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A new technique to generate independent periodic
attractors in the state space of nonlinear dynamic systems

Cristina Morel, Radu Vlad, Eric Chauveau

Abstract This paper proposes a method to generate
several independent periodic attractors, in continuous-
time nonchaotic systems (with an equilibrium point or
a limit cycle), based on a switching piecewise-constant
controller. We demonstrate here that the state space
equidistant repartition of these attractors is on a pre-
cise zone of a precise curve that depends on the pa-
rameters of the system. We determine the state space
domains where the attractors are generated from dif-
ferent initial conditions. A mathematical formula giv-
ing their maximal number in function of the controller
piecewise-constant values is then deduced. Through-
out this study, the proposed methodology is illustrated
with several examples.
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1 Introduction

The study of chaotic dynamics has evolved from
the traditional trend of understanding and analyzing
chaos to the new attempt of controlling and utiliz-
ing it. Recently, there has been increasing interest
in exploiting chaotic dynamics in engineering appli-
cations, such as telecommunications [1–4], informa-
tion processing [5], electrical engineering [6], whereas
much attention has focused on effectively generating
chaos.

It is well known that chaos can be generated via dif-
ferent approaches, such as linear feedback techniques
or switching methods, to obtain various chaotic attrac-
tors [7–9] from the new chaotic system [8, 10] or cir-
cuits [11, 12]. Another technique to create chaos is to
use a time-delay feedback perturbation on a system pa-
rameter or to employ an exogenous time-delay state-
feedback input. This chaotic reference method designs
a simple nonlinear feedback controller with an arbi-
trarily small amplitude leading to a chaotic dynamics
in the controlled system [13, 14].

The effect of time delay on the differential sys-
tem can be observed in [15–17], with coexisting triv-
ial attractors (fixed points or limit cycles) and strange
attractors. A similar phenomenon generating various
limit cycles is presented in [18] and [19]. In [18], two
sets of initial conditions produce two different limit
cycles and a new limit cycle for each new initial con-
dition selected is observed in [19].
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After the study of the harmonics of chaotic [20, 21]
or nonchaotic [22] systems, we generated attractors
using a switching piecewise-binary controller in a pre-
cise but uncontrollable area of the state space [23].
This time, we propose a switching piecewise-constant
controller in continuous-time systems to generate sev-
eral independent chaotic attractors in a controllable
state space area. The attractors are reached from dif-
ferent initial conditions and are generated on a pre-
cise zone of a precise curve in the state space. The
generation of the attractors in the state space domain
respects the following analysis steps of the nonlinear
system:

• Parameterization of the nonlinear system and calcu-
lus of its equilibria; their graphical representation in
function of the parameter gives a precise curve in
the state space;

• Determination of the parameter variation domain so
that the equilibria of the nonlinear parameterized
system are stable;

• Determination of the state space domains where the
attractors are generated;

• Replacement of the static variation of the para-
meter with a fast dynamics variation (a switch-
ing piecewise-constant controller) to generate sev-
eral independent chaotic attractors around the sta-
ble equilibria; this controller represents a nonlinear
feedback, as a sine function of the system state; the
sine anticontrol feedback frequency imposes an at-
tractor periodicity in the state space;

• Determination of the attractors maximal number in
function of the piecewise-constant controller values
and the sine anticontrol feedback frequency.

Throughout this study, the proposed methodology
is illustrated with three examples: the Lorenz, Van der
Pol and Jerk systems.

2 Equilibria of a nonlinear system

Consider an N -dimensional nonlinear system of the
following form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = f1(x(t),p),

ẋ2 = f2(x(t)),

...

ẋN = fN(x(t)),

(1)

Fig. 1 Example of the system (1) equilibria on
three-dimensional state space

where x(t) = [x1(t), x2(t), . . . , xN(t)] is the state vec-
tor, p a real parameter and fi , for i = 1,N , are
nonlinear functions. The equilibria of the system (1)
are found by solving the equations ẋi = 0, for i =
1,N , and represent the roots of the following equa-
tions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x(t),p) = 0,

f2(x(t)) = 0,

...

fN(x(t)) = 0.

