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Application of the Filippov method for the stability analysis of a photovoltaic system

I. INTRODUCTION

Energy harvesting from alternative energy resources is looking to become a preferred solution to the polluting and expensive conventional resources like oil and gas. Solar energy is known to produce no pollution during operation; therefore all the concerns focus on processes regarding the manufacturing and installation, the amount of land occupied and wildlife protection.

In general, the main components of a standalone solar system are the PV module -that converts solar energy into electrical energy, a dc-dc converter -that converts the PV voltage level into a higher or lower level, depending on the load requirements, a digital controller -implementing a MPPT algorithm to ensure the system operation at MPP and a storage device -where the energy is accumulated for further use (Fig. 1) [START_REF] Xiao | Topology Study of Photovoltaic Interface for Maximum Power Point Tracking[END_REF] - [START_REF] Petreus | A Novel Maximum Power Point Tracker Based on Analog and Digital Control Loops[END_REF].

Systems using MPPT controllers [START_REF] Salas | Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems[END_REF] have better performance than directly connected systems. Solar tracker systems can generate up to 35 per cent more power than fixed PV systems, and ensure maximum productivity even during periods of weak or low sunlight [START_REF] Pandey | High-Performance Algorithms for Drift Avoidance and Fast Tracking in Solar MPPT System[END_REF], [START_REF] Esram | Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques[END_REF]. The MPPT algorithms measure the solar module output current and voltage, and determine an adjustment of a control parameter, usually the duty ratio of the dc-dc converter [START_REF] Salas | Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems[END_REF] - [START_REF] Wujian | Survey of Maximum Power Point Tracking Techniques for Photovoltaic Array[END_REF].

A large number of methods have been introduced in the recent years to improve the precision and time response of MPPT control.

Algorithms like perturb and observe or incremental conductance are easy to implement but might present oscillations around the MPP, while fuzzy control, genetic algorithms or neural network prediction are more precise but also more complex, requiring more processing time and computational power. The same method may have different versions of implementation in order to obtain the desired performance, depending on the hardware architecture.

After the study of the harmonics of chaotic systems [START_REF] Morel | Anticontrol of Chaos Reduces Spectral Emissions[END_REF] and the generation of independent attractors [START_REF] Morel | Generating independent chaotic attractors by chaos anticontrol in nonlinear circuits[END_REF]- [START_REF] Morel | A new technique to generate independent periodic attractors in the state space of nonlinear dynamic systems[END_REF], it is interesting now to see the potentially chaotic behaviour of photovoltaic systems [START_REF] Petreus | Photovoltaic System with Smart Tracking of the Optimal Working Point[END_REF], [START_REF] Petreus | A Novel Maximum Power Point Tracker Based on Analog and Digital Control Loops[END_REF].

In this paper, the dynamic behavior of a PV system is analyzed; its stability and the conditions where it exhibits chaos or quasi-periodic nonlinear characteristics are discussed.

II. THE PRINCIPE OF MPPT CONTROL

The first step in the development of a complete solar photovoltaic conversion system (Fig. 1) is the PV module electrical model. A circuit based model for a solar cell was implemented in Matlab  , thus allowing the simulation of the dependence on the irradiance and temperature. The singlediode model presented in Fig. 2 is described by Eq. [START_REF] Xiao | Topology Study of Photovoltaic Interface for Maximum Power Point Tracking[END_REF].
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I ph is the solar cell photocurrent, directly proportional to solar irradiance S [W/m 2 ]. The resistance R S depends on the resistance inside each cell between its layers and on the connection between cells. The shunt resistance R sh corresponds to the leakage current to the ground and is commonly neglected to simplify the model, since it generally has a high value. R S influences the device functioning in the voltage source operation region, while R sh 's influence is in the current source operation region. The device is modeled [START_REF] Villalva | Comprehensive approach to modeling and simulation of photovoltaic arrays[END_REF] using a single diode with the quality factor set to achieve the best curve match.

A typical I-V characteristic of a solar cell for different levels of irradiation S and a fixed cell temperature T=25° C, is shown in Fig. 3 and Fig. 4. The output of the current source is directly proportional to the light falling on the cell. The current generated by a PV cell is directly dependent on the solar irradiance S. Increasing cell temperature decreases the open circuit voltage, while the short circuit current slightly increases. The cell efficiency thus decreases. The MPPT coordinates are recorded for different irradiation levels in Table I. When the switch S T is closed, the input V mpp provides energy to the inductor L, the current grows linearly and all clock pulses are ignored. The circuit is described by two uncoupled differential state equations described by:
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When the current i reaches the I mpp current the switch S T is opened: the current i falls; the circuit is now described by a pair of coupled first-order differential equations. The switch S T is then closed again, on the occurrence of a clock pulse occurs.
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A compact form of the state equations is expressed as
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where x = (v ; i) denotes the state vector of the circuit and the matrices A and B are given by:

                       0 1 1 1 0 0 0 1 L C RC A , RC A off on (5) and . V u , L B B mpp off on            1 0 (6) 
The following Boost parameters values are used: L = 0.5 mH, C = 75 F and T = 40 s. The value of the inductor L and the switching frequency f are chosen so that discontinuous conduction is avoided. The value of the capacitor is chosen so that the output voltage ripple be small.

