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Abstract

In this paper, we develop a framework for an efficient under-approximation
of the dynamics of Asynchronous Automata Networks (AANs). An AAN is an
Automata Network with synchronised transitions between automata, where each
transition changes the local state of exactly one automaton (but any number of
synchronizing local states are allowed). The work we propose here is based on
static analysis by abstract interpretation, which allows to prove that reaching
a state with a given property is possible, without the same computational cost
of usual model checkers: the complexity is polynomial with the total number
of local states and exponential with the number of local states within a single
automaton. Furthermore, we address AANs with classes of priorities, and give
an encoding into AANs without priorities, thus extending the application range
of our under-approximation. Finally, we illustrate our method for the model
checking of large-scale biological networks.

Keywords: discrete networks, abstract interpretation, reachability, qualitative
models, systems biology

1. Introduction

Discrete modelling frameworks for biological networks is an active research
field where formal methods have be proven very powerful [1, 2, 3]. Such a work
started in the seventies, with the emergence of the notion of Boolean Network [4]
and its use to represent biological phenomena [5]. It was later enriched in
many directions and widely used to elucidate many biological questions. Among
these questions, a major one is to understand precisely how biological systems
evolve and behave; why and how they change their usual behaviour, etc. These
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questions are strongly linked to the (possible or inevitable) reachability of some
states. The ultimate goal is to discover how it could be possible to prevent
biological systems from reaching some pathological conditions.

Of course, such formal models on which analyses are performed are abstract
representations of the actual studied systems. They are associated with param-
eters that have to be synthesised to give the most faithful representation of the
real systems with their observed behaviours. As a matter of fact, the abstrac-
tions we get are more or less rough or accurate. Prevalent formal frameworks
for such modelling activities are state-transition systems or process algebras.
We developed a quite similar framework named the Process Hitting [6], consist-
ing in a restriction of these frameworks where the evolution of a component is
determined by the state of at most one other component that does not evolve.
This is modelled by actions of the form X + Y → X + Y ′, where X behaves
like a catalyst molecule that “hits” another molecule Y and changes it into Y ′,
without being changed itself. Assuming catalysts are always available, this can
represent any biochemical system made of monomolecular reactions, and can
also represent catalytic networks such as metabolic networks. Our motivation
behind this framework was to design a model and analysis techniques adapted
to biological modelling. These analyses avoid building the whole state space,
which allows to tackle very large systems (that would have led to a huge number
of states, hopelessly too huge to be analysed). They are based on the fact that
most biological models have few levels of expression per component: in Boolean
networks [4, 5] there are only two levels per component, and in their multivalued
equivalent [2], components rarely have more than four levels.

Besides, one further objective of our work is now to improve the accuracy of
the description of the studied systems dynamics. The idea for this is to introduce
timing features into models: we are interested in taking into account some
knowledge about the relative length of some phenomena as it is a way to refute
some models (or parameters) that are inconsistent with the observed dynamic
behaviours. In this paper, we are dealing with these timing properties through
priorities, that are based on the simple founding idea that actions with higher
priority have to be processed before the ones with lower priority. Furthermore,
due to the Process Hitting framework restrictions, multimolecular reactions were
previously not immediately available, but one could simulate them with an
encoding called “cooperative sort”. That encoding however introduces extra
reactions, that produce a temporal shift between the presence of the reactants
and the playability of the reaction. This is where the priorities become useful,
if not necessary: the extra reactions can for example be given “infinite speed”
(highest priority) so that they do not affect the behaviour of “normal” (lower
priority) reactions, including the multimolecular ones.

The approach used in this paper consists in considering a broader class of
models, that we call Asynchronous Automata Network, and that allows to nat-
urally model these cooperations by defining several requisites for a transition.
Moreover, such automata networks are still compatible with the notion of pri-
ority, that can also be used to model different reaction rates in the model.
Asynchronous Automata Networks (and, a fortiori, their restriction, the Pro-
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cess Hitting framework) can be considered as a subset of Communicating Finite
State Machines or safe Petri Nets [7]. Our work is thus related to such se-
mantic ramifications of extending traditional process algebras with the concept
of priority that allows for some transitions to be given precedence over others.
We focus here on static priorities that allow to model time constraints such as
reaction rates or delays between regulations, but can also model preemptions
between evolution branches.

Until now, such a priority scheduling of the actions was not studied ex-
tensively in the different formal modelling frameworks dedicated to systems
biology. Nevertheless, such an attempt has been carried out for Petri nets by
F. Bause [8], and the concept of priority relations among the transitions of a
network has also more recently been introduced by A. K. Wagler et al. [9, 10] in
order to allow modelling deterministic systems for biological applications. The
concept of priority is rather straightforward in the approach of process algebras
as it was shown by R. Cleaveland and M. Hennessy in [11] and their abstractions
and equivalences were studied in [12]. It was later extended for applications in
the field of systems biology by M. John et al. [13].

Contributions
In this paper, we develop a method that allows to efficiently compute under-

approximations of the dynamics of Asynchronous Automata Networks (AANs),
generalising a prior work carried out on Process Hitting [14]. Rather than us-
ing brute force or symbolic model checking techniques, our method focuses on
static analysis by abstract interpretation. Our work aims at checking reachabil-
ity properties that, for a given initial state s and the discrete expression level n
of a given component x, have the form: “Starting from state s, is it possible to
reach a state in which x is at level n?”, thus answering either “True” (in which
case the reachability is formally proven) or “Inconclusive” (which however does
not stand for “False”, that can be proven by other analysis tools, such as the
over-approximation proposed in [14]). Moreover, the successive or simultaneous
reachability of several local states can also be checked, and in the case of a “True”
response, an execution path satisfying the property can be produced. Exten-
sions of AANs where transitions are split in priority classes are addressed with
an encoding in AANs without classes of priorities. Our work thus allows to effi-
ciently analyse the dynamics of regulation networks, especially the widespread
Logical Networks [15, 2], which encompass variables with a limited number of
discrete values alongside with evolution functions or focal parameters. To show
the scalability of our method, we apply it to two large-scale biological models
with around 100 components.

Sect. 2 presents the Asynchronous Automata Networks (AANs) without any
notion of classes of priorities. In Sect. 3, we develop our under-approximation
method allowing to efficiently compute reachability analyses; we also show how
to extract a valid execution path if the response is positive, and propose two
refinements in case one needs to check successive or simultaneous reachability
properties. The framework of AANs with classes of priorities is given in Sect. 4,
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alongside with an encoding into AANs without classes of priorities (or, equiva-
lently, with one class of priority). Finally, Sect. 5 provides a detailed example
and two large-scale examples of the application of our method, and Sect. 6 gives
a conclusion and a discussion about our work.

The main additions in this paper compared to [16] are Subsection 3.3 that
allows the extraction of a concrete trace of execution when our static analysis
method is conclusive, Subsection 3.4 that refines our approach in the case of
a successive reachability in order to increase the conclusiveness, and Sect. 4
which states that any ANN with any number of classes of priorities can be
represented into a simple ANN (or, equivalently, with only one class of priority),
thus extending the scope of our method. We note however that the use of AANs
without priorities alone instead of Process Hitting models allows to simplify the
notations, but does not increase the range of applicability of the results. Finally,
Sect. 5 has been improved with a detailed example and a new large-scale example
with a quantitative examination of the results.

Notations
Sets. If A is a finite set, |A| is the cardinality of A and ℘(A) is the power set of
A. N is the set of natural numbers, N∗ = N \ {0} is the set of positive natural
numbers and Jx; yK = {x, x+ 1, . . . , y− 1, y} is the set of natural numbers from
x to y included. The Cartesian product of sets is denoted by × and if z is a
tuple of n components, z̃ denotes the corresponding set: z̃ = {z1, · · · , zn}.

Sequences. We denote by ε the empty sequence. If n ∈ N and x = (xi)i∈J1;nK
is a sequence of elements indexed by i ∈ J1;nK, then |x| = n is the length of x
and Ix = J1;nK is the set of indexes of this sequence. Furthermore, if a, b ∈ Ix
with a ≤ b, then xa..b = (xi)i∈Ja;bK is the subsequence of x between indexes a
and b included. Finally, if x is a sequence, x̃ also denotes the corresponding set:
x̃ = {x1, · · · , x|x|}.

Digraphs. If (V,E) is a directed graph whose set of nodes is V and whose set of
edges is E ⊆ V × V , the children of a node n are given by children : V → ℘(V ),
with children(n) = {m ∈ V | (n,m) ∈ E}; its parents are given by parents :
V → ℘(V ) with parents(n) = {m ∈ N | (m,n) ∈ E}; and its successors are
given by conn(V,E)(n) which is the least fixed point containing n of the function
fconn : ℘(V )→ ℘(V ) with fconn(W ) =

⋃
m∈W children(m).