(2)

For the parameterized system (1), the graphical rep-
resentation of these equilibria depending on the para-
meter p gives a precise curve in the state space. An
example of three-dimensional state space (x1, x2 and
x3) of the equilibria is presented on Fig. 1 by the fine
curve.

Considering a Jacobian matrix for the equilibria
and calculating its characteristic equation, we can in-
vestigate the stability of each equilibrium based on the
Routh–Hurwitz conditions of the system characteris-
tic equation. We determine the parameter variation do-
main such that the equilibria of the nonlinear parame-
terized system are stable. Let us take into account a
variation of the parameter p for which the equilibria
are stable as follows:

a ≤ p ≤ b. (3)
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For p between a and b, the stable equilibria take val-
ues in the N -dimensional domain of the state space:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

on x1 axis: [x1a;x1b],
on x2 axis: [x2a;x2b],
...

on xN axis: [xNa;xNb].

(4)

Figure 1 presents an example of the stable equilibria
(the bold curve) on the three-dimensional state space
(x1, x2 and x3). In this paper, we are interested in gen-
erating several independent chaotic attractors in the N -
dimensional domain (4), on the bold curve of Fig. 1,
by switching the control parameter p among the val-
ues a and b.

3 Generating independent chaotic attractors
in a nonlinear system

In the previous section, we have considered a static
variation of the parameter p. Recently, [15–17] have
considered a periodic nonlinearity of p as
μ sin(x(t − τ))[1 + ε sin(x2(t − τ))]. The global be-
havior of the delay model shows the coexistence of
trivial attractors (fixed point or limit cycle) and chaotic
attractors (with stable and unstable equilibria) gener-
ated in the precise state space. With another nonlin-
ear function p as ε sin(σx(t − τ)), [14] obtains only
two separated chaotic attractors near two stable fixed
points for large values of σ .

In this section, we propose a controller to gener-
ate several independent chaotic attractors in the state
space. A control engineering application is to make a
nonlinear system converge to some attractors of inter-
est, starting from different initial conditions, in order
to reach different regimes of operation.

In order to generate independent chaotic attractors
for the system (1), we specify a piecewise-constant
characteristic of the feedback controller p, defined an-
alytically as follows:

p =
{

b, g(t) < u(x(t))

a, g(t) ≥ u(x(t)),
(5)

where g(t) is a periodic function and u(t) the anti-
control of chaos state feedback. We propose to use
the anticontrol of chaos state feedback together with a

Fig. 2 Two stable equilibria or a chaotic attractor

Fig. 3 Slow dynamics of g(t): example of sinus function g(t)

and the anticontrol of chaos state feedback u(x(t))

piecewise-constant controller, hereafter denoted anti-
control switching piecewise-constant controller of (5).
We give now details about the choice of the wave-
form, the amplitude and frequency of g(t) and u(x(t)).
The application of the classical method [13, 14, 20] of
chaos anticontrol to obtain a chaotic dynamic in the
controlled system (1) uses a nonlinear state feedback.
We are interested by a sine function

u
(
x(t)

) = ε sin
(
σx1(t)

)
, (6)

as in [14, 23]. If g(t) ≥ u(x(t)), p is always equal to a.
Starting from any initial condition IC1, the state vari-
able x1 converges to x1a as shown in Fig. 2. For the
case g(t) < u(x(t)) (so p is always equal to b), the
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same figure shows that the state variable x1 converges
to x1b starting from IC2.

On the other hand, supposing that g(t) has a large
amplitude and a slow dynamics in comparison with
u(x(t)), Fig. 3 shows an example of a sine func-
tion g(t) and the anticontrol of chaos state feedback
u(x(t)), which determines a slow switching of the con-
troller of (5) between the levels a and b. Starting from
the initial condition IC3, the state variable x1 has a
large variation attracted into an attractor as in Fig. 2.

Fig. 4 Fast dynamics of g(t): example of sinus function g(t)

and the anticontrol of chaos state feedback u(x(t))

In this paper, we are interested in a fast dynamics
of the periodic function

g(t) = sin(γ t), (7)

as in Fig. 4. The fast switching of the controller of (5)
between the levels a and b determines an attraction of
the state variable x1 first to x1a and then to x1b , and
so on. The fast switching between a and b, determines
small variations of the state variables.

