
HAL Id: hal-01202601
https://hal.science/hal-01202601

Preprint submitted on 21 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An effective Hamiltonian for the eigenvalue asymptotics
of the Robin Laplacian with a large parameter

Konstantin Pankrashkin, Nicolas Popoff

To cite this version:
Konstantin Pankrashkin, Nicolas Popoff. An effective Hamiltonian for the eigenvalue asymptotics of
the Robin Laplacian with a large parameter. 2015. �hal-01202601�

https://hal.science/hal-01202601
https://hal.archives-ouvertes.fr


AN EFFECTIVE HAMILTONIAN FOR THE EIGENVALUE

ASYMPTOTICS OF THE ROBIN LAPLACIAN WITH A LARGE

PARAMETER

KONSTANTIN PANKRASHKIN AND NICOLAS POPOFF

Abstract. We consider the Laplacian on a class of smooth domains Ω ⊂ R
ν , ν ≥ 2,

with attractive Robin boundary conditions:

Q
Ω
αu = −∆u,

∂u

∂n
= αu on ∂Ω, α > 0,

where n is the outer unit normal, and study the asymptotics of its eigenvalues Ej(Q
Ω
α) as

well as some other spectral properties for α tending to +∞. We work with both compact
domains and non-compact ones with a suitable behavior at infinity. For domains with
compact C2 boundaries and fixed j, we show that

Ej(Q
Ω
α) = −α

2 + µj(α) +O(logα),

where µj(α) is the j
th eigenvalue, as soon as it exists, of −∆S−(ν−1)αH with (−∆S) and

H being respectively the positive Laplace-Beltrami operator and the mean curvature on
∂Ω. Analogous results are obtained for a class of domains with non-compact boundaries.
In particular, we discuss the existence of eigenvalues for non-compact domains and the
existence of spectral gaps for periodic domains. We also show that the remainder estimate
can be improved under stronger regularity assumptions.

The effective Hamiltonian −∆S − (ν − 1)αH enters the framework of semi-classical
Schrödinger operators on manifolds, and we provide the asymptotics of its eigenvalues
for large α under various geometric assumptions. In particular, we describe several cases
for which our asymptotics provides gaps between the eigenvalues of QΩ

α for large α.

2010 Mathematics Subject Classification: 35P15, 35J05, 49R05, 58C40.

1. Introduction

Let Ω ⊂ R
ν , ν ≥ 2, be an open set with a sufficiently regular boundary S := ∂Ω. For

α ∈ R, denote by QΩ
α the operator QΩ

αu = −∆u acting on the functions u defined in Ω
and satisfying the Robin boundary condition

∂u

∂n
= αu on S,

where n is the outer unit normal at S. More precisely, QΩ
α is the self-adjoint operator in

L2(Ω) associated with the quadratic form qΩα defined on the domain D(qΩα ) = H1(Ω) by

qΩα (u, u) =

∫

Ω
|∇u|2dx− α

∫

S
u2dS,

where dS stands for the (ν − 1)-dimensional Hausdorff measure on S, which is closed
and semibounded from below under suitable assumptions (e.g. if S is compact or with a

suitable behavior at infinity, see below), and we denote by Ej(Q
Ω
α) the j

th eigenvalue of
QΩ

α below the bottom of the essential spectrum, as soon as it exists. The aim of the paper
is to obtain new results on the asymptotics of the eigenvalues as α tends to +∞.

The problem appears in various applications, such as reaction-diffusion processes [26]
and the enhanced surface superconductivity [14], and the related questions were already
discussed in various previous works. Let us present briefly the state of art for compact
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domains. It was shown in [26, 27] that for piecewise smooth Lipschitz domain one has
E1(Q

Ω
α ) = −CΩα

2 + o(α2) as α → +∞, where CΩ ≥ 1 is a constant depending on the
geometric properties of Ω. In particular, CΩ = 1 for C1 domains, see [5,28]. More detailed
asymptotic expansions for some specific non-smooth domains were considered in [18,27,32].
As for smooth domains, a more detailed result was obtained first in [9, 31] for ν = 2 and
then in [33] for any ν ≥ 2: if the domain is C3 and j ∈ N is fixed, then

Ej(Q
Ω
α) = −α2 − (ν − 1)Hmaxα+O(α2/3), (1.1)

where Hmax is the maximum of the mean curvature H of the boundary (the exact defi-
nition will be recalled below). Remark that this asymptotics together with isoperimetric
inequalities for the mean curvature have played an important role for the so-called reverse
Faber-Krahn inequality, see [11, 33]. The asymptotics (1.1) was also obtained in [8] for a
class of non-compact planar domains.

Although the asymptotics (1.1) shows the influence of the geometry on first orders,
it is not sufficient to distinguish the influence of the number j of the eigenvalue and to
estimate the gap between eigenvalues. For ν = 2, a complete asymptotic expansion of the
eigenvalues of the form

Ej(Q
Ω
α) = −α2 −Hmaxα+ (2j − 1)

√∣∣H ′′(s0)
∣∣

2
α1/2

+
N∑

k=0

γj,kα
−

j
2 + o(α−N

2 ), γj,k ∈ R,

(1.2)

where j ∈ N is arbitrary but fixed, was proved in [16] under the assumption that the
curvature s 7→ H(s) admits a unique non-degenerated maximum at s0 and the second
derivative is taken with respect to the arc-length s. Such a hypothesis is reminiscent of
several works about the first eigenvalues of the magnetic Laplacian in the semi-classical
limit, see [17], which involves the localization of the eigenfunctions at the boundary and
allow expansion of the associated eigenvalues. In the informal discussion [15] it was pointed
out that, under the assumptions made, the leading terms in the asymptotics (1.2) appear
to coincide with those obtained through the harmonic approximation of the operator
−α2 − ∂2s − αH on the boundary, see [7]. It is our principal objective to show that such
a correspondence can be made rigorous in any dimension and that it does not need any
particular assumptions on the geometry.

In order to describe our results, let us introduce the necessary notation and the class
of domains we consider in this article. Recall that s 7→ n(s) is the Gauss map on S, i.e.
n(s) is the outward pointing unit normal vector at s ∈ S. Consider the shape operator
Ls at s ∈ S, which is defined by Ls := dn(s) : TsS → TsS, and let κ1(s), . . . , κν−1(s) be
its eigenvalues, called the principal curvatures. Our results will be valid for the so-called
Ck-admissible domains defined as follows:

Definition 1.1. Let k ≥ 2. A domain Ω ⊂ R
ν is called Ck-admissible, if its boundary is

Ck, and, in addition, the following holds:

(H1) There exists δ > 0 such that the map Φ defined by

Σ := S × (0, δ) ∋ (s, t) 7→ Φ(s, t) := s− tn(s) ∈ Φ
(
S × (0, δ)

)
(1.3)

is a diffeomorphism and its image is contained in Ω.
(H2) The curvatures s 7→ κi(s) are in L∞(S). Moreover, if k ≥ 3, their gradients are

also bounded.
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The assumption (H1) is quite standard if one deals with non-compact domains, and it
is sometimes called the non-overlap condition, cf. e.g. [3]. We remark that any Ck domain
with a compact boundary is Ck-admissible.

In what follows we denote by K(s) the sum of the principal curvatures:

K(s) = κ1(s) + · · ·+ κν−1(s) ≡ trLs.

Remark that the quantity H := K/(ν − 1) is exactly the mean curvature on S. We will
denote

Kmax := sup
s∈S

K(s).

Note that the operator QΩ
α can have a non-empty essential spectrum, and it is more conve-

nient to work with the Rayleigh quotients instead of the eigenvalues. For this purpose, re-
call the min-max principle for the eigenvalues of self-adjoint operators, see e.g. [6, Sec. 4.5]:
Let Q be a lower semibounded self-adjoint operator in a Hilbert space H and q be its qua-
dratic form. Denote

E(Q) := inf specessQ (we use the convention inf ∅ = +∞),

Ej(Q) := inf
L⊂D(q),
dimL=j

sup
u∈L,
u 6=0

q(u, u)

〈u, u〉
, j ∈ N, (1.4)

then:

• if Ej(Q) < E(Q), then Ej(Q) is the jth eigenvalue of Q,
• if Ej(Q) ≥ E(Q), then Ek(Q) = E(Q) for all k ≥ j.

Our main result gives a comparison between the quantities Ej for QΩ
α and for an aux-

iliary Schrödinger operator with a curvature-induced potential on the boundary and in
which the Robin coefficient α appears as a coupling constant:

Theorem 1.2. Let ν ≥ 2 and Ω ⊂ R
ν be a C2-admissible domain. Furthermore, let −∆S

denote the positive Laplace-Beltrami operator on S viewed as a self-adjoint operator in

L2(S, dS). For any fixed j ∈ N one has

Ej(Q
Ω
α ) = −α2 + Ej(−∆S − αK) +O(log α), α→ +∞. (1.5)

The proof is presented in Sections 4 and 5. Furthermore, in Section 6 we show that the
remainder estimate can be improved under additional assumptions:

Theorem 1.3. Let the assumptions of Theorem 1.2 hold. In addition, assume that Ω is

C3-admissible and that K reaches its maximum, then for any fixed j ∈ N one has

Ej(Q
Ω
α ) = −α2 + Ej(−∆S − αK) +O(1), α→ +∞. (1.6)

The improved remainder estimate in (1.6) allows one to identify a class of domains
for which the variable curvature K gives a non-trivial contribution with respect to the
first-order asymptotics (1.1), see Remark 8.1 below. Let us emphasize on the fact that
no assumptions are made on the behavior of K near the set K−1(Kmax) for the above
results. Using numerous methods available for the study of the effective Hamiltonian
−∆S−αK one can deduce more precise asymptotics under various additional hypotheses,
which improves the results of preceding works or weaken the respective assumptions. In
particular, as a generalization of (1.1) in Section 7 we obtain:

Corollary 1.4. Let Ω ⊂ R
ν be a C2-admissible domain, then for each fixed j ∈ N we have

Ej(Q
Ω
α ) = −α2 −Kmaxα+ o(α).