The Boost converter's inputs are the voltage V mpp and current I mpp produced by the solar panel. I mpp is directly proportional to the solar irradiance S, which represents the first bifurcation parameter. Therefore, the other circuit parameters are kept constant for the observation of the behavior of the Boost converter, while only the solar irradiance S varies.

+ V mpp _ D C R L Clock _ + I mpp S Q R S T  o i i T
The current i is observed for a fundamental period -T waveform, then for a period -2T subharmonic waveform and finally to a chaotic waveform, starting from small values of S and progressively increasing its magnitude.

Fig. 6 shows the simulation waveform of the inductor current i for the period -T orbit with S = 200 W/m 2 . It illustrates that the period -T trajectory is bounded by i between around 0.5 A and 0.9 A. Fig. 7 shows the phase portrait of i and output voltage v. The power spectrum of the inductance current i is only composed of the fundamental frequency (a sharp peak at 25 kHz) and its harmonics, as shown in Fig. 8.

The period -2T waveform is also periodic. It is called period -2T because the pattern of a large peak followed by a small peak is repeated approximately once even two cycles of the period -T signal. The period -2T waveform is repeated roughly every 0.08 ms; this periodic signal has a fundamental frequency of 1.25 kHz, as shown in Fig. 11. The phase portrait is shown in Fig. 10, with the boundaries of i from around 0.8 A and 1.8 A.

Fig. 12, 13 and 14 present the chaotic case when S = 1000 W/m 2 . As shown in Fig. 14, the no periodicity power spectrum of the inductance current i(t) is an indicator of the presence of chaos. The whole frequency range is continuously spanned.

It is essential to study the occurrence of chaos due to the variation of system parameters. When a bifurcation occurs, an abrupt change in the steady-state behavior of the system also occurs. A bifurcation diagram represents all the plots of the steady-state orbit in function of a bifurcation parameter. We vary the irradiance S parameter and plot about 600 consecutive values of the inductance current i at each clock frequency in function of S.

Fig. 15 shows the bifurcation diagram. The load is kept constant at 50 , and the irradiance S, which is the bifurcation parameter, is varied between 100 W/m 2 to 1000 W/m 2 , with a 10 W/m² step. The Boost converter shows periodic-doubling cascade from period -1 to chaos. For small values of S, the system is T -periodic, so just one point is visible: all the 600 points fall at the same position.

The first bifurcation takes place at 385 W/m 2 , where the period -T bifurcates to period -2T. If the system is period -2T, two points are visible: 300 points fall at one position (the current i of the large peak at the clock frequency) and 300 points fall at the second position (the current i of the small peak at the clock frequency). For chaos, the result is a set of dots, none of them falling on the other. A bifurcation diagram clearly shows the change of behavior as a parameter is varied.

The bifurcation diagram using the irradiance S as parameter and for a variation of load R between 10  to 40  is presented Fig. 16.

For different values of S and R, one can easily identify the behaviour of the Boost converter: the system is periodic for small values of the load R and irradiance S, while it is chaotic for large value of R and S.

Figure 17 shows the power spectrum of i, when S varies between 100 W/m 2 to 1000 W/m 2 , and then decreases to 100 W/m². This variation is a good representation of the irradiance during a whole day, from dawn to nightfall. 

IV. FILIPPOV METHOD FOR BOOST CONVERTER

It is necessary to calculate the range of the fluctuating variables S and R for which the period -T orbit will remain stable, in order to ensure the stability of the system. Now we proceed to a theoretical identification of the range of S, applying the Filippov method.

The state-space model is
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The switching hypersurface h [START_REF] Giaouris | Stability analysis of the continuous-conduction-mode Buck converter via Filippov's method[END_REF] is given by .
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The normal vector n determined by the h gradient is:
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For the on period, the state transition matrix is given by
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and for the off period, the state transition matrix is where d is the duty cycle of the converter. The saltation matrix [START_REF] Šúri | Potential of solar electricity generation in the European Union member states and candidate countries[END_REF][17] which describes the transition at the switching event is given by
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We are interested in the stability of a periodic -T orbit that starts at a specific state x(0) at a clock instant, then arrives on the x(dT) at the end of the on S T, and returns to the beginning state at the end of the clock period x(T) = x(0).

The state transition monodromy matrix over a whole clock cycle (0,T) is calculated. Since the switch on is from 0 to dT, and the switch off from dT to T, the monodromy matrix [START_REF] Giaouris | Control of fast scale bifurcations in power-factor correction converters[END_REF] [15] can be described by
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In order to calculate the monodromy matrix and its eigenvalues, the duty cycle d needs to be determined. The state vectors at t = dT and t = T can be expressed as:
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Let us remark that x(T) = x(0). Substituting ( 13) into ( 14) and solving for x(0) leads to where Int on and Int off are the two integrals in ( 13) and ( 14).
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After substituting x(0) from ( 15) and x(dT) from ( 13), ( 16) can be solved numerically with the Newton-Raphson [START_REF] Giaouris | Application of Filippov method for the analysis of subharmonic instability in dc-dc converters[END_REF] method to obtain the value of d for the periodic orbit. 
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Once these values are found, the monodromy matrix can be expressed as a function of irradiance S, and its eigenvalues can be calculated. Fig. 18 shows the eigenvalues of the system for different values of the S. The saltation and monodromy matrices are
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The eigenvalues of the monodromy matrix are  1 = 0.98087 and  2 =-0.75572.

