient harbour on the Acheloos delta (V€ott, 2007),
Olbia's ancient harbour on the Gapeau delta (Vella et al., 2000),
the ancient harbour of Agde on the margins of the Herault delta
(Falgu!era et al., 2000; Sanchez et al., 2013), as well as the ancient
harbour of Kition on the distal margin of the Thremitos delta
(Bony, 2013).

Our data support awater depth of 3.3 m ± 1 at ca. 1000 cal. yr BC
(3000 cal. yr BP; Fig. 3, Table 2) and 1.5 ± 1 m at ca. 50 cal. yr BC
(2000 cal. yr BP; Fig. 3, Table 2), required for the circulation of ships
(Pomey, 1995). No grain-size variations consistent with an artificial
protection of the environment were observed in the sedimentary
records. This suggests the absence of harbour protection such as
moles. Orgame's ancient harbour was therefore a natural harbour,
located in a naturally-protected lagoon environment. The city of
Orgame was probably intentionally founded on the margins of this
lagoonal environment to take advantage of the lagoon's natural
resources and the transport possibilities offered by the River Dan-
ube (Baralis, 2007; Baralis et al., 2012). Formation of the Dunavatz
lobe in the lagoon at ca. 2300e2000 cal. yr BP (Figs. 7 and 8) did not
disrupt the organization of the harbour city but expanded its
trading routes. Despite the gradual infilling of the shoreline, the
harbour was still active until the 7th c. AD. Between the 5th and the
7th centuries AD, and in an unstable political setting, Orgame
became a citadel, the island Bisericuţa acting as a navigation control
(M$anucu-Adameşteanu, 2003). Although Orgame is located on the
Danube delta, siltation has had little impact upon the coastline in
this area. By contrast, the nearby Greek harbour of Istros/Histria,
was completely infilled (Stefan, 1987; Fig. 8).

5.5. Environmental comparison with the ancient harbour of Istros/

Histria

The Greek colonies of Istros and Orgame were founded at the
same time. Istros is located on a low-lying coast at the southern
extremity of the RazelmeSinoe lagoon. In agreement with the
chronology for the formation of the lagoon's coastal barrier, the
city of Istros was founded on “the oldest barrier of the Istria
strandplain” formed during the construction of the lobe St. George
I (1750e1350 cal. yr BC; 3700e3300 years cal. BP; Giosan et al.,
2006; Vespremeanu et al., 2013; Fig. 8). At the time of their
foundation, Orgame and Istros were situated in different envi-
ronmental contexts due to the Lupilor barrier which separated the
lagoon where Orgame is located from the exposed shoreline

where Istros was founded (Fig. 8). The harbour environments of
Istros and Orgame are subject to completely different environ-
mental changes. Although located on either side of the Lupilor
barrier, and receiving freshwater inputs from the Dunavatz lobe
since 2000 cal. yr BP, Orgame's shoreline has not undergone sig-
nificant progradation since the maximum marine ingression (ca.
100 m) and the harbour environment is today still partially
washed by the sea. By contrast, Istros's harbour has been
completely infilled. Today it lies ca. 10 km from the sea. The
infilling of Istros's harbour is due to the morphogenesis of the
Chituc barrier (Vespremeanu-Stroe et al., 2013). With regards to
Orgame's harbour, the apparent paradox of low progradation rates
might be explained by its location perpendicular to the direction
of prevailing winds in the middle of the Danube sediment cell.
Furthermore, the longshore drift energy might be low at this
location. Moreover, Orgame is situated in front of the Gura Portiţei
inlet which has remained open since it was artificially closed in
1969 (Mihailescu, 2006). The offshore bathymetry of the Cape
Dolojman shoreline is deeply incised. This topography has prob-
ably kept the inlet open and has certainly contributed to the
sedimentary cell's fall in energy.

5.5.1. Have the environmental contexts played a role in the

development of Istros and Orgame?