2. Asynchronous Automata Networks

We give in this section the definition and the semantics of the Asynchronous
Automata Networks (AANs). It is a restriction of the classical (synchronous)
Automata Networks where each set of transitions sharing the same label can
only change one local state at a time. We also discuss how it is related to
the Process Hitting framework (with or without classes of priorities). Another
definition of AANs introducing classes of priorities is proposed in Sect. 4, where
we also show that they have the same expressivity as AANs.
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We consider an AAN (Def. 1) which gathers a finite number of automata,
each one containing a finite number of local states. A local state is noted ai,
where a is the name of the automaton it belongs to, and i is the identifier of
this local state within automaton a. A global state of the system is a Cartesian
product with exactly one local state from each automata.

The concurrent interactions between local states are defined by a set of
actions. An action stands for a set of transitions sharing the same label, so that
playing them changes exactly one local state. Therefore, an action is denoted
by A→ bj � bk, where A is a set of local states and bj and bk are local states of
a same automaton b; it is moreover required that bj 6= bk and that A does not
contain a local state of b or two local states of the same automaton. An action
h = A→ bj � bk is read as “A hits bj to make it bounce to bk”, and A, bj , bk are
called respectively the (set of) hitters, the target and the bounce of the action,
and can be referred to as hitters(h), target(h) and bounce(h), respectively.

Definition 1 (Asynchronous Automata Networks). AnAsynchronous Au-
tomata Network (AAN) is a triplet A = (Σ;L;H), where:

• Σ
∆
= {a, b, . . . , z} is the finite set of automata;

• L ∆
= ×

a∈Σ
La is the finite set of (global) states, where La = {a0, . . . , ala}

is the finite set of local states of automaton a ∈ Σ, with la ∈ N∗, and so
that: ∀(ai; bj) ∈ La × Lb, a 6= b⇒ ai 6= bj ;

• H ∆
= {A→ bj � bk | b ∈ Σ∧(bj ; bk) ∈ Lb×Lb∧bj 6= bk∧∀a ∈ Σ, |A∩La| ≤

1 ∧A ∩ Lb = ∅} is the finite set of actions.

Furthermore, we call LS ∆
=
⋃
a∈Σ La the set of all local states in the model.

Notations. The automaton that a local state ai belongs to is referred to as
Σ(ai) = a, and if A ⊆ LS, we denote: Σ(A) = {Σ(ai) ∈ Σ | ai ∈ A}. Given a
state s ∈ L, the local state of automaton a ∈ Σ present in s is denoted by s[a],
that is, the a-coordinate of the state s. If ai ∈ LS, we denote ai ∈ s⇔ s[a] = ai;
and if A ⊆ LS, A ⊆ s⇔ ∀ai ∈ A, s[a] = ai.

Definition 2 (Semantics of an AAN (→A)). If A = (Σ;L;H) is an AAN,
an action h = A → bj � bk ∈ H is playable in s ∈ L if and only if A ⊆ s and
s[b] = bj . In such a case, (s ·h) stands for the state resulting from the play of the
action h in s, which is defined by: (s · h)[b] = bk and ∀a ∈ Σ, a 6= b, (s · h)[a] =
s[a]. Moreover, we denote: s→A (s · h).

If s ∈ L, a scenario δ from s is a (possibly empty) sequence of actions of
H that can be played successively in s. The set of all scenarios from s is noted
Sce(s).
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Figure 1: An example of AAN. This model represents the interaction of two components a
and b, whose production is mutually exclusive and that degrade over time. Moreover, these
two components can cooperate to activate c if their “active” states (a1 and b1) are present in
the same state. Automata are represented by labelled boxes and local states by circles with
their identifier on the side. Actions are represented by a dot connected by an edge to the
set of hitters and by an arrow to the target, followed by another dotted arrow towards the
bounce. Greyed local states stand for the following possible global state: 〈a1, b0, c0〉.

Example. Fig. 1 gives an example of AAN where:

Σ = {a, b, c} , La = {a0, a1} ,
Lb = {b0, b1} , Lc = {c0, c1} ,

H = { ∅ → a1 � a0 , {b0} → a0 � a1 ,

∅ → b1 � b0 , {a0} → b0 � b1 ,

{a1, b1} → c0 � c1 }

Remark (Comparison with the Process Hitting). The Process Hitting
framework previously introduced in [6] is a restriction of the AAN formalism;
indeed, a Process Hitting model is an AAN so that ∀h ∈ H, 0 ≤ |hitters(h)| ≤
1. However, the AANs defined in this paper have the same expressivity than
the Process Hitting with classes of priorities, as previously introduced in [16].
Indeed, in the Process Hitting with at least 2 classes of priorities, it is possible to
use additional automata called “cooperative sorts” in order to model the actions
in an AAN that have more than one hitter.

3. Under-approximation of Reachability

We present a static analysis that takes as input an AAN A = (Σ;L;H), an
initial state in L, and a local state in LS. Its objective it to identify sufficient
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conditions that ensure the existence of a scenario starting from the initial state,
and leading to a state where the given local state is present.

A classical approach for determining if a local state of an automaton can
be reached from a given initial state is to build sequences of transitions from
the initial state until reaching a state in which the given local state is active.
This is essentially what model-checkers do, and the complexity of such analy-
sis (PSPACE-complete [17]) makes it intractable on large systems, even with
advanced symbolic approaches [14].

Our approach relies on abstractions of scenarios (Subsection 3.1) that have
been introduced in [14] for the static analysis of reachability in the Process
Hitting framework, a particular sub-class of AAN (see the Remark at the end
of the previous section). In this paper, we generalize the static analysis for the
case of the under-approximation of reachability in any AAN (Subsection 3.2).

In Subsection 3.3, we detail a procedure to extract a witness scenario con-
cretizing a given local state reachability property. Finally, we discuss in Sub-
section 3.4 how the static analysis can be extended to sequential (sub)states
reachability properties.

3.1. Abstractions for Scenarios
The approach presented in this section is based on two complementary no-

tions, the objectives and their local causality, that are intertwined in so-called
Local Causality Graphs.

3.1.1. Objectives
An objective (Def. 3) denotes the reachability of a local state (e.g., aj) of

a given automaton a from the initial local state of that automaton (e.g., ai).
Such an objective is written ai �∗ aj . Successive objectives are described with
objective sequences.

Definition 3 (Objective (Obj) & Objective Sequence (OSeq)). If a ∈ Σ,
the reachability of a local state aj from a local state ai is called an objective,
noted ai �∗ aj . The set of all objectives is noted:

Obj
∆
= {ai �∗ aj | a ∈ Σ ∧ (ai, aj) ∈ La × La} .

For an objective P = ai �∗ aj ∈ Obj, we define: Σ(P )
∆
= a, target(P )

∆
= ai,

bounce(P )
∆
= aj . Finally, P is said trivial iff ai = aj .

We define an objective sequence as a sequence of objectives in which each
objective target must be equal to the previous objective bounce of the same
automaton, if it exists. The set of all objective sequences is denoted by OSeq.
Given ω ∈ OSeq, Σ(ω)

∆
= {Σ(ωi) | i ∈ Iω}. For each automaton a ∈ Σ(ω), the

first local state of a referenced in ω is denoted by firsta(ω)
∆
= target(ωm), where

m = min{n ∈ Iω | Σ(ω) = a}. The set of objective sequences starting in a state
s ∈ L are denoted by OSeq(s)

∆
= {ω ∈ OSeq | ∀a ∈ Σ(ω), firsta(ω) ∈ s}.

7



We define the partial ordering relation 4OSeq between two objective se-
quences (Def. 4) as follows: w 4OSeq w

′ if and only if there exists a mapping
between all the objective bounces of w′ in w that preserves the sequentiality,
provided that each automaton starts in the same local state.

Definition 4 (4OSeq⊂ OSeq×OSeq). ω 4OSeq ω
′ if and only if |ω| ≥ |ω′|,

∀a ∈ Σ(ω′), a ∈ Σ(ω) ∧ firsta(ω′) = firsta(ω); and there exists a mapping
φ : Iω′ 7→ Iω such that ∀n,m ∈ Iω′

, n < m ⇔ φ(n) < φ(m), and ∀n ∈
Iω′
, bounce(ω′n) = bounce(ωφ(n)).

Example.

b0 �
∗b1 ::a0 �

∗a1 ::b1 �
∗b2 4OSeq a0 �

∗a1 ::b0 �
∗b2 4OSeq b0 �

∗b2

b0 �
∗b1 64OSeq b0 �

∗b2 and b0 �
∗b2 64OSeq b0 �

∗b1

An objective sequence can be seen as an abstract representation of a set of
scenarios that describe (part of) the successive state changes of the automata.
We denote by γs(ω) (Def. 5) the set of scenarios matching with an objective
sequence ω in the state s ∈ L. It is essentially all the scenarios for which there
exists a mapping from the bounces of each objective to the bounce of an action
in the scenario which preserve the sequential ordering.