A bifurcation is described by any crossing from the interior of the unit circle to the exterior. It is the case for the irradiance value of S = 385 W/m 2 . We can generate the loci of eigenvalues using [START_REF] Villalva | Comprehensive approach to modeling and simulation of photovoltaic arrays[END_REF]. The typical loci are exemplified in Table II, which are graphically illustrated in Fig. 18. The loci indicate a period-2T as S varies. By the Filippov method, one can obtain the range of S and R for which the eigenvalues are inside the unit circle, leading to a stable periodic-T operation (Fig. 19). The design limits are set with this diagram. Let us take the example of the photovoltaic solar potential in Europe [START_REF] Šúri | Potential of solar electricity generation in the European Union member states and candidate countries[END_REF], given in Fig. 20. If the photovoltaic system has a large value of R, the designer will have to ensure that Period -1 Period -2 Chaotic Region the variations of irradiance S keep the system within the stable region of the Fig. 19. For example, this system used in the South of Europe, i.e. with a large variation of irradiance S, will mainly be unstable. It is therefore much better to choose a solar system with a small value of R (Fig. 19). It can then be used without any irradiance or geographical restriction. V. CONCLUSION This paper describes bifurcation phenomena of a photovoltaic system. The behaviour of the Boost converter is thoroughly studied: the system is periodic, quasi-periodic or chaotic for different values of irradiance and load. The range of these external parameters is determined for a stable periodic operation, using the Filippov method. This investigation is important to predict nonlinear phenomena and for the components dimensioning for a (steady state mode) proper functioning.
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 2 Figure 2. Single-diode equivalent circuit of a photovoltaic cell.
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 3 Figure 3. PV I-V characteristic for several irradiation levels.

Figure 4 .

 4 Figure 4. PV P-V characteristic for several irradiation levels.
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 5 Fig. 5 shows the block diagram of a current-controlled Boost converter. The circuit has two states: when the switch S T is closed or open.
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 5 Figure 5. The current-mode controlled Boost converter.
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 6 Figure 6. Fundamental current i(t) of the state equation of the Boost converter for S = 200 W/m 2 .
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 7 Figure 7. Phase portrait of a fundamental orbit of the state equation of the Boost converter for S = 200 W/m 2 .
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 8 Figure 8. Spectral distribution of inductor current i(t) of the Boost converter for S = 200 W/m 2 .
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 910 Figure 9. The period -2T subharmonic current i(t) of the state equation of the Boost converter for S = 400 W/m 2 .
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 11 Figure 11. Spectral distribution of inductor current i(t) of the Boost converter for S = 400 W/m 2 .
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 1213 Figure 12. The chaotic inductance current i(t) from simulation of the state equation of the Boost converter for S = 1000 W/m 2 .
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 14 Figure 14. Spectral distribution of inductor current i(t) of the Boost converter for S = 1000 W/m 2 .
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 15 Figure 15. The bifurcation diagram of the inductance current taking S as the bifurcation parameter (R = 50 ).
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 16 Figure 16. The bifurcation diagrams of the inductance current taking S as the bifurcation parameter, and for several values of R.
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 17 Figure 17. Spectral distribution of inductor current i(t) of the Boost converter with irradiance S variation.
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 18 Figure 18. Locus of characteristic multipliers as S varies. For S = 300 W/m 2 and R = 50 , the solution of the Newton-Raphson expression is d = 0.4273. We get        7585 0 261 30 0 . . ) ( x and        3498 1 972 29 . . ) dT ( x (18)
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 19 Figure 19. Region of stability of the period -1 orbit.
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 20 Figure 20. The photovoltaic solar potential in Europe.
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TABLE I

 I 

	. THE VOLTAGE AND CURRENT AT MPP FOR
		IRRADIANCE VARIATION	
	S [W/m 2 ]	Vmpp [V]	Impp [A]
	200	17	0.8979
	400	17.5	1.8013
	600	17.7	2.7121
	800	17.9	3.6087
	1000	18	4.5134

III. DC-DC BOOST CONVERTER

TABLE II .

 II EIGENVALUES FOR DIFFERENT VALUES OF S

S [W/m 2 ] Charat. Mult

  .  1 ,  2

			Remarks
	200	-0.43557 and 0.9779	Stable 1T
	300	-0.75572 and 0.98087	Stable 1T
	385	-1.00078 and 0.9815	Period-doubling
	400	-1.45787 and 0.98159	Period-doubling
	450	-1.17758 and 0.9817	Period-doubling