The dynamical state space trajectory remains
around the equilibrium point, for each attractor start-
ing from different initial conditions. With the anti-
control switching piecewise-constant controller of (5),
the chaotic attractors are generated on the bold curve
of Fig. 1. The study of the chaotic attractors shows
an equidistant repartition in the state space. Figure 5
shows two transient state space trajectories until two
independent chaotic attractors are reached.

The transitions a → b → a → b of the anticontrol
switching piecewise-constant controller p of (5) de-
termine a triangle characteristic of the transient state
space trajectory. The times (tk)k∈N of the transitions
b → a of p are symbolized by circles • on the state
space. At each time (tk)k∈N, g(t) is equal to u(x(t)).
Consequently, we can write:

g(t) = u
(
x(t)

)
. (8)

Fig. 5 Example of
independent chaotic
attractors
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According to (6), (8) becomes:

g(t) = ε sin
(
σx1(t)

)
. (9)

For t = t0, the solution of (9) is:

x1(t0) = 1

σ
arcsin

g(t0)

ε
. (10)

The 2π periodicity of the sine function of u(t) en-
ables to find all the solutions x1(tk) of (8):

σx1(tk) ± 2kπ = arcsin
g(t0)

ε
, k ∈ N. (11)

Then,

x1(tk) = 1

σ
arcsin

g(t0)

ε
± 2kπ

σ
, k ∈ N. (12)

We can also write:

x1(tk) − x1(tk−1) = 2π

σ
, k ∈ N

+. (13)

We have demonstrated that the periodicity of the
x1(t) function is 2π/σ , i.e. the distance on the x1

axis between two consecutive transitions b → a of p.
Therefore, after many numerical simulations, we have
deduced that the distance between two consecutive at-
tractors on the x1 axis coincides with the distance be-
tween two circles • on the x1 axis. Therefore, the at-
tractors periodicity in the state space depends on the
sine anticontrol feedback u(x(t)) frequency given by
the following relation:

dx1 = 2π

σ
. (14)

The dx1 periodicity of attractors on the x1 axis enables
to find the maximal number of the attractors generated
on the bold curve of Fig. 1, inside the x1 state space
domain [x1a;x1b] of (4):

Nmax =
[
x1b − x1a

dx1

]

+ 1. (15)

Nmax of (15) gives the theoretical number of attractors
that can be generated. The position of the first attractor
generated inside the x1 state space domain [x1a;x1b]
(near x1a) cannot be controlled. On the other hand, the
attractors which follow the first are equidistant, sepa-
rated by a dx1 distance. Two possible cases of reparti-
tion of chaotic attractors are given in Fig. 6. A differ-
ence of one attractor may sometimes occur between
the theoretical and the simulated attractors number.

Fig. 6 Two possible attractors repartition inside the state space
domain [x1a;x1b] of (4)

The limit of the technique presented in this sec-
tion is that the independent chaotic attractors cannot
be generated on the entire state space for the non-
linear system of (1), using the anticontrol switching
piecewise-constant controller of (5). Indeed, large val-
ues of x1 change the dynamics of u(x(t)), which gets
closer to the fast dynamics of g(t). The relation γ >

σx1 must be verified to ensure that g(t) has a faster dy-
namics than u(x(t)). Therefore, the state space limit
on the x1 axis is γ /σ . Combining this limit with (2)
enables the determination of the state space limits on
all x2(t), . . . , xN(t) axes.

In this section, we proposed a controller to gener-
ate several independent chaotic attractors in the state
space. A control engineering application is to make
nonlinear system converge to some attractors of inter-
est, starting from different initial conditions, in order
to reach different regimes of operation.