Definition 5 (γs : OSeq→ ℘(Sce)). Given a state s ∈ L and an objective
sequence ω ∈ OSeq(s), γs(ω) is the set of scenarios matching with ω:

γs(ω)
∆
= {δ ∈ Sce(s) | ωM 6= ε⇒ bounce(δ|δ|) = bounce(ω|ω|)

∧ ∃φ : Iω 7→ Iδ, (∀n,m ∈ Iω, n < m⇔ φ(n) ≤ φ(m)

∧ ∀n ∈ Iω, bounce(ωn) ∈ s · δ1..φ(n))} ,

in which ωM refers to the objective sequence ω where trivial objectives have
been removed. The notation δj..k denotes the subsequence of δ between indexes
j and k, as defined on page 4.

From Def. 4 and Def. 5, we derive that if ω 4OSeq ω′, then the scenarios
matching ω also match ω′ (Lemma 1).

Lemma 1. ∀ω, ω′ ∈ OSeq,∀s ∈ L, ω 4OSeq ω
′ =⇒ γs(ω) ⊆ γs(ω′) .

Given a non-empty set ∆ ⊆ Sce(s) of non-empty scenarios that have a
common last bounce (∃ai ∈ LS,∀δ ∈ ∆, bounce(δ|δ|) = ai), one can define an
abstraction αs of such a set as the smallest (according to 4OSeq) objective
sequence ω ∈ OSeq(s) such that bounce(ω|ω|) = bounce(δ|δ|), δ ∈ ∆ and ∀δ ∈
∆,∃φ : Iω 7→ Iδ(∀n,m ∈ Iω, n < m ⇔ φ(n) ≤ φ(m)) ∧ ∀n ∈ Iω, bounce(ωn) ∈
s · δ1..φ(n)). In such a setting, αs and γs form a Galois connection between sets
of scenarios and objective sequences.
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3.1.2. Local Causality for Objectives
The existence of a scenario from a state s leading to a state where a given lo-

cal state aj is present can be reformulated as the checking for the non-emptiness
of γs(ai �∗aj), where ai = s[a]. A first hint for checking this emptiness is to look
for actions that have to be played in order to reach the state j from i within
the automaton a.

Given an objective P = ai �∗aj ∈ Obj, we define BSeq(P ) the bounce
sequences of P as the set of minimal sequences of actions hitting a in which the
bounce of each action is the target of the following action (Def. 6).

Definition 6 (Bounce Sequence (BSeq)). A bounce sequence ζ is a sequence
of actions such that ∀n ∈ Iζ , n < |ζ|, bounce(ζn) = target(ζn+1). BSeq denotes
the set of minimal bounce sequences. We refer to the set of bounce sequences
resolving the objective P as BSeq(P ):

BSeq(ai �
∗aj)

∆
= {ζ ∈ BSeq |target(ζ1) = ai ∧ bounce(ζ|ζ|) = aj

∧ ∀m,n ∈ Iζ , n > m, bounce(ζn) 6= target(ζm)} .

Therefore, BSeq(ai �∗ai) = {ε}; and BSeq(ai �∗aj) = ∅ if there is no possi-
bility to reach aj from ai.

Example. Given the AAN of Fig. 1, BSeq(c0 �∗c1) = {{a1, b1} → c0 � c1};
and BSeq(a0 �∗a1) = {{b0} → a0 � a1}.

From Def. 6, we can derive that any scenario matching with an objective in-
cludes all the actions of one of the bounce sequences of the objective (Lemma 2).

Lemma 2. Given a state s ∈ L and an objective ai �∗aj with s[a] = ai, ∀δ ∈
γs(ai �∗aj), ∃ζ ∈ BSeq(ai �∗aj) such that ∃φ : Iζ → Iδ with ∀n,m ∈ Iζ , n <
m⇔ φ(n) < φ(m) and ∀n ∈ Iζ , ζn = δφ(n).

3.1.3. Local Causality Graph
The previous subsections introduced the necessary definitions to build the

so-called Local Causality Graph (LCG). This graph is denoted Bus where u is
the local state to be reached from the initial state s. It will be the basis of
our static analysis, as it represents the causality links between the different
objectives involved in the solving of the reachability of u. This LCG is built
recursively by considering some required local states (e.g., u), linking them to
objectives (e.g., t �∗u, if t ∈ s), and locally refining these objectives in order to
include new required local states from other automata. An example of LCG is
depicted in Fig. 2.

Technically, one can iteratively refine a given objective into (possibly several)
objective sequences extracted from its bounce sequences. Indeed, the refinement
of an objective P with ζ ∈ BSeq(P ) consists in prepending to P the objectives
leading to the activation of all hitters of the actions in ζ, in the same sequential
order. The generalization of this refinement to an objective sequence would nat-
urally require to consider all possible interleaving between the refinements [14].
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For example, given the AAN of Fig. 1, in the state 〈a0, b0, c0〉, the objective
a0 �∗a1 can be refined in the objective sequence b0 �∗b0 ::a0 �∗a1 and the objective
c0 �∗c1 can be refined in the objective sequence a0 �∗a1 :: b0 �∗b1 :: c0 �∗c1 or
b0 �∗b1 ::a0 �∗a1 ::c0 �∗c1 (which can then be further refined).

Formally, a Local Causality Graph (LCG) is a digraph where V us ⊆ LS ∪
Obj ∪ Sol ∪ Sync is the set of vertices, with Sync = ℘(LS) and Sol = Obj×
℘(Sync), and Eus ⊆ V us × V us is the set of oriented edges (Def. 7). A node in
V us ∩Obj represents an objective to refine. Such a node is linked to nodes in
Sol which represent sets of hitter sets extracted from a bounce sequence of the
objective (that is, one node for each bounce sequence in BSeq(P )); thus, given
an objective P , if ζ ∈ BSeq(P ) and ζ∧ is the set of all hitters of ζ, then P is
linked to a node 〈P, ζ∧〉 ∈ Sol (Def. 7-3). For each hitter set ps ∈ ζ∧, the node
〈P, ζ∧〉 ∈ V us ∩ Sol is linked to the node ps ∈ Sync (Def. 7-4). Then, a node
ps ∈ V us ∩ Sync is linked to each local state ai ∈ ps is contains (Def. 7-5). A
local state node ai ∈ V us ∩ LS is linked to each objective aj �∗ai ∈ Obj, where
aj is either in the initial state s or is a local state node in the LCG (Def. 7-2).
Finally, given an objective node aj �∗ai ∈ V us ∩Obj, if a local state ak 6= ai is
in its successors (which is given by conn(V u

s ,E
u
s )(aj �∗ai)), then aj �∗ai is linked

to ak �∗ai in the LCG (Def. 7-6).

Definition 7. Given a state s ∈ L and a local state u ∈ LS, the Local Causality
Graph (LCG) for reachability under-approximation Bus

∆
= (V us , E

u
s ), with V us ⊆

LS ∪Obj ∪ Sol ∪ Sync and Eus ⊆ V us × V us , is the smallest graph such that:

1. u ∈ V us
2. ai ∈ V us ∩ LS⇔ {(ai, aj �∗ai) | aj 6= u ∧ (aj ∈ s ∨ aj ∈ V us ∩ LS)} ⊆ Eus
3. P ∈ V us ∩Obj⇔ {(P, 〈P, ζ∧〉) | ζ ∈ BSeq(P )} ⊆ Eus
4. 〈P, pps〉 ∈ V us ∩ Sol⇔ {(〈P, pps〉, ps) | ps ∈ pps} ⊆ Eus
5. ps ∈ V us ∩ Sync⇔ {(ps, ai) | ai ∈ ps} ⊆ Eus
6. ai �∗aj ∈ V us ∩Obj⇒ {(ai �∗aj , ak �∗aj) | ak 6= aj ,

ak ∈ conn(V u
s ,E

u
s )(〈ai �∗aj , ζ∧〉),

ζ ∈ BSeq(ai �∗aj)} ⊆ Eus

with ζ∧ ∆
= {hitters(ζn) | n ∈ Iζ}.

The definition of an LCG tackles two cases where the target of an objective
may be changed. First, the addition of objectives based on the local states
already mentioned anywhere in the LCG, as performed in Def. 7-2, ensures to
take into account the possible changes in the active local states made by other
objectives. We thus try to ensure that a required local state is reachable even
when starting from a local state of the same automaton that is not in the initial
state, but that may be active at some point of the solving. Second, Def. 7-6,
allows to “re-target” objectives whose own solving changes their target. This
happens when playing the actions that activate the local states required to solve
an objective P also changes the active local state of automaton Σ(P ). In this
case, the initial objective P is re-targeted to another objective p �∗ bounce(P ),
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where p is the new active local state in Σ(P ). Linking to all objectives of this
kind ensures that all possible disturbances are taken into account.