At the time of their foundation, Istros was in direct contact
with the Black Sea and was an important node of the maritime
trade route. At Orgame, maritime communication was possible
through the channel of Gura Portiţei. Therefore, the maritime re-
sources offered by the lagoon certainly played a role in the deci-
sion to found the city on Cape Dolojman. Numerous archaeological
discoveries demonstrate that Istros was a rich, prosperous and
democratic urban city with institutional development (construc-
tion of three aqueducts and the presence of many roads and
tumuli and an important mound corresponding to a necropolis
tumuli; Stefan, 1987; Bounegru, 1988). The maritime character of
the city is attested since its foundation (Stefan, 1987). The harbour
was located south of the city in a small bay open to the sea and
sheltered from the north and north-east winds, and from the
dominant longshore drift. Istros' harbour did not correspond to a
lagoon harbour like Orgame but to a pocket beach harbour. The
city of Istros was an important centre of fishing on the Danube
delta until the Roman period (Giosan et al., 2006) and this may
explain the poor development of the city of Orgame at that time.
The construction of the lobe St. George II, after 2200 cal. yr BP (ca.
250 cal. yr BC), followed by the building of the second generation
of Istrian barriers (Saele barrier; Vespremeanu-Stroe et al., 2013)
and the Chituc barrier around 1500 cal. yr BP (ca. 450 cal. yr AD),
may be due to the formation of the Cosna-Sinoe Lobes
(Vespremeanu-Stroe et al., 2013), leading to a progressive land-
locking of the Istros harbour (Giosan et al., 2006; Vespremeanu
et al., 2013; Fig. 8). The city lost its maritime vocation during
the 3rd and 4th centuries AD (Bounegru, 1988). Indeed, urban
buildings are attested around the silted harbour area (Stefan,
1987). The city was completely abandoned in the 7th c. AD
(1250 years cal. BP) and no subsequent trace of habitation has
been identified. In contrast to Orgame, the city of Istros/Histria,
located further from the mouths of the Danube, suffered from the
impacts of high sediment supply. Nonetheless, it achieved greater
socio-economic importance.

Sediment transport processes are complex on the Danube delta
coast. In association with the ancient topography of the Danube
deltaic system, these processes appear to constitute the main nat-
ural forcing in the palaeoenvironmental history of these two Greek
cities. This study nonetheless underscores the need to integrate the
socio-political context in any geoarchaeological study.



6. Conclusion

The results of this study fit closely with the primary model of
coastal evolution in a deltaic context. From ca. 5000 years onwards,
massive sediment supply from the Danube, on the southern coast of
St. George's arm, engendered a two-phase model of palae-
oenvironmental change: (1) the closure of the bay at ca.
1500 cal. yr BC (3600 cal. yr BP) due to the formation of the Lupilor
barrier; and (2) the evolution of a freshwater lagoon environment
around ca. 300 cal. yr BC (ca. 2250 cal. yr BP) due to the formation of
the Dunavatz arm inside the lagoon. However, a rapid infilling of
the deltaic coast was not observed. The morphology of the under-
water coastline and its orientation, perpendicular to the direction
of the waves, has reduced the impacts of rapid coastal sedimenta-
tion. An interesting conclusion of this study is the differences in the
environmental and urban development between Istros/Histria and
Orgame/Argamum. During the final phase of the harbour the city,
Istros/Histria was attacked by the Goths in the 4th c. AD
(1600e1500 cal. yr BP). Although the foundation of Orgame is
largely due to fishery resources offered by the lagoon, Istros/Histria
became, during the troubled period of the third c. BC, the only
stable Greek settlement in the region, probably due to its direct
connection with the open sea. However, the historical trajectory of
these two settlements appears to be independent of the paleo-
environmental changes. The formation of Dunavatz lobe did not
lead to significant environmental impacts on Orgame. Its aban-
donment in the 4th c. AD is due to the military environment and
contemporary politics. Later, Istros/Histria thrived despite the silt-
ing up of its harbour and Orgame was overcome by the invasions of
the 7th c. AD.
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