4 Lorenz system

In order to illustrate the proposed approach, the first
example is based on the Lorenz system. This sys-
tem has become a standard model for the study of
chaos synchronization [1] and secure communications
[4, 24]. The Lorenz system dynamics [14, 25] is de-
scribed by the following parameterized equations in
the dimensionless form:
⎧
⎪⎨

⎪⎩

ẋ1 = −α(x1 − x2),

ẋ2 = x1 − x2 − x1x3 + p,

ẋ3 = x1x2 − βx3,

(16)

with α = 10, β = 8
3 . When p = 0, the Lorenz sys-

tem (16) is not chaotic and, in fact, has the origin as a
globally exponentially stable equilibrium point. Now,
we use p as the control parameter. The parameterized
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system Jacobian, evaluated at (x∗
1 , x∗

2 , x∗
3 ), is given by

Jx∗
1 ,x∗

2 ,x∗
3

=
⎡

⎣
−α α 0

1 − x∗
3 −1 −x∗

1
x∗

2 x∗
1 −β

⎤

⎦ . (17)

The equilibria of the system (16) can be easily found
by solving the three equations ẋ1 = ẋ2 = ẋ3 = 0,
which leads to
⎧
⎪⎨

⎪⎩

−α(x1 − x2) = 0,

x1 − x2 − x1x3 + p = 0,

x1x2 − βx3 = 0.

(18)

Obviously, S0 = (0,0,0) is a trivial equilibrium. Lin-
earizing the system (16) around the equilibrium S0

provides three eigenvalues: λ = 0,−β,−α − 1. The
system has marginal stability. To find a nonzero equi-
librium point, we may observe that the first equation
in (18) yields immediately to x2 = x1, so that the third

one gives x3 = x1
2

β
and the second one gives p = x1

3

β
.

The system of (16) has one equilibrium point depend-
ing on the parameter p:

S =
(

3
√

βp, 3
√

βp,
3

√

p2

β

)

. (19)

Linearizing the Lorenz system around the equilibrium
point S yields the following Jacobian matrix and its
characteristic equation:

JS =

⎡

⎢
⎢
⎢
⎣

−α α 0

1 − 3
√

p2

β
−1 − 3

√
pβ

3
√

pβ 3
√

pβ −β

⎤

⎥
⎥
⎥
⎦

(20)

and

P(λ) = λ3 + (α + β + 1)λ2

+
[

(α + 1)β + (α + β)
3

√

p2

β

]

λ + 3αβ
3

√

p2

β
.

(21)

Let us apply now the Routh–Hurwitz criterion [9]: a
necessary and sufficient condition for the stability of
the equilibrium point S is that the real parts of the roots
λ be negative, which can be confirmed if and only if
the three following conditions hold:

α + β + 1 > 0, (22)

3αβ
3

√

p2

β
> 0, (23)

(α + β + 1)

[

(α + 1)β + (α + β)
3

√

p2

β

]

− 3αβ
3

√

p2

β
> 0. (24)

The last Routh–Hurwitz condition leads to:

(α + β + 1)(α + 1)β

+ [
(α − β)2 + α + β + αβ

] 3

√

p2

β
> 0. (25)

A static variation of p between a and b imposes the
intervals to the equilibrium S on the x1, x2 and x3 state
space as following:

on the x1 and x2 axes:
[

3
√

aβ, 3
√

bβ
]
, (26)

on the x3 axis:

[

3

√

a2

β
,

3

√

b2

β

]

. (27)

We consider now a fast dynamics variation of p given
by the anticontrol switching piecewise-constant con-
troller p of (5). So, the independent chaotic attractors
are generated inside the state space of (26) and (27).
Taking into account the distance between two consec-
utive attractors on the x1 axis given by (14), the maxi-
mum number of independent chaotic attractors of (15)
generated on the interval of (26) is described by:

Nmax =
[
σ 3

√
β

2π

( 3
√

b − 3
√

a
)
]

+ 1. (28)

In our simulations, γ = 1000, σ = 100 and ε = 5.
With this values, (22), (23), (25) hold, therefore the
equilibrium point S of the system of (16) is always
stable.

We list in Table 1 the equilibria intervals on each
axis x1, x2 and x3 (derived from (26) and (27)) for
three different values of a and b. This table includes
the maximum number of chaotic attractors of (28),
which could be generated from different initial con-
ditions.