Finally, we note that the LCG of Def. 7 contains synchronizing nodes (Sync)
that allow to express the need for several local states simultaneously in order to
play a given action. This is the main difference regarding [14, 16] which tackled
with Process Hitting, whose actions are limited to at most one hitter and thus
did not require this kind of synchronization.

3.2. Sufficient condition for reachability of a local state
Given a state s ∈ L and a local state u ∈ LS, the LCG Bus contains a set

of objectives that can be used to build a concrete scenario reaching u. Because
we are focused on sufficient conditions for reachability, we do not require that
all possible scenarios can be derived from the LCG.

In this section, we prove that if the LCG has no cycle, all its nodes in Obj
have at least one child, and all its nodes in Sync satisfy a particular criteria,
so-called independence, then there exists a scenario that reaches u from state s
(Theorem 1).

A node ps ∈ Sync of the LCG is independent (Def. 8) if for each local state
ai ∈ ps, none of the other local states bj ∈ ps have in their successors a local
state of automaton a but that is different than ai. This criteria ensures that
once a local state in ps has been reached, reaching another local state in ps
should not impact the first.

Definition 8 (Independent synchronizations). In a LCG Bus = (V us , E
u
s ),

a node ps ∈ V us ∩ Sync is independent if and only if for each ai ∈ ps, for each
bj ∈ ps, bj 6= ai, ak ∈ connBu

s
(bj) ∩ LS⇒ ak = ai.

The intuition of the under-approximation of Theorem 1 is the following.
Given the initial state s, we recursively refine the initial objective (which is:
reaching u from the initial state) according to its children. As the LCG is acyclic,
by hypothesis, such a recursion always terminates, and as all the objective nodes
have at least one child, it never gets stuck. The refinement of an objective
node ai �∗aj acts as follows: if the node has another objective node ak �∗aj as
child, we first refine the objective ai �∗ak (which, by construction, is necessarily
in the LCG) and then we refine the objective ak �∗aj . If the objective node
has only successors in Sol (bounce sequences), one is picked arbitrarily. If
〈P, pps〉 is the chosen node, by construction there exists ζ ∈ BSeq(P ) such
that ζ∧ = pps ∈ ℘(Sync). If ζ = ε (for instance in the case where ai = aj),
the recursion stops and we continue to the next stage. Otherwise, for each
n ∈ Iζ , for each bi ∈ hitters(ζn), we refine the objective bj �∗bi, where bj is
the state of b in the current state. By induction, bj �∗bi is a child of bi in the
LCG of Def. 7. Thus, we know that the current state of b is bi. After having
repeated this procedure for each bi ∈ hitters(ζn), because all the nodes in Sync,
and in particular hitters(ζn), are independent, we know that all the local states
in hitters(ζn) are in the current state. In addition, we know that the state of
automaton a has remained unchanged, otherwise ai �∗aj would have an objective
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child. Hence, the action ζn is playable in the current state. We can thus apply
this action, modifying the state of a to aj and continue to the next stage. In
the end, this recursive procedures builds a scenario from s to a state containing
u.

Theorem 1 (Under-approximation). Given an AAN (Σ;L;H), a state s
and local state u, if the LCG Bus contains no cycle, all nodes in Obj have
at least one child, and all nodes in Sync are independent, then there exists a
scenario δ ∈ Sce such as u ∈ s · δ.

Regarding the complexity of the method, computing the LCG is polynomial
in the number of automata in A and exponential in the number of local states in
one automaton. Checking the properties allowing to apply Theorem 1 is poly-
nomial in the size of the graph. Therefore, the building and checking processes
can be considered as polynomial in the size of the AAN, provided that each au-
tomaton only contains a few local states. We note that this is particularly true
for biological models, where each component usually contains a limited number
of expression levels.

We note furthermore that the method does not require any completeness
of the bounce sequences BSeq. Therefore, in order to reduce the number of
bounce sequences to consider, and potentially remove cycles and non-satisfying
nodes, one can consider only a sub-set of bounce sequences (and in particular: a
unique bounce sequence) for each objective. However, such an approach requires
to enumerate all possible combinations of bounce sequences subsets, hence being
exponential in the number of considered bounce sequences.

Example. We consider in this example the AAN of Fig. 1, and the initial
state 〈a1, b0, c0〉 that is also represented. The under-approximation given in
Theorem 1 concludes that a1 is reachable from this initial state, as well as b1.
Nevertheless, it does not conclude regarding the reachability of c1. This is due
to the fact that the node {a1, b1} ∈ V us ∩Sync is not independent because of its
successor a0 (and b0) as we can see in the LCG of Fig. 2. (However, from the
inconclusiveness of Theorem 1, one cannot conclude about the unreachability
of c1. Such analysis should be driven for instance with over-approximation
methods developed in [14].)

This result is new compared to the method proposed in [14]. Indeed, the
representation based on the Process Hitting that was proposed in this paper
only allowed to represent “over-approximated” Boolean gates with the use of
so-called cooperative sorts. This especially did not allow to model the fact that
a1 and b1 could not be activated in the same state, but only in successive states.
Thus, when using Process Hitting, c1 was indeed reachable, contrary to the
behaviour expected from an accurate Boolean gate.

Finally, we note however that if actions {a0} → b0 � b1 and {b0} → a0 � a1

are replaced respectively by ∅ → a0 � a1 and ∅ → b0 � b1, then the resulting
saturated graph of local causality changes, and Theorem 1 concludes that c1
is reachable from 〈a1, b0, c0〉. The reader can also refer to Subsection 5.1 for a
detailed conclusive example.
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c1

c0 �∗ c1

{a1, b1}

a1

a1 �∗ a1

∅

a0 �∗ a1

{b0}

b0

b0 �∗ b0

∅

b1 �∗ b0

∅

b1

b1 �∗ b1

∅

b0 �∗ b1

{a0}

a0

a0 �∗ a0

∅

a1 �∗ a0

∅

Figure 2: The local causality graph Bu
s on the AAN in Fig. 1 for the reachability of u = c1 from

the initial state s = 〈a1, b0, c0〉. Elements in LS are represented by rectangular nodes, elements
in Sol are represented by small circles, and elements in Sync and Obj are the remaining
borderless nodes. Theorem 1 is inconclusive on this example as node {a1, b1} ∈ Sync is not
independent (see Def. 8). Indeed, a0 is a successor of b1, but a0 6= a1 (and the same also
stands for b0, which is a successor of a1).
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3.3. Extraction of a Scenario
This section gives a recursive method to find a scenario that concretizes the

reachability of a given local state u ∈ LS, from a given initial state s0 ∈ L,
provided that Theorem 1 answered positively on this couple of inputs. The
algorithm proposed in what follows relies on a traversal of the Local Causality
Graph Bus0 that has been used for this conclusion. The correctness of this
extraction can be demonstrated in the same fashion as Theorem 1.

This algorithm consists in visiting all required nodes in a given order, to
build a sequence of actions that concretizes the objective. The actions to per-
form on a given node, listed below, depend on the current state, the type of
node, the markers on this node and the state of the traversal which can be
either “descending” (D) or “ascending” (A). Nodes in Sol can be marked with
a sequence of actions and nodes in Sync can be marked with a set of local
states. When ascending, the traversal always ascend into the node it previously
descended from (in order to cover the same path backwards). The traversal
starts in node u in descending mode, the starting state is s = s0 and the initial
output is the empty sequence ε.

• In a node ak ∈ LS:

D) Descend in the node s[a] �∗ ak ∈ Obj.

A) Ascend in the parent Sync node, if any, and remove the element ak
from its marking set. If the node has no Sync parent, the traversal
is complete and the output of the algorithm is the current output.

• In a node aj �∗ ak ∈ Obj:

D) Descend in an arbitrarily chosen node 〈P, pps〉 ∈ Sol, and mark it
with an arbitrarily chosen sequence ζ ∈ BSeq(P ) so that ζ∧ = pps.

A) Ascend in the parent LS or Obj node.

• In a node 〈P, pps〉 ∈ Sol with the current marking ζ:

– If ζ 6= ε, descend in the node ps ∈ Sync so that ps = hitters(ζ1) and
mark it with the set ps.

– If ζ = ε, ascend in the parent node P ∈ Obj and carry on ascending.

• In a Sync node with the current marking m:

– If m 6= ∅, descend in a child node ak ∈ LS arbitrarily chosen, so that
ak ∈ m and carry on descending.