We remark that the paper [33] discussed various eigenvalue optimization problems using
the quantity Kmax, hence, Corollary 1.4 extends the discussion of [33] to C2-domains.
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Remark 1.5. If the boundary S is compact, then either specessQ
Ω
α = ∅ (if Ω is bounded)

or specessQ
Ω
α = [0,+∞) (if Ω is unbounded). In the latter case, it is standard to check

that QΩ
α has finitely many negative eigenvalues. On the other hand, for any fixed j one

has Ej(Q
Ω
α) < 0 if α is sufficiently large, in particular, Ej(Q

Ω
α) < E(QΩ

α). Therefore, by
the min-max principle, each Ej(Q

Ω
α) is an eigenvalue of QΩ

α if α is sufficiently large.
The preceding observation does not hold for domains with non-compact boundaries. In

particular, in [8] one can find various examples of domains Ω with curved non-compact
boundaries such that the respective operators QΩ

α have a purely essential spectrum for
any α > 0. Nevertheless, the existence of eigenvalues can be guaranteed by an additional
assumption:

(H3): K∞ := lim sup
s→∞

K(s) < Kmax, (1.7)

which allows one to prove the following result extending several estimates of [8]:

Corollary 1.6. Let Ω ⊂ R
ν be Ck-admissible with non-compact boundary and satisfy

(1.7), then for any N ∈ N there exists αN > 0 such that for α > αN the operator QΩ
α has

at least N eigenvalues below the essential spectrum. The behavior of the jth eigenvalue

Ej(Q
Ω
α ) with a fixed j is given by (1.5) or, if Ω is C3, by (1.6).

The proof is given in Section 7.

More detailed asymptotic expansions for the eigenvalues can be deduced by using the
toolbox of the semi-classical analysis of Schrödinger operators on manifolds, where the
mean curvature acts as a potential. In Section 8 we describe the results involved by
standard hypotheses on the potential K. In particular, the following hold:

Corollary 1.7. Let Ω ⊂ R
ν be a C5-admissible domain. If ∂Ω is non-compact, assume

(1.7). Furthermore, assume that K admits a unique global maximum at s0 and that the

Hessian of (−K) at s0 is positive-definite. Denote by µk its eigenvalues and set

E =

{ ν−1∑

k=1

√
µk
2

(
2nk − 1

)
, nk ∈ N

}
.

Then for each j ∈ N there holds, as α→ +∞:

Ej(Q
Ω
α) = −α2 −Kmaxα+ ejα

1/2 +O(α1/4),

where ej is the jth element of E, counted with multiplicity. Moreover, if Ω is C6 and if ej
is of multiplicity one, the remainder estimate can be improved to O(1).

Corollary 1.8. Let Ω ⊂ R
2 be a C2p+3-admissible domain with some integer p > 1, and

assume (1.7) if ∂Ω is unbounded. Assume that the curvature of the boundary admits a

unique global maximum at s0, which is degenerated in the following sense:

K(s) = K(s0)− Cp(s− s0)
2p +O

(
(s− s0)

2p+1
)
, Cp > 0

where s denotes the arc length of the connected component Γ of the boundary where K is

maximal, then for each j ∈ N there holds, as α→ +∞:

Ej(−∆S − αK) = −Kmaxα+ ejα
1

p+1 +O
(
α

1
2(p+1)

)
,

where ej is the j
th eigenvalue of the operator −∂2s +Cps

2p acting on L2(R). If ∂Ω is C2p+4

smooth, then the remainder can be replaced by O(1).

Finally, in Section 9 we consider the case when Ω is periodic with a compact elementary
cell. In that case, the above main results show that the spectral bands of QΩ

α are deter-
mined, up to a error term, by the spectral bands of the periodic operator −∆S − αK. In
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particular, we prove some sufficient conditions guaranteeing the existence of gaps in the
spectrum of QΩ

α .
The machinery used for the proof of the main results is quite different from the previous

papers on the Robin eigenvalues and is based on a detailed global analysis of the quadratic
form and appears to be ideologically very close to the one for the Laplacians in thin
domains, cf. [12,13,21,22]. In fact, the main results are obtained using a kind of separation
of variables in tubular neighborhoods of the boundary with suitable boundary conditions at
the free side, and the thickness depends on α in a special way. The reduced operator −∆S−
αK appeared already in [22] in the study of suitable Laplacians in thin neighborhoods of
hypersurfaces, and the results from Section 8 provide improvements of [22, Theorem 1.1]
under the respective geometric assumptions.

2. Auxiliary estimates

We remark first that, as we deal with real-valued operators only, we will work everywhere
with real Hilbert spaces. Let us prove some technical estimates which will be used in the
proof of the main results.

Lemma 2.1. For α > 0 and δ > 0, denote by TD the operator f 7→ −f ′′ acting in L2(0, δ)
on the domain

D(TD) =
{
f ∈ H2(0, δ) : f ′(0) = −αf(0), f(δ) = 0}.

Then, as δα tends to +∞, the operator TD has a unique negative eigenvalue ED, which

satisfies

ED = −α2 +O(α2e−δα). (2.1)

Furthermore, if ψD is an associated normalized eigenfunction, then

ψD(0)2 = 2α+O(αe−δα).

Proof. The assertion was partially proven in Lemma A.2 of [18] by direct computations:
it was shown that the operator TD has a unique negative eigenvalue, that ED = −k2

with k = α + O(αe−δα), and, finally, that ψD(t) = C(ek(t−δ) − e−k(t−δ)), where C is a
normalizing constant. We have then

1 = ‖ψD‖2L2(0,δ) = C2
(e2δk − e−2δk

2k
− 2δ

)
, C2 =

2ke−2δk

1− 4δke−2δk − e−4δk
,

which gives

ψD(0)2 = 2k
(1− e−2δk)2

1− 4δke−2δk − e−4δk
= 2k +O(δk2e−2δk) = 2α +O(αe−δα). �

Lemma 2.2. Let β ≥ 0 be fixed. For α > 0 and δ > 0, denote by T β the operator f 7→ −f ′′

acting in L2(0, δ) on the domain

D(T β) =
{
f ∈ H2(0, δ) : f ′(0) = −αf(0), f ′(δ) = βf(δ)}.

Then, as δα tends to +∞, the operator T β has a unique negative eigenvalue Eβ , which

satisfies

Eβ = −α2 +O(α2e−δα). (2.2)

Furthermore, if ψβ is an associated normalized eigenfunction, then

ψβ(0)2 = 2α +O(αe−δα), (2.3)

ψβ(δ)2 = 4αe−2δα +O(αe−3δα), (2.4)

‖(ψβ)′‖2L2(0,δ) = α2 +O(α2e−δα). (2.5)
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In addition,

‖f ′‖2L2(0,δ) − αf(0)2 − βf(δ)2 ≥ 0 for any f ∈ H1(0, δ) with 〈f, ψβ〉L2(0,δ) = 0. (2.6)

Proof. Once again Eβ is clearly negative, and we denote by k the positive number such
that Eβ = −k2, so that

ψβ(t) = C

((
1 +

β

k

)
ek(t−δ) +

(
1−

β

k

)
e−k(t−δ)

)
,

with C a normalizing constant. Then the condition ψ′(0) = −αψ(0) is equivalent to

δk
sinh(δk) −

β

k
cosh(δk)

cosh(δk) −
β

k
sinh(δk)

= δα.

Following literally the proof of [18, Lemma A.1] treating the case β = 0, we get the
existence of a unique solution as α gets large, which satisfies k = α + O(αe−δα), which
gives the asymptotics of Eβ = −k2. Moreover, the other eigenvalues of T β are positive,
and since the quadratic form for T β is

tβ(f, f) = ‖f ′‖2L2(0,δ) − αf(0)2 − βf(δ)2, D(tβ) = H1(0, δ),

the assertion (2.6) follows from the spectral theorem for self-adjoint operators. Then (2.3)
and (2.4) are obtained as in the the proof of Lemma 2.1. Finally, substituting this estimate
into the equality tβ(ψ,ψ) = Eβ we obtain (2.5). �

Finally, we will need a suitable form of the Sobolev inequality, see e.g. Lemma 8 in [25]:

Lemma 2.3. For any 0 < ℓ ≤ a and f ∈ H1(0, a) there holds, with ξ ∈ {0, a},

f(ξ)2 ≤ ℓ

∫ a

0
f ′(t)2dt+

2

ℓ

∫ a

0
f(t)2dt.

3. Reduction to the analysis near the boundary

3.1. Dirichlet-Neumann bracketing. The first steps of the analysis are essentially the
same as in [33]. For δ > 0 denote

Ωδ :=
{
x ∈ Ω : inf

s∈S
|x− s| < δ}, Θδ := Ω \Ωδ,

and let qΩ,N,δ
α and qΩ,D,δ

α be the quadratic forms given by the same expression as qΩα but
acting on the domains

D(qΩ,N,δ
α ) = H1(Ωδ)⊕H1(Θδ), D(qΩ,D,δ

α ) = H̃1
0 (Ωδ)⊕H1

0 (Θδ),

H̃1
0 (Ωδ) := {f ∈ H1(Ωδ) : f = 0 at ∂Ωδ \ S},

and denote by QΩ,N,δ
α and QΩ,D,δ

α the associated self-adjoint operators in L2(Ω). The

inclusions D(qΩ,D,δ
α ) ⊂ D(qΩα ) ⊂ D(qΩ,N,δ

α ) and the min-max principle imply, for each
j ∈ N, the inequalities

Ej(Q
Ω,N,δ
α ) ≤ Ej(Q

Ω
α ) ≤ Ej(Q

Ω,D,δ
α ).