Let us see now if the results of the numerical sim-
ulations are in concordance with those given in Ta-
ble 1 by the mathematical formula (26)–(28). Figure 7
shows the independent chaotic attractors of the Lorenz
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Table 1 Lorenz system

a b x1, x2 x3 Nmax

of (26) of (27) of (28)

0 0.5 [0,1.1] [0,0.45] 18

1 2 [1.3867,1.747] [0.721,1.145] 6

−1.5 −0.5 [−1.587,−1.1] [0.454,0.945] 8

system (16) and their projections onto x1–x3 plane re-
spectively. The attractors, generated from different ini-
tial conditions, are situated in the plane x1 = x2, and
on the parabola x3 = 3x2

1/8 represented in Fig. 7 with
the fine curve. For the three intervals of p, the attrac-
tors projections onto x1–x3 plane shows that all the
attractors are situated inside the state space given by
Table 1 (third and forth columns). On the other hand,
there is a difference of one attractors between the nu-
merical simulation of the independent chaotic attrac-
tors number generated on the interval of (26) and the
maximum number of attractors given by the mathe-
matical formula of (28). These three cases correspond
to the first case of attractors repartition inside the state
space domain [x1a;x1b] of (4) is available, as in Fig. 6.

Figure 8 presents the projections of one attractor
onto x1–x2 plane. This attractor reaches the regime of
operation x1 = 0.6, x2 = 0.6 and x3 = 0.135.

The positive largest Lyapunov exponent has be-
come the standard characteristics of a chaotic sys-
tem. At the end of the present section, we introduce
the Lyapunov exponent as a simple measure of sen-
sitive dependence on initial conditions, distinguishing
a chaotic from a nonchaotic trajectory by its positive
value.

For a linear increasing variation of ε parameter, the
Lyapunov exponent has positive values as in Fig. 9, de-
creasing to negative values. The Lyapunov exponent of
the Lorenz system (16) is calculated for distinct initial
conditions (almost identical) near an equilibrium point
(i.e. near the basin of attraction). With almost identi-
cal initial conditions, but far away of the equilibrium
points (outside of the basin of attraction), the Lorenz
system (16) could reach different regimes of operation
(two different attractors), as in Fig. 10. This choice of
initial conditions is a source of errors in the calculation
of the Lyapunov exponent.

In this section, we shew that the switching piecewise-
constant controller of (5)–(7) can drive the Lorenz sys-
tem from nonchaotic (with zero equilibrium point) to
chaotic (with several equilibria points) behaviors.

5 Van der Pol system

In this section, we generate independent chaotic attrac-
tors from the Van der Pol system [26, 27], which can
be written by the following equations:
{

ẋ1 = x2,

ẋ2 = −x1 − 3 · (x2
1 − 1)x2 + p.

(29)

Without switching piecewise-constant controller (i.e.,
when p = 0), the Van der Pol system (29) has a one
period limit cycle, as shown in Fig. 11.

The corresponding Jacobian matrix evaluated at
(x∗

1 , x∗
2 ) is

Jx∗
1 ,x∗

2
=

[
0 1

−1 − 6x∗
1x∗

2 3(1 − x∗2
1 )

]

. (30)

The equilibria of the system (29) are found by solv-
ing the equations ẋ1 = ẋ2 = 0, which leads to the fol-
lowing relations:

x2 = 0, x1 = p. (31)

The Van der Pol system of (29) has one equilibrium
point:

S = (p, 0). (32)

To study the stability of S, we compute the Jacobian
JS evaluated for this equilibrium, as follows:

JS =
[

0 1

−1 3
(
1 − p2

)

]

. (33)

Linearizing the system (29) around S provides the
following characteristic equation:

P(λ) = λ2 − 3
(
1 − p2)λ + 1. (34)

The Routh–Hurwitz conditions lead to the relation:

p2 − 1 > 0, so p ∈ (−∞,−1) ∪ (1,+∞). (35)

Therefore, the stability of the equilibrium point S de-
pends on the p values. The annulation of ẋ2 deter-
mines a direct relationship between p and x1:

p = x1. (36)

As discussed previously, (36) and (31) enable the cal-
culation of equilibria intervals for a variation of p be-
tween the limits a and b:

on the x1 axis: [a, b]. (37)
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Fig. 7 The independent
chaotic attractors of the
Lorenz system (16) and
their projections onto x1–x3
plane

The independent chaotic attractors are generated in-

side the state space of (37) around x2 = 0.