– Ifm = ∅, ascend in the parent Sol node. Let ζ be the current marking
of this node. If ζ1 is playable in s: append ζ1 to the output, change
the current state to s · ζ1 and mark this node with ζ2..|ζ|. If ζ1 is not
playable (which means that target(ζ1) has changed), then go to the
node s[Σ(bounce(ζ1))] �∗ bounce(ζ1) ∈ Obj and start descending.
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The execution of such a traversal outputs a scenario from s0. In the following,
we denote by ∆(Bus0) the set of all scenarios extracted from the local causality
graph Bus0 . Indeed, several scenarios may exist for a same graph, generated by
the arbitrary choices that exist in this algorithm. An example of such a traversal
is given on a small example in Subsection 5.1.

3.4. Addressing Sequential and Sub-state Reachability
In this section, we briefly discuss how the presented static analysis for local

state reachability properties can be extended to sequential (sub)states reacha-
bility properties.

Sub-state reachability
Given an AAN A = (Σ,L,H), an initial state s ∈ L and a sub-set of local

states τ ⊆ LS so that ∀a ∈ Σ, |τ ∩La| ≤ 1, the reachability of a state containing
all local states of τ from the initial state s ∈ L can be tackled by our method.
Indeed, consider the AAN A′ = (Σ′,L′,H′) with: Σ′ = Σ ∪ {σ}, L′ = L × Lσ,
where Lσ = {σ0, σ1}, and H′ = H∪ {τ → σ0 � σ1}. Obviously, the reachability
in A of any state s′ ∈ L such that τ ⊂ s′ from the initial state s is equivalent
to the reachability in A′ of the local state σ1 from state s× {σ0}.

Such analysis was not possible with the Process Hitting framework, because
of the lack of the notion of simultaneity for more than two components.

Sequential reachability
Given a sequence of local states to reach (e.g., reach ai, then bj , etc.), one

can use the same approach as for sub-state reachability by introducing a new
automaton σ having n + 1 local states, where n is the size of the sequence of
reachability, and n actions making it bounce gradually from σ0 to σn with hitters
corresponding the successive local states (e.g., {ai} → σ0 � σ1, {bj} → σ1 � σ2,
etc.).

An alternative approach is to use the extraction of a scenario of Subsec-
tion 3.3: given an initial state s0, and a first local state reachability property
u1, one can compute a possible scenario δ ∈ ∆(Bus0) witnessing this reachabil-
ity; then the next local state reachability properties (u2, u3, etc.) are computed
from the state s0 · δ that outcomes from the latter scenario.

4. Asynchronous Automata Networks with classes of priorities

In this section, we define the notion of AANs with classes of priorities, and
give a transformation from these into AANs without priorities, as defined in
Sect. 2.

The idea behind AANs with classes of priorities (Def. 9) is to split the
set of actions into several subsets assigned to priorities, and to constrain the
behaviour of the model to make any action unplayable until no other action
of higher priority is playable (Def. 10). Such a framework allows to model
preemptions between sets of actions, which can be helpful to abstract time or
duration properties under certain conditions.
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Definition 9 (AAN with k classes of priorities). If k ∈ N∗, anAsynchronous
Automata Network with k classes of priorities (AANk) is a tripletA = (Σ;L;H〈k〉),
where A〈k〉 = (H(1) . . . ;H(k)), and:

• Σ
∆
= {a, b, . . . , z} is the finite set of automata;

• L ∆
= ×

a∈Σ
La is the finite set of (global) states, where La = {a0, . . . , ala}

is the finite set of local states of automaton a ∈ Σ, with la ∈ N∗, and so
that: ∀(ai; bj) ∈ La × Lb, a 6= b⇒ ai 6= bj ;

• ∀n ∈ J1; kK,H(n) ∆
= {A → bj � bk | b ∈ Σ ∧ (bj ; bk) ∈ Lb × Lb ∧ bj 6=

bk ∧ ∀a ∈ Σ, |A ∩ La| ≤ 1 ∧ A ∩ Lb = ∅} is the finite set of actions of
priority n.

Notations. We use the same notations as those defined in Sect. 2, when appli-
cable. Furthermore, we denote by H =

⋃
n∈J1;kKH(n) the set of all actions and,

for all h ∈ H, by prio(h) = min{n ∈ J1; kK | h ∈ H(n)} the priority of action h.

Definition 10 (Semantics of an AANk (→A)). An action h = A → bj �
bk ∈ H(n) of priority n is playable in s ∈ L if and only if A ⊆ s, s[b] = bj and
∀m < n, ∀g ∈ H(m),¬(hitters(g) ⊆ s ∧ target(g) ∈ s). In such a case, (s · h)
stands for the state resulting from the play of the action h in s, which is defined
by: (s · h)[b] = bk and ∀a ∈ Σ, a 6= b, (s · h)[a] = s[a]. Moreover, we denote:
s→A (s · h).

The translation given in the following relies on the notion of sub-state (Def. 11),
which is a set of local states containing at most one local state of each automata.
Thus, a sub-state can be considered as a partial state.

Definition 11 (Sub-state (L�)). If S ⊆ Σ is a set of automata, a sub-state on
S is an element of: L�S

∆
= {ρ̃ ⊆ LS | ρ ∈ ×

a∈S
La} (where the notation ρ̃ represents

the set of components of the Cartesian product ρ, as defined on page 4). The
set of all sub-states is denoted by: L� ∆

=
⋃
S∈℘(Σ) L�S . Furthermore, we recall

the notation from Sect. 2, if σ ∈ L� and s ∈ L:

σ ⊆ s⇔ ∀ai ∈ σ, s[a] = ai

We consider in the following an AANk: A = (Σ;L;H〈k〉) with k ∈ N, k > 1.
The aim of the rest this section is to propose a translation ofA into an AAN with
1 class of priority A = (Σ;L;H〈1〉) called flattening, which is bisimilar. As an
AAN with 1 class of priority is equivalent to a regular AAN without priorities,
such a translation is particularly useful to be able to study the dynamics of any
kind of AAN with priorities by using the static analysis developed in Sect. 3.

The translation of an AANk into an AAN is based on the notion of playability
property (Def. 12) which is a Boolean formula where the atoms are local states
of A.
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Definition 12 (Playability property language (F )). A playability property
is an element of the language F inductively defined by:

• > and ⊥ belong to F ;

• if a ∈ Σ and ai ∈ La, then ai ∈ F and we call it an atom;

• if P ∈ F and Q ∈ F , then ¬P ∈ F , P ∧Q ∈ F and P ∨Q ∈ F .

If P ∈ F is a playability property and σ ∈ L� is a sub-state of A, we note [P ] (σ)
the evaluation of P in σ in a three-valued Kleene logic (true, undecided or false)
which is given by:

• if P = ai ∈ La is an atom, then [ai] (σ) is


true if ai ∈ σ
undecided if σ ∩ La = ∅
false otherwise

;

• if P is not an atom, then [P ] (σ) is evaluated in σ with the classical
semantics for the logic operators >, ⊥, ¬, ∧ and ∨, which is recalled in
Fig. 3.

Furthermore, in what follows, we will use [F (h)] (s) as a shorthand for [F (h)] (s̃).

For all playability properties P,Q ∈ F that are not atoms, and for all sub-state
σ ∈ L�:

• [>] (σ) is always true;

• [⊥] (σ) is always false;

• [¬P ] (σ) is


true if [P ] (σ) is false
false if [P ] (σ) is true
undecided if [P ] (σ) is undecided

;

• [P ∧Q] (σ) is


true if both [P ] (σ) and [Q] (σ) are true
false if [P ] (σ) is false or [Q] (σ) is false
undecided otherwise

;

• [P ∨Q] (σ) is


true if [P ] (σ) is true or [Q] (σ) is true
false if both [P ] (σ) and [Q] (σ) are false
undecided otherwise

.

Figure 3: Explicit semantics of the evaluation of playability properties in the three-valued
Kleene logic.

Because we only use classical logic operators, the formulas of Boolean logic
on distributivity, associativity and commutativity can be used, together with
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De Morgan’s laws on negation. We also have the following property for the
negation of an atom:

∀a ∈ Σ,∀ai ∈ La,¬ai ⇐⇒
∨

aj∈La

aj 6=ai

aj

Indeed, if a local state is not active in a state, this means that another local state
of the same automaton is active. Moreover, provided that in what follows we
are only interested in properties that are true and thus we make no distinction
between false and undecided results, playability properties can be simplified
with the following result:

∀a ∈ Σ,∀ai, aj ∈ La, ai 6= aj =⇒ ai ∧ aj ≡ ⊥

because two different local states can never be active simultaneously.
In Def. 13, we define the operator F which characterises the playability of

an action given the semantics of AANks (see Def. 10). This operator simply
states that the hitters of an action have to be active, and every other action of
higher priority must not be playable.