Furthermore, QΩ,N,δ
α = BΩ,N,δ

α ⊕(−∆)NΘδ
and QΩ,D,δ

α = BΩ,D,δ
α ⊕(−∆)DΘδ

, where BΩ,N,δ
α and

BΩ,D,δ
α are the self-adjoint operators in L2(Ωδ) associated respectively with the quadratic
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forms

bΩ,⋆,δ
α (u, u) =

∫

Ωδ

|∇u|2dx− α

∫

S
u2dS, ⋆ ∈ {N,D},

D(bΩ,N,δ
α ) = H1(Ωδ), D(bΩ,D,δ

α ) = H̃1
0 (Ωδ),

and (−∆)NΘδ
and (−∆)DΘδ

denote the Neumann and the Dirichlet Laplacian in Θδ, re-
spectively. As both Neumann and Dirichlet Laplacians are non-negative, we have the
inequalities

Ej(B
Ω,N,δ
α ) ≤ Ej(Q

Ω
α ) ≤ Ej(B

Ω,D,δ
α ) for all j with Ej(B

Ω,D,δ
α ) < 0. (3.1)

The preceding inequalities are valid for any value of δ > 0, but for the rest of the paper
we assume that δ depends on α in a special way:

the value of δ tends to 0 and the value of δα tends to +∞ as α tends to +∞, (3.2)

and the precise dependence will be chosen later.

3.2. Change of variables. In order to study the eigenvalues of the operators BΩ,N,δ
α and

BΩ,D,δ
α we proceed first with a change of variables in Ωδ with small δ. The computations

below are very similar to those performed in [3] for a different problem.
By assumption, for δ > 0 sufficiently small, the map Φ defined in (1.3) is a diffeomor-

phism between Σ and Ωδ. The metric G on Σ induced by this embedding is

G = g ◦ (Is − tLs)
2 + dt2, (3.3)

where Is : TsS → TsS is the identity map, and g is the metric on S induced by the
embedding in R

ν . The associated volume form dΣ on Σ is

dΣ = |detG|1/2ds dt = ϕ(s, t)|det g|1/2ds dt = ϕdS dt, (3.4)

where

dS = |det g|1/2ds

is the induced (ν − 1)-dimensional volume form on S, and the weight ϕ is given by

ϕ(s, t) :=
∣∣det(Is − tLs)

∣∣ = 1− t trLs + p(s, t)t2 ≡ 1−K(s)t+ p(s, t)t2, (3.5)

with p being a polynomial in t with coefficients which are bounded and continuous in s.
In particular,

|ϕ(s, t)− 1| ≤ ‖∂tϕ‖∞δ for all (s, t) ∈ Σ. (3.6)

Let us recall that for a function f : S 7→ R, the boundedness of the gradient ∇sf , as
stated in Definition 1.1, is understood for the norm on the tangent spaces: ‖∇sf‖∞ =
sups∈S ‖∇sf(s)‖TsS, with

‖∇sf(s)‖
2
TsS =

∑

ρ,µ

gρµ(s)

(
∑

k

gρk(s)∂kf(s)

)(
∑

ℓ

gµℓ(s)∂ℓf(s)

)

=
∑

ρ,µ

gρµ(s)∂ρf(s)∂µf(s) with (gρµ) = g−1.

For future uses, we summarize some obvious properties of ϕ:

Lemma 3.1. Let Ω be a C2-admissible domain, the for δ small, the functions Ls, K are

bounded on S, and the functions ∂tϕ, ∂
2
t ϕ, ∂tϕ

−1/2, (∂tϕ
−1/2)ϕ1/2, and ∂t

(
(∂tϕ

−1/2)ϕ1/2
)

are bounded on Σ. If, in addition, Ω is C3-admissible, then ∇s∂t(ϕ
−1/2) is bounded on Σ.
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In particular, for some C > 0 we have

∣∣∣
∑

ρ,µ

gρµ(s)∂ρ∂t(ϕ
−1/2)(s, t)∂µ∂t(ϕ

−1/2)
∣∣∣ ≤ C, (s, t) ∈ Σ. (3.7)

Now consider the unitary map

U : L2(Ωδ) → L2(Σ,dΣ), Uf = f ◦ Φ,

where Φ is the map from (1.3), and the quadratic forms

h⋆α(f, f) = bΩ,⋆,δ
α (U−1f, U−1f), D(h⋆α) = UD(bΩ,⋆,δ

α ), ⋆ ∈ {N,D}.

We have then, by adopting the Einstein summation rule for indices,

hNα (u, u) =

∫

Σ
Gjk∂ju∂kudΣ− α

∫

S
|u(s, 0)|2dS, D(hNα ) = H1(Σ),

hDα (u, u) = the restriction of hNα to D(hDα ) = H̃1
0 (Σ)

with

H̃1
0 (Σ) :=

{
u ∈ H1(Σ) : u(·, δ) = 0

}
, (Gjk) := G−1.

Due to (3.3) we can estimate, with some Cg > 0, depending only on ‖Ls‖∞:

(1−Cgδ)g
−1 + dt2 ≤ G−1 ≤ (1 + Cgδ)g

−1 + dt2.

Therefore, we have the form inequalities

h−α ≤ hNα and hDα ≤ h+α (3.8)

with

h−α (u, u) := (1− Cgδ)

∫

Σ
gρµ ∂ρu∂µudΣ +

∫

Σ
|∂tu|

2dΣ− α

∫

S
u(s, 0)2dS,

D(h−α ) = D(hNα ) = H1(Σ),

h+α (u, u) := (1 + Cgδ)

∫

Σ
gρµ ∂ρu∂µudΣ +

∫

Σ
|∂tu|

2dΣ− α

∫

S
u(s, 0)2dS,

D(h+α ) = D(hDα ) = H̃1
0 (Σ),

where, as usually, (gρµ) = g−1. In particular, if H−
α and H+

α are the self-adjoint operators
acting in L2(Σ,dΣ) and associated with the forms h−α and h+α respectively, then it follows
from (3.1) and (3.8) that

Ej(H
−
α ) ≤ Ej(Q

Ω
α ) ≤ Ej(H

+
α ) for all j with Ej(H

+
α ) < 0. (3.9)

4. Proof of Theorem 1.2: upper bound

Recall that the operator TD has been defined in Lemma 2.1. We have denoted by ED

its lowest eigenvalue, and in this section we denote for shortness ψ := ψD an associated
normalized eigenfunction. The function ψ will be used to construct test functions for H+

α .
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4.1. An estimate for product functions. Recall that everywhere we assume that δ is
a function of α satisfying (3.2). We have the following estimate:

Lemma 4.1. For v ∈ H1(S), consider a function u defined by u(s, t) = v(s)ψ(t), which
belongs to D(h+α ). There exist positive constants c+0 and c+1 such that, as α → +∞, for

any v ∈ H1(S) there holds

h+α (u, u)

‖u‖2
L2(Σ,dΣ)

− ED

≤ (1 + c+0 δ)

(1 + c+1 δ)

∫

S
gρµ ∂ρv ∂µv ds− α〈v,Kv〉L2(S,dS)

‖v‖2
L2(S,dS)

+O(1 + αe−δα), (4.1)

Moreover, the remainder depends only on ‖Ls‖∞, ‖K‖∞, ‖∂tϕ‖∞, and ‖∂2t ϕ‖∞, and it is

independent of v.

Proof. Through the estimates we denote by Cj various positive constants. Using (3.6), a
direct evaluation provides

h+α (u, u) =(1 + Cgδ)

∫

S×(0,δ)
ψ(t)2gρµ ∂ρv(s) ∂µv(s)ϕ(s, t)dSdt

+

∫

S
v(s)2

∫ δ

0
ψ′(t)2ϕ(s, t)dt dS − αψ(0)2

∫

S
v2dS

≤(1 + C1δ)

∫

S

∫ δ

0
ψ(t)2gρµ ∂ρv(s) ∂µv(s)dtdS

+

∫

S
v(s)2

∫ δ

0
ψ′(t)2ϕ(s, t)dt dS − αψ(0)2

∫

S
v2dS

=(1 + C1δ)

∫

S
gρµ ∂ρv ∂µv dS

+

∫

S
v(s)2

∫ δ

0
ψ′(t)2ϕ(s, t)dt dS − αψ(0)2

∫

S
v2dS.

(4.2)

Moreover, the constant C1 depends only on ‖Ls‖∞ and ‖∂tϕ‖∞. Using a repeated inte-
gration by parts together with the boundary conditions satisfied by ψ, we obtain for all
s ∈ S:

∫ δ

0
ψ′(t)2ϕ(s, t)dt

=
[
ψ(t)ψ′(t)ϕ(s, t)

]t=δ

t=0
+

∫ δ

0
ψ(t)

(
− ψ′′(t)

)
ϕ(s, t)dt−

∫ δ

0
ψ(t)ψ′(t)∂tϕ(s, t)dt

=− ψ(0)ψ′(0)ϕ(s, 0) + ED

∫ δ

0
ψ(t)2ϕ(s, t)dt−

1

2

∫ δ

0
∂t
(
ψ(t)2

)
∂tϕ(s, t)dt

=αψ(0)2 + ED

∫ δ

0
ψ(t)2ϕ(s, t)dt−

1

2

([
ψ(t)2∂tϕ(s, t)

]t=δ

t=0
−

∫ δ

0
ψ(t)2∂2t ϕ(s, t)dt

)

=αψ(0)2 + ED

∫ δ

0
ψ(t)2ϕ(s, t)dt−

K(s)

2
ψ(0)2 +

1

2

∫ δ

0
ψ(t)2∂2t ϕ(s, t)dt.