Dividing the interval of (37) with the distance be-

tween two consecutive attractors, we determine the

maximal number of attractors which can be generated

in the state space:

Nmax =
[
x1b − x1a

dx1

]

+ 1 =
[

σ

2π
(b − a)

]

+ 1. (38)

We consider the anticontrol switching piecewise con-

stant controller p given by (5). We take the same val-

ues as for the Lorenz system: γ = 1000, σ = 100 and

ε = 5.
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Fig. 8 A chaotic attractor
of the Lorenz system (16):
the attractor projection onto
x1–x2 plane

Fig. 9 The largest
Lyapunov exponents of the
Lorenz system (16)

Table 2 contains the maximal attractors number
ANmax of (38) which can be generated inside the state
domain x1 of (37) (around x2 = 0) for three different
controllers p.

The numerical simulations of the Van der Pol
system (29) present independent chaotic attractors,
as shown in Fig. 12. The attractors, generated from
different initial conditions, are situated on the line
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Fig. 10 The time
waveform of the x1 state
variable of the Lorenz
system (16) starting from
distinct initial conditions
(almost identical) far away
of the equilibrium points

Fig. 11 One period limit
cycle of the Van der Pol
system (29) with p = 0

x2 = 0 represented in the Fig. 12 with the fine
curve.

For the three intervals of p, the projections of
the attractors onto x1–x2 plane show that all at-

tractors are situated inside the state space given by
Table 2 (third column). For each particular value
of the anticontrol switching piecewise-constant con-
troller p, Fig. 12 presents sixteen attractors obtained
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Fig. 12 Independent
chaotic attractors of the Van
der Pol system (29)

Table 2 Van der Pol system

a b x1 of (37) Nmax of (38)

1 2 [1;2] 16

3.5 4.5 [3.5;4.5] 16

−3 −2 [−3;−2] 16

by simulation. The mathematical formula of (38)
gives the same number of attractors. The second
case of attractors repartition inside the state space
domain [x1a;x1b] of (4) is therefore fulfilled, as in
Fig. 6.

Figure 13 presents the projections of one attractor
onto the x1–x2 plane. Considering ε as parameter, the
maximum Lyapunov exponent of the Van der Pol sys-
tem (29) is shown in Fig. 14. Its positive value demon-
strates the chaotical behavior of the Van der Pol sys-
tem (29).

According to the above analysis, we use the switch-
ing piecewise-constant controller of (5)–(7) to make
the Van der Pol system chaotic (with several equilibria
points) from a one period limit cycle.

6 Jerk system

Let us take another example, a special class of three-
dimensional dynamical systems, the so-called Jerk
system [11]. The general Jerk system is described by
...
x +Aẍ +Bẋ = g(x), where A, B are real parameters
and g(x) a nonlinear function; the first derivative ẋ is
called velocity, the second ẍ is called acceleration, and
the third

...
x is called Jerk. Linz [28] and Sprott [29] in-

vestigated the dynamical behavior of this system with
the nonlinear function g(x) = 1 − |x|. The inclusion
of the anticontrol switching piecewise-constant con-
troller p in the Jerk system is described by:

⎧
⎪⎨

⎪⎩

ẋ1 = x2 + p,

ẋ2 = x3,

ẋ3 = −Ax3 − Bx2 − |x1| + 1.

(39)

When p = 0, the Jerk system (39) is not chaotic and it
has (1,0,0) as the stable equilibrium point.

Using p as the control parameter, the equilibria of
the system (39) can be found by solving ẋ1 = ẋ2 =
ẋ3 = 0, which leads to: x2 = −p, x3 = 0, and |x1| =
1 − Bx2. We find two equilibria S+ and S−, symmet-
rically placed with respect to the x1-axis:

11



Fig. 13 Independent
chaotic attractors of the Van
der Pol system (29)

Fig. 14 The maximum
Lyapunov exponents of the
Van der Pol system (29)

S+ = (Bp + 1, −p, 0)

and

S− = (−Bp − 1, −p, 0). (40)

Considering a Jacobian matrix for one of these equilib-
ria and calculating its characteristic equation, we can
investigate the stability of this equilibrium based on
the Routh–Hurwitz conditions on the Jerk system (39)

12



characteristic equation. Therefore:

P(λ) = λ3 + Aλ2 + Bλ + 1. (41)

A necessary and sufficient condition for the stability
of the equilibrium points S+ and S− is given by the
condition: A > 0 and AB − 1 > 0.