Definition 13 (Playability property operator (F : H → F )). For all h =
A→ bj � bm ∈ H, we define:

F (h) ≡ bj ∧

( ∧
ai∈A

ai

)
∧

 ∧
g∈H(n)

1≤n<prio(h)

¬

target(g) ∧

 ∧
cl∈hitters(g)

cl




By construction of this operator and given the dynamics of a AANk, an action
h is playable in a state s ∈ L if and only if [F (h)] (s) is true.

Because we only use classical logic operators, we can compute the Disjunctive
Normal Form (DNF) of any playability property. For any action h ∈ H, this
DNF takes the form:

F (h) ≡
∨

i∈J1;nhK

 ∧
j∈J1;mh,iK

pi,j


where nh ∈ N and ∀i ∈ J1;nhK,mh,i ∈ N∗. If nh = 0, then F (h) ≡ ⊥; this
means that h can never be played due to preemptions by other actions with
higher priorities. If F (h) 6≡ ⊥, on the other hand, then in this case F (h) can
be seen as a disjunction of nh smaller playability properties consisting only of
conjunctions of atoms. These nh conjunctions can be translated to as many
actions, thus creating a new AAN1. In this case, we denote, for any i ∈ J1;nhK:
depi(h) = {Σ(pi,j) | j ∈ J1;mh,iK}.

With Lemma 3, we can then characterise the playability of an action in a
state only with a sub-state. This sub-state corresponds to one of the conjunc-
tions of its playability property’s DNF. Finally, Def. 14 gives the construction
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of the flattening of A: for each action h ∈ H, several actions fh,i are built to
reflect each of the conjunctions in F (h), i.e., for i ∈ J1;nhK. This construction
allows to obtain the same dynamics as A, as stated by Theorem 2.

Lemma 3. Let h ∈ H and s ∈ L; h is playable in s if and only if:

target(h) ∈ s ∧ ∃nh ∈ N,∃σ ∈ L�depi(h), σ ⊆ s ∧ [F (h)] (σ) is true .

Proof. (⇒) If h is playable in s, then target(h) ∈ s and [F (h)] (s) is true. Thus,
F (h) 6≡ ⊥ and, by property of a DNF, at least one of the nh conjunctions of
F (h) is true in s. Suppose the ith conjunction is true in s, with i ∈ J1;nhK; then
we have: ∀j ∈ J1;mh,iK, pi,j ∈ s. Let σ ∈ L

�
depi(h) with ∀b ∈ depi(h), σ[b] = s[b].

We immediately have: σ ⊆ s, and, by construction of depi(h), [F (h)] (σ) is true.
(⇐) [F (h)] (σ) is true, and therefore [F (h)] (s) is true; as target(h) ∈ s, h is

playable in s. �

Definition 14 (Flattening (flat)). If k ∈ N, k > 1 and A = (Σ;L;H〈k〉) is
an AANk, we denote by flat(Σ;L;H〈k〉) = (Σ;L;H) the flattening of A, where:

• Σ = Σ;

• L = L;

• H = {(σ \ {target(h)}) → target(h) � bounce(h) | h ∈ H ∧ nh ≥ 1 ∧ i ∈
J1;nhK ∧ σ ∈ L�depi(h) ∧ [F (h)] (σ) is true}.

We note that the set of global states of an AANk and the set of global states
of its flattening are the same.

Theorem 2 ((Σ;L;H〈k〉) ≈ flat(Σ;L;H〈k〉)). If A = (Σ;L;H〈k〉) is an AANk
and A = flat(Σ;L;H〈k〉) = (Σ;L;H) is its flattening, then:

∀s, s′ ∈ L, s→A s
′ ⇐⇒ s→A s′

Proof. By definition of flat. �

We showed in this subsection that it is possible to model any AANk as
an AAN (or, equivalently, as an AAN1). This translation thus extends the
applicability of the static analysis developed in Sect. 3 to any AANk, with
k ∈ N∗. Moreover, it allows to represent any Process Hitting model with classes
of priorities [16] under the form of an AAN (or, equivalently, of a Process Hitting
model with 2 classes of priorities). The translation given in this section is
exponential in the number of actions of higher priority for each action.
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5. Biological Examples

This section aims at giving application examples of the static analysis method
that we developed in Sect. 3. In Subsection 5.1, we apply our method to a small
model of the metazoan segmentation process, and demonstrate how classes of
priorities help in the modelling process, and how the flattening of Sect. 4 can be
used in such a case. In Subsection 5.2, we apply our method to two large-scale
models in order to show the scalability of our method.

5.1. Under-approximation of a Model with Priorities: Metazoan Segmentation
We give here a detailed example of the use of classes of priorities in order

to model a system with temporal constraints. This model also allows us to give
a detailed example of the application of the sequential under-approximation
proposed in Subsection 3.4, which consists of several applications of the method
developed in Subsection 3.2. For this, we first have to use the flattening method
presented in Sect. 4 because the considered model contains 2 classes of priorities.

Let us consider a model of metazoan segmentation inspired from a first
translation to Process Hitting model given in [6]. This model was originally es-
tablished in silico in [18] in a differential equations framework. It is composed of
a wavefront gene f that activates the gap-gene a whose products are responsible
for stripes formation. Gene f also activates a gene c whose products represses
the gene a. The auto-inhibition of c generalises a chain of repressors on a. The
auto-inhibition of f , which normally terminates the stripes formation in the
original model, has been removed in order to focus on the stationary dynamics
of the model.

The actions of the original model are split into 2 classes of priorities, as
represented in Fig. 4:

H(1)
= { {c1} → a1 � a0 , {f1, c0} → a0 � a1 }

H(2)
= { ∅ → c1 � c0 , {f1} → c0 � c1 }

Indeed, without this use of priorities, some unwanted behaviours emerge, al-
lowing the formation of irregular stripes. In order to fix this, a high priority
is affected to the actions hitting a and a low priority to the actions hitting c,
in order to model the fact that the switch of c has to be immediately followed
by a switch of a. This forces the evolution of genes a and c to alternate in
order not to miss a stripe; a and c thus have intertwined oscillations. We can
thus consider that these two classes of priorities are derived from known relative
reaction rates, the evolution of the clock c being slower and regular, while the
evolution of a has to follow the changes of c.

Fig. 5 gives the flattening of this model, that is, an AAN with the equivalent
dynamics (but only one class of priority). Its actions are:

H = { {c1} → a1 � a0 , {f1, c0} → a0 � a1 ,

{a0} → c1 � c0 , {f1, a1} → c0 � c1 }
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We note that the two actions in H(2)
have been replaced by the equivalent

actions {a0} → c1 � c0 and {f1, a1} → c0 � c1, in order to model the preemption
of the actions in H(1)

.

At this point, the static analysis results presented in Subsection 3.2 can be
used to check if the model is functional, i.e., if gene a can oscillate, thus leading
to the formation of stripes. Starting from state s1 = 〈f1, a0, c0〉, we thus want
to check the reachability of u1 = a1; then, starting from any new state obtained,
we want to check the reachability of u2 = a0, and finally u3 = a1 once again
to ensure that we entered a cycle. For this, we apply the method proposed in
Subsection 3.4: we consider each reachability step independently and we use
Theorem 1 three times; the initial states of steps 2 and 3 are computed with
the extraction method of Subsection 3.3.

We first build the local causality graph Bu1

s1 related to the reachability of
u1 = a1 from the initial state s1. This graph is depicted in Fig. 6(left). The-
orem 1 allows to conclude that this reachability is true. One can thus ex-
tract a concretizing scenario from this local causality graph with a traversal
of the graph, as explained in Subsection 3.3. Such a traversal is detailed in
Table 1; the scenario extracted from this example consists of only one action:
{c0, f1} → a0 � a1. Another traversal of the same graph would consist in visit-
ing node f1 before node c0 when first descending from node {c0, f1}; however,
the same scenario would be extracted. As there exists no other traversal, we
thus have in this case: ∆(Bu1

s1 ) = {{c0, f1} → a0 � a1}.
We denote in the following: s2 = 〈f1, a0, c0〉 ·{c0, f1} → a0 � a1 = 〈f1, a1, c0〉

the state resulting from the play of the scenario concretizing u1 in s1. As
explained in Subsection 3.4, one can use this resulting state in order to carry
on with another successive reachability, such as the reachability of u2 = a0

in our case. The local causality graph used to check the reachability of u2

from s2 is given in Fig. 6(middle). The same reasoning allows to conclude that
this reachability is true, and to extract the following set containing only one
concretizing scenario: ∆(Bu2

s2 ) = {{a1, f1} → c0 � c1 :: {c1} → a1 � a0}. We
note that once again, two traversals are possible (by visiting node a1 before or
after note f1) but both output the same scenario, and therefore end up in the
same sate s3 = 〈f1, a0, c1〉. Finally, the last local causality graph Bu3

s3 , depicted
in Fig. 6(right), allows to conclude that this final reachability is true.