(4.3)
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The substitution of (4.3) into (4.2) gives

h+α (u, u) ≤ (1 +C1δ)

∫

S
gρµ ∂ρv ∂µv dS

+ ED‖u‖2L2(Σ,dΣ) −
ψ(0)2

2
〈v,Kv〉L2(S,dS) +

1

2

∫

S

∫ δ

0
v(s)2ψ(t)2∂2t ϕ(s, t)dt dS. (4.4)

As the functions ∂2t ϕ and K are bounded, we estimate with the help of Lemma 2.1:

h+α (u, u)− ED‖u‖2L2(Σ,dΣ)

≤ (1 + C1δ)

∫

S
gρµ ∂ρv ∂µv dS − α〈v,Kv〉L2(S,dS)

+O(1 + αe−δα)‖v‖2L2(S,dS), (4.5)

where theO-coefficient depends only on ‖∂2t ϕ‖∞ and ‖K‖∞. Furthermore, due to (3.6), we
have the estimate ‖u‖2L2(Σ,dΣ) ≥ (1−C2δ)‖v‖

2
L2(S,dS), where C2 depends only on ‖∂tϕ‖∞.

This gives

h+α (u, u)

‖u‖2
L2(Σ,dΣ)

− ED

≤

(1 + C1δ)

∫

S
gρµ ∂ρv ∂µv dS − α〈v,Kv〉L2(S,dS) +O(1 + αe−δα)‖v‖2L2(S,dS)

(1− C2δ)‖v‖2L2(S,dS)

,

and we deduce the lemma by choosing c+1 = C1, and c
+
0 > 0 so that (1−C2δ)

−1 ≤ 1+c+0 δ,
which is possible since δ becomes small as α tends to +∞. �

4.2. Proof of the upper bound. Now for each j we can use the definition (1.4) by
testing on the subspaces L ⊂ D(h+α ) of the form

L = {u : u(s, t) = v(s)ψ(t) with v ∈ Λ},

where Λ are the jth dimensional subspaces of H1(S), which is the form domain of −∆S −
αK. Lemma 4.1 then implies

Ej(H
+
α )− ED ≤ (1 + c+0 δ)Ej

(
− (1 + c+1 δ)∆S − αK

)
+O(1 + αe−δα). (4.6)

The right-hand side can be estimated as follows:

Lemma 4.2. For any fixed j ∈ N there holds, as α→ +∞,

(1 + c+0 δ)Ej

(
− (1 + c+1 δ)∆S − αK

)
≤ Ej(−∆S − αK) +O(δα),

where δ is a function of α satisfying (3.2). The constants depend only on ‖Ls‖∞, ‖K‖∞,

‖∂tϕ‖∞, ‖∂2t ϕ‖∞.
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Proof. We have

(1 + c+0 δ)Ej

(
− (1 + c+1 δ)∆S − αK

)

=(1 + c+0 δ)
(
Ej

(
− (1 + c+1 δ)∆S + α(Kmax −K)

)
− αKmax

)

=(1 + c+0 δ)Ej

(
− (1 + c+1 δ)∆S + α(Kmax −K)

)
− αKmax +O(δα)

≤(1 + c+0 δ)Ej

(
− (1 + c+1 δ)∆S + (1 + c+1 δ)α(Kmax −K)

)
− αKmax +O(δα)

≤(1 + Cδ)Ej(−∆S + α(Kmax −K)
)
− αKmax +O(δα)

=Ej

(
−∆S + α(Kmax −K)

)
− αKmax

+O
(
δEj(−∆S + α(Kmax −K)

))
+O(δα)

=Ej(−∆S − αK) +O
(
δEj

(
−∆S + α(Kmax −K)

))
+O(δα).

(4.7)

As K is bounded, we have the rough estimate Ej

(
−∆S +α(Kmax−K)

)
= O(α), and the

remainder depends on the constants c+0 , c
+
1 and ‖K‖∞ only. �

Finally, combining Lemma 4.2 with (4.6) and Lemma 2.1, we get

Ej(H
+
α ) ≤ ED + Ej(−∆S − αK) +O(1 + δα+ αe−δα)

= −α2 + Ej(−∆S − αK) +O(1 + δα+ α2e−δα). (4.8)

In order to have an optimal remainder we take

δ =
b log α

α
, b ≥ 2,

then Ej(Hα) ≤ Ej(H
+
α ) ≤ −α2 + Ej(−∆S − αK) +O(logα).

5. Proof of Theorem 1.2: lower bound

5.1. Minoration of the quadratic form. The operator T β of Lemma 2.2 with β = 0
will play a special role and it will be denoted by TN . The first eigenvalue and the first
normalized eigenfunction will be denoted in this section by EN and ψ respectively. Recall
again that δ and α obey (3.2).

We represent any function u ∈ D(h−α ) in the form

u(s, t) = v(s)ψ(t) + w(s, t) (5.1)

with

v(s) :=

∫ δ

0
ψ(t)u(s, t)dt, v ∈ H1(S). (5.2)

Remark that the both functions (s, t) 7→ v(s)ψ(t) and w are in D(h−α ). The following
proposition gives a lower bound on the expression h−α (u, u) − EN‖u‖2L2(Σ,dΣ) in terms of

this decomposition.

Proposition 5.1. There exist positive constants c−0 and c−1 such that, as α→ +∞,

h−α (u, u)− EN‖u‖2L2(Σ,dΣ)

≥ (1− c−0 δ)

∫

S
gρµ ∂ρv ∂µv dS − α〈v,Kv〉L2(S,dS) − c−1 (1 + αe−δα)‖v‖2L2(S,dS)

+
α2

2

∫

S

∫ δ

0
w(s, t)2dt dS

(5.3)

for any u ∈ D(h−α ). The constants depend only on ‖Ls‖∞, ‖∂tϕ‖∞ and ‖∂2t ϕ‖∞.
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The rest of this subsection is devoted to the proof of Proposition 5.1. Using the decom-
position (5.1), we clearly have

h−α (u, u) = (1− Cgδ)

∫

Σ
gρµ ∂ρu∂µudΣ +

∫

Σ
|∂tu|

2dΣ− α

∫

S
u(s, 0)2dS (5.4)

=: I1 + I2 + I3 + I4, (5.5)

where we have set




I1 = (1− Cgδ)

∫ δ

0

∫

S
gρµ ∂ρu∂µuϕdSdt,

I2 =

∫

S
v(s)2

∫ δ

0
ψ′(t)2ϕ(s, t)dt dS,

I3 = 2

[ ∫

S
v(s)

∫ δ

0
ψ′(s)∂tw(s, t)ϕ(s, t)dt dS − αψ(0)

∫

S
v(s)w(s, 0)dS

]

I4 =

∫

S

∫ δ

0

∣∣∂tw(s, t)
∣∣2ϕ(s, t)dtdS − αψ(0)2

∫

S
v(s)2dS − α

∫

S
w(s, 0)2dS.

We estimate the four terms separately.

Lemma 5.2. There exists C1 > 0 such that, as α→ +∞,

I1 ≥ (1− C1δ)

∫

S
gρµ ∂ρv ∂µv dS. (5.6)

Moreover, the constant C1 depends only on ‖∂tϕ‖∞ and ‖Ls‖∞ and is independent of u.

Proof. Following the decomposition (5.1), we get by using (3.6) a constant C > 0 such
that
∫ δ

0

∫

S
gρµ ∂ρu(s, t) ∂µu(s, t)ϕ(s, t)dSdt

=

∫ δ

0

∫

S
ψ(t)2gρµ ∂ρv(s) ∂µv(s)ϕ(s, t)dSdt+ 2

∫ δ

0

∫

S
ψ(t)gρµ ∂ρv(s) ∂µw(s, t)ϕdSdt

+

∫ δ

0

∫

S
gρµ ∂ρw(s, t) ∂µw(s, t)ϕdSdt

≥(1− Cδ)

∫ δ

0

∫

S
ψ(t)2gρµ ∂ρv(s) ∂µv(s)dSdt+ 2

∫ δ

0

∫

S
ψ(t)gρµ ∂ρv(s) ∂µw(s, t)ϕ(s, t)dSdt

+ (1− Cδ)

∫ δ

0

∫

S
gρµ ∂ρw(s, t) ∂µw(s, t)dSdt

=(1− Cδ)

∫

S
gρµ ∂ρv(s) ∂µv(s)dS + 2

∫ δ

0

∫

S
ψ(t)gρµ ∂ρv(s) ∂µw(s, t)ϕ(s, t)dSdt

+ (1− Cδ)

∫ δ

0

∫

S
gρµ ∂ρw(s, t) ∂µw(s, t) dSdt,

(5.7)

where the constant C depends only on ‖∂tϕ‖∞. Remark that for the function w we have

∫ δ

0
ψ(t)w(s, t)dt = 0 and, hence,

∫ δ

0
ψ(t)∂ρw(s, t)dt = 0, s ∈ S. (5.8)
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We deduce:
∫ δ

0

∫

S
ψgρµ ∂ρv ∂µwϕdSdt

=

∫ δ

0

∫

S
ψgρµ ∂ρv ∂µw dSdt+

∫ δ

0

∫

S
ψgρµ ∂ρv ∂µw (ϕ− 1)dSdt

=

∫ δ

0

∫

S
ψgρµ ∂ρv ∂µw (ϕ− 1)dSdt. (5.9)

Using again (3.6), we estimate with the same constant C, using the Cauchy-Schwarz
inequality for the metric (gρµ),

∣∣∣
∫ δ

0

∫

S
ψ(t)gρµ ∂ρv(s) ∂µw(s, t) (ϕ(s, t) − 1)dSdt

∣∣∣

≤ Cδ

∫ δ

0

∫

S

∣∣∣gρµ ψ(t)∂ρv(s) ∂µw(s, t)
∣∣∣dSdt

≤
Cδ

2

∫ δ

0

∫

S
ψ(t)2gρµ ∂ρv(s) ∂µv(s)dSdt+

Cδ

2

∫ δ

0

∫

S
gρµ ∂ρw(s, t) ∂µw(s, t)dSdt

=
Cδ

2

∫

S
gρµ ∂ρv ∂µv dS +

Cδ

2

∫ δ

0

∫

S
gρµ ∂ρw(s, t) ∂µw(s, t)dSdt

(5.10)

which gives

2

[ ∫ δ

0

∫

S
ψ(t)gρµ ∂ρv(s) ∂µw(s, t)ϕ(s, t)dSdt

]

≤ Cδ

∫

S
gρµ ∂ρv(s) ∂µv(s)dS +Cδ

∫ δ

0

∫

S
gρµ ∂ρw(s, t) ∂µw(s, t)dSdt. (5.11)

Substituting the last inequality into (5.7) we obtain,

∫ δ

0

∫

S
gρµ ∂ρu∂µuϕdSdt ≥ (1−2Cδ)

∫

S
gρµ ∂ρv ∂µvdS+(1−2Cδ)

∫ δ

0

∫

S
gρµ ∂ρw ∂µw dSdt

and, therefore, for sufficiently small δ:

(1− Cgδ)

∫ δ

0

∫

S
gρµ ∂ρu∂µuϕdSdt ≥ (1− Cgδ)(1 − 2Cδ)

∫

S
gρµ ∂ρv ∂µvdS.