Table 3 Jerk system

c d x2 p Nmax

of (43) of (44), (45) of (46)

−3 −2.25 [−2,−1.25] [1.25,2] 12

1.25 2 [−1,−0.25] [0.25,1] 12

−0.8 0 [0.2,1] [−1,−0.2] 13

Fig. 15 Independent
chaotic attractors of the Jerk
system of (39) and their
projections onto the x1–x2
plane

13



Fig. 16 Projection of a
chaotic attractor of the Jerk
system of (39)

This time, we want to have chaotic attractors on the
state space between the limits c and d for an x1 axis
projection:

on the x1 axis: [c;d] . (42)

The state space domain for an x2 axis projection is:

on the x2 axis:

⎧
⎪⎪⎨

⎪⎪⎩

[
1
B

(1 − d), 1
B

(1 − c)
]
, if c ≥ 0

[
1
B

(1 + c), 1
B

(1 + d)
]
, if c < 0.

(43)

Substituting (43) into x2 = −p, the anticontrol switch-
ing piecewise-constant controller p has the following
form:

if c ≥ 0, p =

⎧
⎪⎨

⎪⎩

1
B

(c − 1), g(t) ≥ u(x(t))

1
B

(d − 1), g(t) < u(x(t)),

(44)

and

if c < 0, p =

⎧
⎪⎨

⎪⎩

1
B

(−1 − d), g(t) ≥ u(x(t))

1
B

(−1 − c), g(t) < u(x(t)).

(45)

The number of attractors is:

Nmax =
[

σ

2π
(d − c)

]

+ 1. (46)

For the numerical simulation, let us assume, as in [29],
that A = 2.017 and B = 1. For these values, the equi-
librium points S+ and S− are stable. Let us take the
same expressions for the functions g(t) and u(x(t)) as
in the Lorenz and Van der Pol systems.

Table 3 presents limits imposed to the state space
domain for an x1 axis projection (c and d), the state
space domain for an x2 axis projection calculated with
(43), the switch levels of the anticontrol switching
piecewise-constant controller p of (44) and (45) and
the maximum number of chaotic attractors (46) which
can be generated.

For three values of the anticontrol switching piece-
wise-constant controller p (fourth column of Table 3),
Fig. 15 presents three groups of independent chaotic
attractors and their projections onto the x1–x2 plane,
respectively. The first case of attractors repartition in-
side the state space domain [x1a;x1b] = [−3;−2.25]
of (4) is available. This is why there is a differ-
ence of one attractor between the numerical simu-
lation of the independent chaotic attractors number
generated and the maximum of the attractors num-

14



Fig. 17 The maximum
Lyapunov exponents of the
Jerk system (39)

ber given by (46). For the two other state space do-
mains [x1a;x1b] = [−0.8; 0] and [x1a;x1b] = [1.25;
2], the theoretical and simulated attractors number co-
incide.

The projection of a chaotic attractor of the Jerk sys-
tem of (39) is shown on Fig. 16, together with the
largest Lyapunov exponent presented in Fig. 17.

As for the Lorenz system, we show that the switch-
ing piecewise-constant controller of (5)–(7) can drive
the Jerk system from a nonchaotic (with (1,0,0) equi-
librium point) to a chaotic (with several equilibria
points) behavior.

7 Conclusion

The present paper introduces a new technique to gen-
erate independent chaotic attractors using a switching
piecewise-constant controller in continuous-time non-
chaotic systems (with an equilibrium point or a limit
cycle). We demonstrate here that the equidistant repar-
tition of these attractors is in a precise zone (a con-
trollable state space area) of the precise curve, which
depends of the system parameters. We determine the
state space domains where the attractors are generated

from different initial conditions. A mathematical for-
mula giving the maximal attractors number in func-
tion of the controller piecewise-constant values is then
deduced. A control engineering application can be to
make a nonlinear system converge to some attractors
of interest, starting from different initial conditions, in
order to reach different regimes of operation.
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