In conclusion, by following Subsection 3.4, we showed that it is possible to
reach successively a1, a0 and a1 and thus that the AAN of Fig. 5 is functional.
This result can be extended to the model of Fig. 4 because they have the same
dynamics (given Theorem 2).

5.2. Large-scale Applications
In order to support the scalability and applicability of our under-approximation

of reachability, we apply our new approach to the analysis of two large-scale
models: a T-cell receptor (TCR) signalling pathway [19] and an epidermal
growth factor receptor (EGFR) signalling pathway [20]. These models both
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Figure 4: An example of AAN2 modelling the process of metazoan segmentation. Component
a models the pigment production, and is influenced by component c that has the role of a
clock, while f represents the wavefront propagation. If component a oscillates (that is, its
active local state changes regularly) then regular stripes are created on the metazoan. Actions
of H(2) (low priority) are represented in thin lines and actions of H(1) (high priority) are in
thick lines. The greyed local states represent a possible initial state: 〈f1, a0, c0〉.
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Figure 5: An example of AAN, which is the flattening of the AAN2 in Fig. 4; in other words,
this model has exactly the same dynamics as Fig. 4, but its actions make only one class of
priority. The greyed local states represent the same initial state: 〈f1, a0, c0〉.
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Figure 6: The three successive saturated graphs of local causality of the AAN in Fig. 5 for
the successive reachability of a0, a1 and a0 from the initial state s = 〈f1, a0, c0〉. The (left)
graph allows to check the reachability of a1 from the initial state s. The (middle) graph is for
the reachability of a0 and the state 〈f1, a1, c0〉. The (right) graph is for the last reachability,
a1, and the state 〈f1, a0, c1〉.
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# Dir. Node Marking Output State
1 ↘ a1 〈f1, a0, c0〉
2 ↘ a0 �∗ a1 〈f1, a0, c0〉
3 ↘ ◦ {c0, f1} → a0 � a1 〈f1, a0, c0〉
4 ↘ {c0, f1} {c0, f1} 〈f1, a0, c0〉
5* ↘ c0 〈f1, a0, c0〉
6 ↘ c0 �∗ c0 〈f1, a0, c0〉
7 ↘ ◦ ε 〈f1, a0, c0〉
8 ↗ c0 �∗ c0 〈f1, a0, c0〉
9 ↗ c0 〈f1, a0, c0〉
10 ↗ {c0, f1} {f1} 〈f1, a0, c0〉
11 ↘ f1 〈f1, a0, c0〉
12 ↘ f1 �∗ f1 〈f1, a0, c0〉
13 ↘ ◦ ε 〈f1, a0, c0〉
14 ↗ f1 �∗ f1 〈f1, a0, c0〉
15 ↗ f1 〈f1, a0, c0〉
16 ↗ {c0, f1} ∅ 〈f1, a0, c0〉
17 ↗ ◦ ε {c0, f1} → a0 � a1 〈f1, a1, c0〉
18 ↗ a0 �∗ a1 〈f1, a1, c0〉
19 ↗ a1 〈f1, a1, c0〉

Table 1: Example of the extraction of a concretizing scenario from the local causality graph
of Fig. 6(left), by using the algorithm of Subsection 3.3. The first column denotes the step
number in the traversal, the second depicts the direction of traversal, either “↘” for descending
or “↗” for ascending, the third one is the name of the current node, the fourth one gives the
marking of this node when it is left, the fifth one gives the actions output by the algorithm
and the last column gives the current state of the model when leaving each node. In step #5,
marked with an asterisk, the traversal visits node c0, but this was arbitrarily chosen amongst
the set {c0, f1}. Another traversal thus consists in visiting node f1 first, although in this
example it does not change the result.
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gather about a hundred components and are detailed below. They are origi-
nally specified as Boolean networks, and have been automatically encoded into
a Process Hitting model with two classes of priorities, whose dynamics is equiv-
alent to an AAN1. Boolean networks being a subclass of AANs, this translation
is straightforward. In the rest of this section, we first present the Pint imple-
mentation, then the two models that were used for our tests, and the finally
summarise the quantitative results of these tests.

The Pint Implementation
The under-approximation presented in Sect. 3 has been implemented in the

existing Pint software2. It comes in two versions:

• One version consists in building the local causality graph once and check-
ing Theorem 1 on this graph only. This version is polynomial in the
size of the model, and therefore scalable by nature by its low complex-
ity. However, it may be non-conclusive due to the presence of cycles or
non-independent synchronizations that could be avoided.

• The other version consists in checking Theorem 1 on every sub-graph
obtained by considering sub-sets of the nodes in Sol of the local causality
graph. This enumeration of “sub-solutions” may allow to find conclusive
responses by removing cycles or unnecessary local states in the graph.
However, due to its exhaustive nature, it is exponential in the number of
solutions of each objective, and thus not as scalable.

In other words, when this implementation is unable to conclude with the local
causality graph alone, it tries to enumerate sub-solutions in order to reach a
conclusion. Although this search is guided in order to remove in priority the
solutions that could create cycles or depended synchronizations, in the worst
case all combinations have to be checked. Therefore, for the following tests, we
capped the execution time of each call to Pint to 3 seconds, considering that
the implementation is inconclusive above this threshold.

The under-approximation presented in this paper can therefore answer ei-
ther True or Inconclusive regarding the reachability of a given local state. We
used it together with a previously defined reachability over-approximation [14]
that allows to answer either False or Inconclusive, but which was not tailored
specifically, but still valid, for AANs.

The T-cell Receptor Model
The TCR signalling pathway consists of 94 components. We checked the

reachability for the independent activation of the 4 outputs of the signalling

1Files are available at http://maxime.folschette.name/underapprox-aan.zip.
2Pint gathers tools related to the Process Hitting and is freely available at http://

loicpauleve.name/pint. The release “2015-02-11” was used for these experiments.
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cascade (SRE, AP1, NFkB, NFAT) for all possible combinations of the 3 in-
puts (CD4, CD28, TCRlig). All result in conclusive decisions, and our under-
approximation has been satisfied in 12 cases (over 32) proving the satisfiabil-
ity of the concerned reachability properties in the encoded Boolean network
(and non-satisfiability in the other cases, using the previously existing over-
approximation).

By analysing the detail of the results, one can find out that one of the
outputs, NFkB, can never be activated. In other words, FkB1 is never reachable,
whatever the initial state of the inputs, while the other outputs (SRE, AP1,
NFAT) can be independently activated for some configurations of inputs. We
thus wanted to check if these three outputs could be activated together, that
is, if the activation of one of the outputs did not prevent the activation another
one. For this, as proposed in Subsection 3.4, we have added a new automaton
σ into the model with two local states (Lσ = {σ0, σ1}) and the action:

{SRE1,AP11,NFAT1} → σ0 � σ1 .

Finally, checking the reachability of σ1 in all configurations of the inputs has
always been conclusive, and the existence of 4 positive answers (amongst all 8
possible initial configurations of the inputs) allows to conclude that it is possible
to reach a state where SRE, AP1 and NFAT are simultaneously active.

The Epidermal Growth Factor Receptor Model
The EGFR signalling pathway gathers 104 components, amongst which one

can distinguish 21 inputs and 12 outputs. We selected 13 of all inputs (erbb1,
erbb2, erbb3, erbb4, bir, btc, egf, epr, nrg1a, nrg1b, nrg2b, nrg4, tgfa) and
observed the impact of their variations on all outputs (elk1, creb, ap1, hsp27,
actin_reorg, cmyc, pro_apoptotic, p70s6_2, pkc, stat1, stat3, stat5). We note
that some of the experiments trigger the exponential search of sub-solutions
described above, and are cut after 3 seconds of computation (thus leading to
Inconclusive cases). These “interrupted” experiments represent about 10% of
all tests. We note that amongst all tests that terminated “normally” (without
being cut after 3 seconds) none of them responded with an inconclusive answer,
which is however theoretically possible.

Synthesis of the Results
The results of all tests performed with the implementation of our under-

approximation are summarised in Table 2 (columns “AAN”). We held all these
experiments on a personal computer, and regarding the experiments that were
not cut at the 3 seconds limit, computations times were in the order of a few
tenths of a second to about one second. To give a comparison, we did the same
experiments with a standard symbolic model-checker, LibDDD [21], known for
its good performances, the input model being the Boolean network expressed
as a Petri net. However, due to the large scale of the model, this program takes
at least several minutes to terminate, and runs out of memory for the majority
of all experiments. On the other hand, our method is able to conclude with
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limited memory and computation time usage in the majority of the cases, and
is expected to be scalable to models that are even larger, even by orders of
magnitude.