The result follows as Cg depends only on ‖Ls‖∞, and C depends only on ‖∂tϕ‖∞. �

Lemma 5.3. There exists C2 > 0 such that, as α→ +∞:

I2 ≥ αψ(0)2
∫

S
v(s)2dS + EN‖u− w‖2L2(Σ,dΣ)

− α〈v,Kv〉L2(S,dS) − C2(1 + αe−δα)‖v‖2L2(S,dS). (5.12)

The constant C2 depends only on ‖K‖∞, ‖∂tϕ‖∞ and ‖∂2t ϕ‖∞ and is independent of u.

Proof. As in (4.3), an integration by part leads to

∫ δ

0
ψ′(t)2ϕ(s, t)dt = αψ(0)2 + EN

∫ δ

0
ψ(t)2ϕ(s, t)dt−

K(s)

2
ψ(0)2

−
∂tϕ(s, δ)

2
ψ(δ)2 +

1

2

∫ δ

0
ψ(t)2∂2t ϕ(s, t)dt.
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The additional term in comparison with (4.3) comes from the fact that ψ(δ) 6= 0. We
deduce:

I2 =

∫

S
v(s)2

∫ δ

0
ψ′(t)2ϕ(s, t)dt dS

= αψ(0)2
∫

S
v2dS + EN‖u− w‖2L2(Σ,dΣ) −

ψ(0)2

2
〈v,Kv〉L2(S,dS)

−
ψ(δ)2

2
〈v, ∂tϕ(·, δ)v〉L2(S,dS) +

1

2

∫

S
v(s)2

∫ δ

0
ψ(t)2∂2t ϕ(s, t)dtdS.

(5.13)

Due to (2.4), ψ(δ)2 = O(αe−2δα), and there exists C > 0 such that for α large enough one
has

ψ(δ)2

2
〈v, ∂tϕ(·, δ)v〉L2(S,dS) ≤ Cαe−2δα‖v‖2L2(S,dS), (5.14)

where the constant C depends only on ‖∂tϕ‖∞. We also have:

∣∣∣
∫ δ

0
ψ(t)2∂2t ϕ(s, t)dt

∣∣∣ ≤ ‖∂2t ϕ‖∞. (5.15)

Moreover, (2.3) provides C ′ > 0, depending only on ‖K‖∞, such that for α large enough:

ψ(0)2

2
〈v,Kv〉L2(S,dS) ≤ α〈v,Kv〉L2(S,dS) + C ′αe−δα‖v‖2L2(S,dS). (5.16)

The lemma follows by combining (5.14)–(5.16) with (5.13). �

The crossed term I3 needs a parametric estimate:

Lemma 5.4. There exists C3 > 0 such that for any r > 0 for large α one has

I3 ≥ 2EN 〈u− w,w〉L2(Σ,dΣ) − C3rα
2‖v‖2L2(S,dS) − C3

1

r

∫

S

∫ δ

0
w(s, t)2dtdS.

Moreover, the constant C3 depends only on ‖∂tϕ‖∞ and does not depend on u.

Proof. Using the integration by parts we have:

I3 = 2

∫

S
v(s)

∫ δ

0
ψ′(s)∂tw(s, t)ϕ(s, t)dt dS − 2αψ(0)

∫

S
v(s)w(s, 0)dS

= 2

∫

S
v(s)

([
ψ′(t)w(s, t)ϕ(s, t)

]t=δ

t=0
−

∫ δ

0
ψ′′(t)w(s, t)ϕ(s, t)dt

−

∫ δ

0
ψ′(t)w(s, t)∂tϕ(s, t)dt

)
dS − 2αψ(0)

∫

S
v(s)w(s, 0)dS

= 2αψ(0)

∫

S
v(s)w(s, 0)ϕ(s, 0)dS + 2EN

∫

S

∫ δ

0
v(s)ψ(t)w(s, t)ϕ(s, t)dtdS

− 2

∫

S

∫ δ

0
v(s)ψ′(t)w(s, t)∂tϕ(s, t)dtdS − 2αψ(0)

∫

S
v(s)w(s, t)dS

= 2EN 〈u− w,w〉L2(Σ,dΣ) − 2

∫

S

∫ δ

0
v(s)ψ′(t)w(s, t)∂tϕ(s, t)dtdS,

(5.17)

where we have used the boundary conditions ψ′(δ) = 0 and ψ′(0) = −αψ(0).
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We estimate now, with any r > 0:

∣∣∣2
∫

S

∫ δ

0
v(s)ψ′(t)w(s, t)∂tϕ(s, t)dtdS

∣∣∣

≤ ‖∂tϕ‖∞

∫

S

∫ δ

0
2
∣∣∣v(s)ψ′(t)w(s, t)

∣∣∣dtdS

≤ ‖∂tϕ‖∞r

∫

S

∫ δ

0
ψ′(t)2v(s)2dtdS +

‖∂tϕ‖∞
r

∫

S

∫ δ

0
w(s, t)2dtdS

≤ 2‖∂tϕ‖∞rα
2‖v‖2L2(S,dS) +

‖∂tϕ‖∞
r

∫

S

∫ δ

0
w(s, t)2dtdS,

(5.18)

where we have used ‖ψ′‖2L2(0,δ) ≤ 2α2 for α large enough, see (2.5). The substitution of

(5.18) into (5.17) gives the lemma by choosing C3 = 2‖∂tϕ‖∞. �

We are now able to finish the proof of Proposition 5.1. We use Lemmas 5.2–5.4 in (5.5)
and deduce

h−α (u, u) ≥ (1− C1δ)

∫

S
gρµ ∂ρv ∂µv dS − α〈v,Kv〉L2(S,dS)

+ EN‖u− w‖2L2(Σ,dΣ) + 2EN 〈u− w,w〉L2(Σ,dΣ) +

∫

S

∫ δ

0

∣∣∂tw(s, t)
∣∣2ϕ(s, t)dtdS

− α

∫

S
|w(s, 0)|2dS − C4(1 + rα2 + αe−δα)‖v‖2L2(S,dS) −

C3

r

∫

S

∫ δ

0

∣∣w(s, t)
∣∣2dt dS,
(5.19)

where C4 = max(C2, C3). We have the equality

‖u− w‖2L2(Σ,dΣ) + 2〈u− w,w〉L2(Σ,dΣ) = ‖u‖2L2(Σ,dΣ) − ‖w‖2L2(Σ,dΣ). (5.20)

Due to (5.8), we can use (2.6), so that
∫

S

∫ δ

0

∣∣∂tw(s, t)
∣∣2dt dS − α

∫

S
w(s, 0)2dS ≥ 0,

and, therefore, substituting (5.20) into (5.19), we get

h−α (u, u)− EN‖u‖2L2(Σ,dΣ) ≥ (1−C1δ)

∫

S
gρµ ∂ρv ∂µv dS − α〈v,Kv〉L2(S,dS)

− C4(1 + rα2 + αe−δα)‖v‖2L2(S,dS) − EN‖w‖2L2(Σ,dΣ) −
C3

r

∫

S

∫ δ

0
w(s, t)2dt dS. (5.21)

Due to (3.6), we have

‖w‖2L2(Σ,dΣ) ≥ (1− ‖∂tϕ‖∞δ)

∫

S

∫ δ

0
w(s, t)2dt dS.

We choose r = 3C3/α
2 in (5.21), so that the asymptotic expansion (2.2) for EN provides

a constant C5 > 0 such that for α large enough:

h−α (u, u)− EN‖u‖2L2(Σ,dΣ) ≥ (1−C1δ)

∫

S
gρµ ∂ρv ∂µv dS −

ψ(0)2

2
〈v,Kv〉L2(S,dS)

− C5(1 + αe−δα)‖v‖2L2(S,dS) +
α2

2

∫

S

∫ δ

0
w(s, t)2dt dS.
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Therefore, the proof is concluded by setting c−0 = C1 and c−1 = C5. Noticing that C4 and
C5 express with C2 and C3, we deduce that the constants depends only on ‖Ls‖∞, ‖∂tϕ‖∞
and ‖∂2t ϕ‖∞.

5.2. Asymptotics of Ej. The expression on the right-hand side of (5.3) can be viewed as
a lower semibounded quadratic form defined on D(h−α ) ⊂ L2(Σ,dSdt). Denote its closure
in L2(Σ,dSdt) by q, and let Q be the associated self-adjoint operator in L2(Σ,dSdt) ≡
L2(S,dS)⊗ L2(0, δ). It writes as

Q =
[
− (1− c−0 δ)∆S − αK − c−1 (1 + αe−2δα)

]
P +

α2

2
(1− P ),

where P : L2(Σ,dSdt) → L2(S,dS)⊗ψ is the orthogonal projector (Pu)(s, t) := v(s)ψ(t)
with v defined in (5.2). For each fixed j and large α we have

Ej

(
− (1− c−0 δ)∆S − αK − c−1 (1 + αe−2δα)

)
= O(α) <

α2

2
,

hence,

Ej(Q) = Ej

(
− (1− c−0 δ)∆S − αK − c−1 (1 + αe−δα)

)
.

Furthermore, using
‖u‖2L2(Σ,dΣ) ≤ (1 + ‖∂tϕ‖∞δ)‖u‖

2
L2(Σ,dSdt)

we have a positive constant Cϕ, depending only on ‖∂tϕ‖∞ such that

h−α (u, u)

‖u‖2
L2(Σ,dΣ)

− EN ≥ (1− Cϕδ)
q(u, u)

‖u‖2
L2(Σ,dSdt)

.

As the identification operator f 7→ f defines an injection of D(h−α ) ⊂ L2(Σ, dΣ) in D(q) ⊂
L2(Σ,dSdt), it follows that

Ej(H
−
α ) ≥ (1− Cϕδ)Ej(Q) + EN

= −α2 + (1− Cϕδ)Ej

(
− (1− c−0 δ)∆S − αK

)
+O(1 + α2e−δα), (5.22)

where we have used the asymptotics (2.2) for EN . In addition, by Lemma 4.2, we get

(1− Cϕδ)Ej

(
− (1− c−0 δ)∆S − αK

)
= Ej(−∆S − αK) +O(δα).

Hence, by substituting in (5.22),

Ej(H
−
α ) ≥ −α2 + Ej(−∆S − αK) +O(1 + α2e−δα + δα),

and the constants depend only on ‖Ls‖∞, ‖K‖∞, ‖∂tϕ‖∞ and ‖∂2t ϕ‖∞. Choosing

δ =
b log α

α
, b ≥ 2, (5.23)

we arrive at the result.

6. Proof of Theorem 1.3

The main idea for improving the remainder estimate is to work in unweighted spaces
from the very beginning. The weight ϕ is indeed C1 with respect to the s variable now,
and this allows for more precise Taylor expansions of ϕ in Σ, so that the comparison
between the Robin Laplacian and the decoupled operator becomes more precise. We start
with the following simple result:

Lemma 6.1. Under the assumption of Theorem 1.3, for any fixed j ∈ N one has

Ej(−∆S − αK) = −αKmax +O(α2/3) as α→ +∞.
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Proof. Due to (−∆S) ≥ 0 we have the obvious lower bound Ej(−∆S − αK) ≥ −αKmax.
Let us prove the upper bound. For s, s0 ∈ S, let d(s, s0) denote the geodesic distance
between s and s0. Let s0 ∈ S be such that K(s0) = Kmax. As K is at least C1, there
exist ε > 0 and C > 0 such that

K(s) ≥ Kmax − Cd(s, s0) as d(s, s0) < ε. (6.1)

Now let us choose j functions f1, . . . , fj ∈ C∞
c (R+) having disjoint supports, non identi-

cally zero, and set vi(s) = fi
(
r−1d(s, s0)

)
, where r > 0 is small and will be chosen later.

For small r, the functions vi have pairwise disjoint supports and belong to the domain of
∆S. In particular, they are linearly independent, and

〈
vi, (−∆S − αK)vl

〉
= 0 for i 6= l.

On the other hand,

θi(r) :=

∫

S
vi(s)

2dS =

∫

S
fi
(
r−1d(s, s0)

)2
dS = air

ν−1 + o(rν−1), ai > 0.

Using (6.1) we have

〈
vi, (−∆S − αK)vi

〉
=

∫

S
gρµ∂ρvi∂µvidS − α

∫

S
Kv2i dS

≤ bir
ν−3 − αKmaxθi(r) + ciαrθi(r), bi, ci > 0,

which gives
〈
vi, (−∆S − αK)vi

〉

‖vi‖2
≤ −αKmax +Ai(r

−2 + αr), Ai > 0.

Now it is sufficient to take r := α−1/3 and to test in (1.4) on the subspace L spanned by
v1, . . . , vj . �

6.1. Toward unweighted spaces. In order to remove the weight ϕ, we perform the
unitary transform

Θ : L2(Σ,dSdt) ∋ u 7→ ϕ−1/2u ∈ L2(Σ,dΣ),

and consider the quadratic forms u 7→ h±α (Θu,Θu) defined on Θ−1
(
D(h±α )

)
⊂ L2(Σ,dSdt).

In order to reduce the analysis to decoupled operators, we prove approximation lemmas:

Lemma 6.2. There exists δ0 > 0 and positive constants C and C ′ such that for all

δ ∈ (0, δ0) and u ∈ Θ−1
(
D(h±α )

)
one has

∣∣∣∣
∫

Σ
gρµ∂ρ(ϕ

−1/2u)∂µ(ϕ
−1/2u)ϕdSdt−

∫

Σ
gρµ∂ρu∂µudSdt

∣∣∣∣

≤ Cδ

∫

Σ
gρµ∂ρu∂µudSdt+ C ′δ‖u‖2L2(Σ,dSdt), (6.2)

and the constants depend only on ‖ϕ‖∞ and ‖∇s∂t(ϕ
−1/2)‖∞.

Proof. We compute
∫

Σ
gρµ∂ρ(ϕ

−1/2u)∂µ(ϕ
−1/2u)ϕdSdt−

∫

Σ
gρµ∂ρu∂µudSdt

=

∫

Σ
gρµ∂ρϕ

−1/2∂µϕ
−1/2ϕu2dSdt+ 2

∫
gρµ∂ρϕ

−1/2uϕ1/2∂µudSdt. (6.3)

Due to (3.5), we have the expansion

ϕ(s, t)−1/2 = 1 + tA(s, t),
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where A and its gradient are bounded. In particular, there exists C0 > 0 with

‖∇sϕ
−1/2‖∞ ≤ C0δ, (6.4)

where C0 is controlled by ‖∂t∇sϕ
−1/2‖∞, see (3.7). We deduce that

∣∣∣∣
∫

Σ
gρµ∂ρϕ

−1/2∂µϕ
−1/2ϕu2dSdt

∣∣∣∣ ≤ C1δ
2‖u‖2L2(Σ,dSdt), (6.5)

where the constant C1 is controlled by ‖∇s∂tϕ
−1/2‖∞ and ‖ϕ‖∞. Using the Cauchy-

Schwarz inequality for the metric (gρµ), we get

∣∣∣∣2
∫

Σ
gρµ

(
∂ρϕ

−1/2u
)(

ϕ1/2∂µu
)
dSdt

∣∣∣∣

≤ 2

(∫

Σ
gρµ∂ρϕ

−1/2∂µϕ
−1/2u2dSdt

∫

Σ
gρµ∂ρu∂µuϕdSdt

)1/2

≤ δ−1

∫

Σ
gρµ∂ρϕ

−1/2∂µϕ
−1/2u2dSdt+ δ

∫

Σ
gρµ∂ρu∂µuϕdSdt

≤ δ−1‖∇sϕ
−1/2‖2∞

∫

Σ
u2dSdt+ δ

∫

Σ
gρµ∂ρu∂µuϕdSdt

≤ C1δ‖u‖
2
L2(Σ,dSdt) + C2δ

∫

Σ
gρµ∂ρu∂µudSdt;

on the last step we have used (6.4). We deduce the lemma by combining the last inequality
with (6.3) and (6.5). Since C2 is controlled by ‖ϕ‖∞, we deduce that the constants depends

only on ‖ϕ‖∞ and ‖∇s∂t(ϕ
−1/2)‖∞. �

Lemma 6.3. There exists δ0 > 0 and positive constants C and β such that for all δ ∈
(0, δ0) there holds

∫

Σ
|∂t(ϕ

−1/2u)|2ϕdSdt ≥

∫

Σ
|∂tu|

2dSdt−

∫

S

K(s)

2
u(s, 0)2dS

− β

∫

S
u(s, δ)2dS − C‖u‖2L2(Σ,dSdt) for all u ∈ Θ−1

(
D(h−α )

)
(6.6)

and
∫

Σ

∣∣∂t(ϕ−1/2u)
∣∣2ϕdSdt ≤

∫

Σ
|∂tu|

2dSdt−

∫

S

K(s)

2
u(s, 0)2dS

+ C‖u‖2L2(Σ,dSdt) for all u ∈ Θ−1
(
D(h+α )

)
, (6.7)

and the constants depend on ‖∂t(ϕ
−1/2)‖∞, ‖ϕ1/2‖∞ and ‖∂t(ϕ

1/2∂tϕ
−1/2)‖∞ only.

Proof. We have
∫

Σ
|∂t(ϕ

−1/2u)|2ϕdSdt−

∫

Σ
|∂tu|

2dSdt

=

∫

Σ
|∂t(ϕ

−1/2)|2u2ϕdSdt+ 2

∫

Σ
∂t(ϕ

−1/2)ϕ1/2u∂tudSdt, (6.8)

and there exists C0 > 0 such that
∣∣∣∣
∫

Σ

∣∣∂t(ϕ−1/2)
∣∣2u2ϕdSdt

∣∣∣∣ ≤ C0‖u‖
2
L2(Σ,dSdt). (6.9)
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The second term is treated by an integration by parts:

2

∫

Σ
∂t(ϕ

−1/2)ϕ1/2u∂tudSdt =

∫

S

∫ δ

0
∂t(ϕ

−1/2)ϕ1/2∂t(u
2)dtdS

=

∫

S

[
∂t(ϕ

−1/2)ϕ1/2u2
]t=δ

t=0
dS −

∫

Σ
∂t(∂t(ϕ

−1/2)ϕ1/2)u2dSdt. (6.10)

Due to (3.5), we have the expansion

∂t(ϕ
−1/2)(s, t) =

K(s)

2
+ tQ(s, t),

where Q is bounded in Σ, so that ∂t(ϕ
−1/2)(s, 0) = K(s)/2, and (6.10) provides

∣∣∣∣2
∫

Σ
∂t(ϕ

−1/2)ϕ1/2u∂tudSdt+

∫

S

K(s)

2
u(s, 0)2dS

∣∣∣∣ ≤ C1‖u‖
2
L2(Σ,dsdt) + β

∫

S
u(s, δ)2dS,

where

β = sup
s∈S

∣∣∣(ϕ1/2∂tϕ
−1/2)(s, δ)

∣∣∣.

By combining this with (6.8) and (6.9), we deduce the lower bound (6.6), and also the
upper bound (6.7) since u(s, δ) = 0 for u ∈ Θ−1

(
D(h+α )

)
. Moreover, the constant C0

is controlled by ‖∂tϕ
−1/2‖2∞, the constant β by ‖∂tϕ

−1/2ϕ1/2‖∞ and the constant C1 by

‖∂t(∂tϕ
−1/2ϕ1/2)‖∞. �

We deduce by combining the last two lemmas that there exist positive constants c0 and
c1 such that for all δ ∈ (0, δ0):

h−α (Θu,Θu) ≥ (1− c0δ)

∫

Σ
gρµ∂ρu∂µudSdt+

∫

Σ
|∂tu|

2dSdt

−

∫

S

(
α+

K

2

)
u(s, 0)2dS − β

∫

S
u(s, δ)2dS − c1‖u‖

2
L2(Σ,dSdt

for u ∈ Θ−1(D(h−α )
)
,

(6.11)

and

h+α (Θu,Θu) ≤ (1 + c0δ)

∫

Σ
gρµ∂ρu∂µudSdt+

∫

Σ
|∂tu|

2dSdt

−

∫

S

(
α+

K

2

)
u(s, 0)2dS + c1‖u‖

2
L2(Σ,dSdt) for u ∈ Θ−1

(
D(h+α )

)
.