Finally, we note that similar experiments were conducted in [14]. However,
if these experiments allowed to obtain some information on the TCR and EGFR
models to some extent, they did not provide a formal “True” response regard-
ing the reachabilities that have been checked in the examples above. Indeed,
the semantics of Process Hitting (without classes of priorities) does not allow
to model accurate Boolean gates, thus leading to some unwanted spurious be-
haviours that especially take the form of temporal shifts. The adding of classes
of priorities allows to remove these temporal shifts, as explained in [16], with a
construction that is equivalent to the AANs presented in Sect. 2. Therefore, only
the method presented in this paper provides a formal proof that the observed
behaviours are the result of the true dynamics of the systems. Thus, addition-
ally to the experiments previously mentioned, we conducted similar experiments
with the previous version of the under-approximation, that are reported along-
side in Table 2 (in columns “PH”). We note that indeed, about 15% of the
positive results regarding the EGFR model could not be proven with our new
under-approximation, and are thus still formally uncertain.

TCR EGFR
Inputs 3 13
Outputs 4 + σ 12

Total tests 40 98’304
PH AAN PH AAN

True 16 (40%) 16 (40%) 74’268 (75,55%) 64’282 (65,39%)
Inconclusive 0 (0%) 0 (0%) 0 (0%) 9’986 (10,16%)

False 24 (60%) 24’036 (24,45%)
Max time 0.043s 0.20s 0.37s 0.87s
Total time <1s <1s 45min 9h50min

Table 2: Results of the tests on large-scale examples. The “AAN” column gives the related
results on AAN models, using the under-approximation presented in this paper, while the “PH”
column gives the results for PH models using cooperative sorts to model actions with multiple
hitters, and using the under-approximation of [14]. The lines labelled “True”, “Inconclusive”
and “False” give respectively the number of positive answers, experiments cut after 3 seconds
and negative answers; while “Max time” and “Total time” depict respectively the maximum
time of the individual computations (except those cut at 3 seconds) and the overall execution
time of all tests (including those cut at 3 seconds). The greyed cells highlight the results that
are proper to the under-approximation presented in this paper.

In conclusion, while ensuring a low complexity for the analysis of reachability
in Boolean and discrete networks, our under-approximation method turns out
to be conclusive in numerous cases when applied to real large-scale biological
models, which were not tractable in most cases with exact model-checking.
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6. Discussion & Conclusion

In this paper, we focused on Asynchronous Automata Networks (AANs),
which are a restriction of classical Automata Networks and are equivalent to
Process Hitting models with classes of priorities [16]. This formalism proves
useful to model accurate Boolean gates, which was not possible with the stan-
dard form of the Process Hitting, and avoid an unwanted over-approximation
of the dynamics. Furthermore, we proposed an extension of this formalism
with classes of priorities, which prove convenient to abstract time parameters
into these kinds of models or more simply to add preemption relations between
actions, and showed that any AAN with priorities can be translated into an
equivalent AAN without priorities.

Then, we developed a method to perform a reachability analysis of a local
state in an AAN, based on an under-approximation of the true reachability
solutions. We also extended this analysis to global and partial states, and to
the successive reachability of several local states. The method can be considered
efficient, because it is polynomial in the size of the model. A more conclusive
analysis also exists, but at the price of being exponential in the number of local
solutions. Finally, AANs with classes of priorities can also be studied in this way,
at the cost of an exponential translation that we gave in this paper. We applied
it to a large number of experiments on two large-scale biological models, and
obtained in the worst case a ratio of 90% of conclusive cases with the joint use of
a previously proposed over-approximation, although limiting the computation
time to 3 seconds for each test.

AANs are also equivalent to Logical Networks, that is, either multivalued or
Boolean networks with evolution functions or focal parameters, such as Thomas’
models with Snoussi parameters. This especially allows to efficiently compute
reachability results on large biological models, provided that they are equivalent
to Logical Networks, which ensures that a translation to AANs is possible.
For example, such a translation for generalized Interaction Graphs, that is,
Discrete Networks without evolution functions or parameters, was proposed
in [6]. AANs can also be used to represent sub-sets of cellular automata [22]
or multiplayer games [23], although more experiments would be required to
evaluate the conclusiveness of our static analysis method on models of such
particular forms.

Further work can also be directly derived to improve the method presented
in this paper. The over-approximation on Process Hitting models without pri-
orities proposed in [14] and that was used in this work is still accurate on AANs
(by over-approximating dynamics) but may be refined given the particular for
of AANs proposed in this paper. A specific search of key local states or cut
sets [24] may especially be derived. Furthermore, we are investigating alter-
native under-approximations that can be applied directly to the whole class of
AANs or Process Hitting models with priorities, and not only to a sub-class
with particular restrictions; such improvement may permit to increase the con-
clusiveness of the static analysis while allowing to analyse any model without
the need of a translation. Finally, in order to take into account quantitative
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data in transition delays, the overall approximation method could be extended
to handle evolutions that are chronometric instead of only chronologic. This
may require the addition of information such as time delays in the model, that
would be exploited during the solving.
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A. Proof of Under-approximation (Subsection 3.2)

We introduce for this proof the notion of context (Def. 15), which extends
the notion of state to a set of possible initial states: to each automaton in the
model, a context maps a set of local states in this automaton.

Definition 15 (Context). A context ς associates to each automaton in Σ a
non-empty subset of its local states: ∀a ∈ Σ, ς(a) ⊆ La ∧ ς(a) 6= ∅.

For a given context ς, and for all state s ∈ L, we note s ⊆ ς if and only if
∀ai ∈ s, ai ∈ ς(a).

In the following, we also denote: Eus
X
Y = Eus ∩ (X × Y ), with X,Y amongst

LS, Obj, Sync and Sol.

Proof of Theorem 1. Given the LCG Bus = (V us , E
u
s ), we note ς = {a 7→

V us ∩ La | a ∈ Σ} the context supported by Bus .
Let ps ∈ V us ∩Sync be a set of hitters that is a node in the LCG, and suppose

all of its successors are concretizable. We first want to demonstrate that there
exists a scenario that activates all the local states it contains. We label all local
states of ps by an integer: ps = {pm}m∈Ips . Let us prove by induction that for all
n ∈ {0} ∪ Ips, there exists a scenario δn so that: ∀i ∈ J1;nK, (s · δn)[Σ(pi)] = pi.

• It is straightforward that ε is a valid value for δ0.

• Suppose such δn exists and let q = (s · δn)[Σ(pn+1)]. By construction,
pn+1 ∈ V us ∩ LS is a child of ps. Furthermore, by hypothesis, ps is inde-
pendent (see Def. 8). This means that amongst all the successors in LS
of pn+1, there does not exist a local state bj to that ∃bk ∈ ps,Σ(bj) =
Σ(bk) ∧ bj 6= bk; in other words, the resolution of pn+1 does not re-
quire a local state that may change the other local states of the set
ps. Therefore, there exists δ′ ∈ γs·δn(q �∗ pn+1), so that ∀i ∈ J1;n + 1K,
(s · δn · δ′)[Σ(pi)] = pi. We denote then: δn+1 = δn · δ′.

Therefore, δ = δ|ps| exists, and given its properties, we have: ∀i ∈ J1; |ps|K, (s · δ)[Σ(pi)] =
pi.

As there is no cycle in Bus , we show by induction in the following that ∀s ∈ L
so that s ⊆ ς and ∀P ∈ V us ∩Obj, target(P ) ∈ s =⇒ ∃δ ∈ γs(P ).

• If (P, 〈P, {∅}〉) ∈ Eus
Obj
Sol , either target(P ) = bounce(P ) and δ = ε; or

∃ζ ∈ BSeq(P ), ζ ∈ Sce(s)∧∀i ∈ Iζ , hitters(ζi) = ∅ and in this case, δ = ζ
is a valid scenario in s.
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• Suppose all successors objectives of P are concretizable. If ∃(P,Q) ∈
Eus

Obj
Obj, then by hypothesis, γs(target(P )�∗target(Q) ::Q) 6= ∅, thus γs(P ) 6=

∅. Else, by Def. 7-6, the concretizations of the successors of P require no
local state of automaton Σ(P ). Furthermore, there exists ζ ∈ BSeq(P )

so that (P, ζ∧) ∈ Eus
Obj
Sol . We show by induction that for all n ∈ Iζ , there

is a scenario δn so that (s · δn)[Σ(P )] = bounce(ζn).

◦ Suppose that δn exists and let ζn = A → aj � ak. By construction,
there exists A ∈ V us ∩ Sync amongst the children of ζ∧. By the first
result of this demonstration, there exists a scenario δ′ in s ·δn so that
∀ai ∈ A, (s · δn · δ′)[a] = ai. Therefore, ζn is playable in s · δn · δ′, and
δn+1 = δn ::δ′ ::ζn.

Thus, δ|ζ| ∈ γs(P ).
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