(6.12)

We denote by q±α the quadratic forms on the right-hand side of (6.11) and (6.12) respec-
tively, defined on the form domains D(q±α ) := Θ−1(D(h±α )). The associated self-adjoint
operators, both acting on the unweighted space L2(Σ,dSdt), will be denoted by Q±

α . Due
to (3.9) one has

Ej(Q
−
α ) ≤ Ej(Q

Ω
α) ≤ Ej(Q

+
α ) for all j with Ej(Q

+
α ) < 0. (6.13)

6.2. Upper bound. Once again we estimate the quadratic form q+α evaluated on the
functions u that write as a product u(s, t) = v(s)ψ(t), where ψ is a normalized eigenfunc-
tion of TD associated with ED (see Lemma 2.1) and v ∈ H1(S). Here we have simply
‖u‖L2(Σ,dSdt) = ‖v‖2L2(S,dS), and

q+α (u, u)−E
D‖u‖2L2(Σ,dSdt) = (1+ c0δ)

∫

S
gρµ∂ρv∂µvdS−

ψ(0)2

2

∫

S
Kv2dS+ c1‖v‖

2
L2(S,dS).

Using (2.1) we obtain

Ej(Q
+
α ) ≤ −α2 + Ej

(
− (1 + c0δ)∆S − αK

)
+O(1 + αe−δα). (6.14)
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To estimate the right-hand side of (6.14) we need an additional assertion:

Lemma 6.4. For any j ∈ N there exist positive constants C, α0 and δ0 such that for

δ ∈ (0, δ0) and α ≥ α0 the following inequalities hold:

Ej

(
− (1 + c0δ)∆S − αK

)
≤ Ej

(
−∆S − αK

)
+ Cδα2/3, (6.15)

Ej

(
− (1− c0δ)∆S − αK

)
≥ Ej

(
−∆S − αK

)
− Cδα2/3. (6.16)

Proof. We only prove the upper bound, the lower bound being symmetric. We have

Ej

(
− (1 + c0δ)∆S − αK

)
= (1 + c0δ)Ej

(
−∆S +

1

1 + c0δ
α(Kmax −K)

)
− αKmax

≤ (1 + c0δ)Ej

(
−∆S + α(Kmax −K)

)
− αKmax

= Ej

(
−∆S − αK

)
+ c0δEj

(
−∆S + α(Kmax −K)

)
,

and it is sufficient to apply Lemma 6.1 to the last term. �

Now let us assume that δ is a function of α satisfying (3.2). Applying Lemma 6.4 to
(6.14) we deduce, for α→ +∞,

Ej(Q
+
α ) ≤ −α2 + Ej

(
−∆S − αK

)
+O(δα2/3 + 1 + α2e−δα). (6.17)

Choosing δ = α−κ with κ ∈ [2/3, 1) and using (6.13) we obtain the result.

6.3. Lower bound. Similarly to Section 5.1, we decompose any function u ∈ D(q−α ) as

u(s, t) = v(s)ψ(t) +w(s, t),

where ψ = ψβ is a normalized eigenfunction of the operator T β associated with the first
eigenvalue Eβ , see Lemma 2.2, and

v(s) =

∫ δ

0
ψ(t)u(s, t)dt.

It follows that ∫ δ

0
ψ(t)w(s, t)dt = 0, s ∈ S, (6.18)

which provides
∫

Σ
v(s)ψ(t)w(s, t)dSdt = 0 and

∫

Σ
gρµ∂ρv(s)ψ(t)∂µw(s, t)dSdt = 0. (6.19)

A direct computation provides

q−α (u, u) = (1− c0δ)

∫

S
gρµ∂ρv∂µvdS + (1− c0δ)

∫

Σ
gρµ∂ρw(s, t)∂µw(s, t)dSdt

+

∫

Σ
v(s)2ψ′(t)2dSdt+ 2

∫

Σ
v(s)ψ′(t)∂tw(s, t)dSdt

+

∫

Σ
|∂tw(s, t)|

2dSdt−

∫

S

(
α+

K(s)

2

)
v(s)2ψ(0)2dS

− 2

∫

S

(
α+

K(s)

2

)
v(s)ψ(0)w(s, 0)dS −

∫

S

(
α+

K(s)

2

)
w(s, 0)2dS

− β

∫

S
v(s)2ψ(δ)2dS − 2β

∫

S
v(s)ψ(δ)w(s, δ)dS − β

∫

S
w(s, δ)2dS

− c1‖u‖
2
L2(Σ,dSdt),

(6.20)
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where we have used (6.19) to get rid of the crossed terms. We also have, using an integra-
tion by part:

∫

Σ
v(s)ψ′(t)∂tw(s, t)dSdt =

∫

S
v(s)

([
ψ′(t)w(s, t)

]t=δ

t=0
−

∫ δ

0
ψ′′(t)w(s, t)dt

)
dS

=

∫

S
v(s)

(
ψ′(δ)w(s, δ) − ψ′(0)w(s, 0) + Eβ

∫ δ

0
ψ(t)w(s, t)dt

)
dS

=

∫

S

(
βv(s)ψ(δ)w(s, δ) + αv(s)ψ(0)w(s, 0)

)
dS, (6.21)

where we have used (6.19) and the boundary condition for the eigenfunction ψ. Moreover,
by the definition of ψ we have

∫ δ

0
ψ′(t)2dt− αψ(0)2 − βψ(δ)2 = Eβ .

Inserting the last inequality and (6.21) into (6.20), we arrive at

q−α (u, u) = (1− c0δ)

∫

S
gρµ∂ρv∂µvdS + (1− c0δ)

∫

Σ
gρµ∂ρw∂µwdSdt

+

∫

Σ
|∂tw|

2dSdt−

∫

S
K(s)v(s)ψ(0)w(s, 0)dS

−

∫

S

(
α+

K

2

)
w(s, 0)2dS −

∫

S

K

2
v(s)2ψ(0)2dS

− β

∫

S
w(s, δ)2dS + Eβ‖v‖2L2(S,dS) − c1‖u‖

2
L2(Σ,dSdt).

(6.22)

Lemma 6.5. There exist R > 0 and α0 > 0 such that for all α ≥ α0 there holds

∫

Σ
|∂tw(s, t)|

2dSdt−

∫

S
K(s)v(s)ψ(0)w(s, 0)dS

−

∫

S

(
α+

K(s)

2

)
w(s, 0)2dS −

∫

S

K(s)

2
v(s)2ψ(0)2dS − β

∫

S
w(s, δ)2dS

≥ −
α2

2
‖w‖2L2(Σ,dSdt) − ψ(0)2

∫

S

(K(s)

2
+
R

α

)
v(s)2dS (6.23)

for all u ∈ D(q−α ). Moreover, the constant R depends only on ‖K‖∞.

Proof. Denote by J the term on the left-hand side of (6.23). For any ε > 0 we have
∣∣∣∣
∫

S
K(s)v(s)ψ(0)w(s, 0)dS

∣∣∣∣ ≤ εψ(0)2
∫

S
v(s)2dS +

1

4ε

∫

S
K(s)2w(s, 0)2dS,

and there holds, for sufficiently small ε,

J ≥

∫

Σ
|∂tw(s, t)|

2dSdt−
(
α+

B

ε

) ∫

S
w(s, 0)2dS

− ψ(0)2
∫

S

(K(s)

2
+ ε
)
v(s)2dS − β

∫

S
w(s, δ)2dS, (6.24)

with B = supS(K
2 + |K|). Due to (6.18) and to the inequality (2.6) of Lemma 2.2 we

have ∫ δ

0

∣∣∂tw(s, t)
∣∣2dt− αw(s, 0)2 − βw(s, δ)2 ≥ 0, s ∈ S.
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It follows that for any η ∈ (0, 1) we can estimate

∫

Σ
|∂tw(s, t)|

2dSdt

≥ η

∫

Σ
|∂tw(s, t)|

2dSdt+ (1− η)α

∫

S
w(s, 0)2dS + (1− η)β

∫

S
w(s, δ)2dS,

and the substitution into (6.24) gives

J ≥ η

∫

Σ
|∂tw(s, t)|

2dSdt−
(
ηα+

B

ε

)∫

S
w(s, 0)2dS − ηβ

∫

S
w(s, δ)2dS

− ψ(0)2
∫

S

(K(s)

2
+ ε
)
v(s)2dS.

Therefore, choosing ε = R/α with R > 0 and then using Lemma 2.3 we obtain, for any
ℓ ∈ (0, δ),

J ≥ η

∫

Σ
|∂tw(s, t)|

2dSdt−
(
η +

B

R

)
α

(
ℓ

∫

Σ
|∂tw(s, t)|

2dSdt+
2

ℓ

∫

Σ
|w(s, t)|2dSdt

)

− ηβ

(
ℓ

∫

Σ
|∂tw(s, t)|

2dSdt+
2

ℓ

∫

Σ
w(s, t)2dSdt

)
− ψ(0)2

∫

S

(K(s)

2
+
R

α

)
v(s)2dS

=
[
η − ℓα

(
η +

B

R

)
− ℓβη

] ∫

Σ
|∂tw(s, t)|

2dSdt−
2

ℓ

(
ηα+

Bα

R
+ ηβ

) ∫

Σ
w(s, t)2dSdt

− ψ(0)2
∫

S

(K(s)

2
+
R

α

)
v(s)2dS.

Choose ℓ = ρ(α+ β)−1 with ρ ∈ (0, 1/2) and R ≥ B(1− ρ)−1, then the choice

η =
ℓBα

R
(
1− ℓ(α+ β)

) =
ρBα

(α+ β)R(1 − ρ)
∈ (0, 1),

implies

η − ℓα
(
η +

B

R

)
− ℓβη = 0,

and

J ≥ −

(
2Bα(α + β)

R(1− ρ)
+

2Bα(α + β)

ρR

)
‖w‖2L2(Σ,dSdt) − ψ(0)2

∫

S

(K(s)

2
+
R

α

)
v(s)2dS.

(6.25)
As R can be taken arbitrary large, we may choose it in order to have

R > 4B

(
1

1− ρ
+

1

ρ

)
,

then there exists α0 > 0 such that for α ≥ α0 we have
(
2Bα(α+ β)

R(1− ν)
+

2Bα(α+ β)

Rν

)
<
α2

2
,

which gives the result. �

Substituting the result of Lemma 6.5 into (6.22) and using the equality

‖u‖2L2(Σ,dSdt) = ‖v‖2L2(S,dS) + ‖w‖2L2(Σ,dSdt) (6.26)
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we deduce

q−α (u, u)− Eβ‖u‖2L2(Σ,dSdt) ≥ (1− c0δ)

∫

S
gρµ∂ρv∂µvdS

− ψ(0)2
∫

S

(K(s)

2
+
R

α

)
v(s)2dS −

(
Eβ +

α2

2

)
‖w‖L2(Σ,dSdt) − c1‖u‖

2
L2(Σ,dSdt). (6.27)

We choose δ = α−κ, κ ∈ [2/3, 1), then Lemma 2.2 provides

Eβ = −α2 + o(1), ψ(0)2 = 2α+ o(1).

Using again (6.26) and rough estimates, we deduce, as α→ +∞:

q−α (u, u) + α2‖u‖2L2(Σ,dSdt) ≥ (1− c0δ)

∫

Σ
gρµ∂ρv∂µv dS

−

∫

Σ
(αK + 2R+ 1 + c1)v(s)

2dS +
α2

4
‖w‖2L2(Σ,dSdt), (6.28)

Now we may follows closely the arguments of Subsection 5.2. The expression on the right-
hand side of (6.28) represents a densely defined quadratic form in L2(Σ,dSdt), and we
denote by q its closure. The associated self-adjoint operator Q writes as

Q =
(
− (1− c0δ)∆S − (αK + C)

)
P +

α2

4
(1− P ),

where C := 2R+ 1+ c1 and P is the orthogonal projector, (Pu)(s) = v(s)ψ(t). It follows
from (6.26) and (6.28) that Ej(Q

−
α ) +α2 ≥ Ej(Q), and as in Subsection 5.2 for each fixed

j ∈ N we have

Ej(Q) = Ej

(
− (1− c0δ)∆S − (αK + C)

)
for large α.

Using (6.13) we arrive at Ej(Q
Ω
α) ≥ −α2 +Ej

(
− (1− c0δ)∆S −αK

)
+O(1), and, finally,

we get the desired lower bound of Theorem 1.3 by using (6.16).

7. Proof of Corollaries 1.4 and 1.6

In this section, we assume that Ω is C2-admissible. Then the functionK is bounded, and
an easy adaptation of [10, Proposition 1] to the non-euclidean setting gives the following:

Lemma 7.1. For any fixed j ∈ N there holds

Ej(−∆S − αK) = −Kmaxα+ o(α), α→ +∞. (7.1)

Proof of Corollary 1.4. It is sufficient to substitute the estimate (7.1) into the asymp-
totics (1.5) of Theorem 1.2. �

To prove Corollary 1.6 we need a rough estimate for the essential spectrum of QΩ
α .

Recall that for a self-adjoint operator Q, we have denoted by E(Q) the infimum of its
essential spectrum. Then there holds:

Lemma 7.2. Assume that ∂Ω is non-compact and denote K∞ := lim sups→∞K(s), then
E(QΩ

α) ≥ −α2 −K∞α+ o(α) for large α.

Proof. Lets us modify a bit the construction of Subsection 3.1. By assumption, for any
K0 > K∞ there exists a compact domain S0 ⊂ S such that K(s) ≤ K0 for s ∈ S \S0. Set
S1 := S \ S0. Now let q′α denote the quadratic form given by the same expression as qΩα
but acting on the domain D(q′α) := H1(Ω0

δ)⊕H1(Ω1
δ)⊕H1(Θδ) with

Ω0
δ := Φ

(
S0, (0, δ)

)
, Ω1

δ := Φ
(
S1, (0, δ)

)
, Θδ := Ω \ Ω0

δ ∪ Ω1
δ
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and δ is sufficiently small. Let Q′
α be the self-adjoint operator associated with q′α and

acting in L2(Ω). Due to the form inequality QΩ
α ≥ Q′

α we have E(QΩ
α ) ≥ E(Q′

α). On

the other hand, one represents Q′
α = Q0

α ⊕ Q1
α ⊕ (−∆)NΘδ

, where Qj
α, j ∈ {0, 1}, is the

self-adjoint operator in L2(Ωj
δ) generated by the quadratic form

qjα(u, u) =

∫

Ωj
δ

|∇u|2dx− α

∫

∂Ωj
δ
∩S
u2dS, D(qjα) = H1(Ωj

δ),

and (−∆)NΘδ
is the Neumann Laplacian in Θδ. Note that the domain Ω0

δ is bounded, hence,

the operator Q0
α has an empty essential spectrum. It follows that

E(QΩ
α ) ≥ E(Q′

α) = min
(
E(Q1

α), E((−∆)NΘδ
)
)
≥ min

(
E(Q1

α), 0
)
.

On the other hand, the analysis of Section 5.1 can be applied to the operator Q1
α. In

particular, the choice (5.23) for δ gives

E1(Q
1
α) ≥ −α2 + E1(−∆N

S1
− αK) +O(log α),

where −∆N
S1 is the Neumann realization of the positive Laplace-Beltrami operator on S1.

As K ≤ K0 in S1, we have

E(Q1
α) ≥ E1(Q

1
α) ≥ −α2 −K0α+O(log α)

and, subsequently, E(QΩ
α) ≥ −α2 −K0α+O(log α). As K0 > K∞ is arbitrary, the result

follows. �

Proof of Corollary 1.6. Let N ∈ N be fixed. Due to Corollary 1.4 and Lemma 7.2 for

large α we have EN (QΩ
α) < E(QΩ

α), and EN (QΩ
α) is the N

th eigenvalue of QΩ
α due to the

min-max principle. �

8. Analysis of the reduced operator on the boundary

In this section we gather various standard estimates on the low-lying eigenvalues of
−∆S − αK, depending on the hypotheses on the dimension ν and on K. In this section,
for the cas of an unbounded ∂Ω we assume that the assumption (1.7) holds.

Now note that by setting h = α−1/2 and V = −K, the operator −∆S − αK writes as

−h−2
(
−h2∆S + V

)

and enters naturally the framework of Schrödinger operators in the semi-classical limit
h→ 0. The assumption (1.7) writes now

lim inf
s→∞

V (s) > inf
s∈S

V (s),

and ensures that the asymptotics of the low-lying eigenvalues of the reduced operator can
be determined by the behavior of V near its minima (that are the maxima of K), under
suitable hypotheses.

Remark 8.1. Assume that the measure of the set K−1({Kmax}) is 0. Then the word-
by-word adaptation of [1, Lemma 3.2] to the non-euclidean setting gives, for any fixed
j ∈ N,

Ej

(
−∆S + α(Kmax −K)

)
→ +∞ as α→ +∞ (8.1)

If, in addition, Ω is C3-admissible, then (1.6) can be decomposed as

Ej(Q
Ω
α) = −α2 −Kmaxα+ Ej

(
−∆S + α(Kmax −K)

)
+O(1),

and the term Ej

(
−∆S+α(Kmax−K)

)
has a lower order with respect to α, see Lemma 7.1,

but is large with respect to the remainder O(1), see (8.1), and hence provides a refinement
with respect to the first order asymptotics (1.1).
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The aim is now to describe more precise asymptotics on −∆S − αK, in order to see
the possible gap between eigenvalues, in particular we want to compare Ej(−∆S −αK)+
Kmaxα to the remainders in Theorems 1.2 and 1.3. The most commonly studied case is
when the maxima of K are non-degenerate, see [34, Theorem 5.1] or [19]:

Proposition 8.2. Assume that Ω is C5-admissible and, if non-compact, satisfies (1.7).
Furthermore, assume that the function K admits a unique global maximum at s0 ∈ S and

that the Hessian of (−K) at s0 is positive-definite. Denote by µk the eigenvalues of the

Hessian and

E :=
{ ν−1∑

k=1

√
µk
2
(2nk − 1), nk ∈ N

}
, (8.2)

then for each fixed j ∈ N there holds:

Ej(−∆S − αK) = −Kmaxα+ ejα
1/2 +O(α1/4) as α→ +∞,

where ej is the jth element of E, counted with multiplicity. Moreover, if Ω is C6, and if

ej is of multiplicity one, the remainder can be replaced by O(1).

By combining Proposition 8.2 with Theorem 1.2 we obtain Corollary 1.7. Remark that
for ν = 2 one is reduced to

E =
{√−K ′′(s0)

2
(2n − 1), n ≥ 1

}

and all the elements are of multiplicity one. Therefore, by combining Theorem 1.2 and
Proposition 8.2, we recover the first terms of the asymptotic expansion (1.2), see [16,
Theorem 1.1].

Other cases of extrema are harder to handle, due to the different notions of degeneracy
for the maxima of K, and to the possible interactions with the metric near the maxima.
However, in the case ν = 2, we have the following:

Proposition 8.3. Let ν = 2 and Ω be C2p+3-admissible with p ≥ 2 and, if ∂Ω is non-

compact, such that the assumption (1.7) is satisfied. Furthermore, assume that the curva-

ture K admits a unique global maximum at s0 with

K(s) = K(s0)− Cp(s− s0)
2p +O

(
(s− s0)

2p+1
)
, s→ s0,

where Cp > 0 and s is an arc-length of the connected component Γ of the boundary at

which K takes the maximal value. Then we have the following expansion

Ej(−∆S − αK) = −Kmaxα+ ejα
1

p+1 +O(α
1

2(p+1) ),

where ej is the jth eigenvalue of the operator −∂2s + Cps
2p in L2(R). Moreover, if ∂Ω is

C2p+4, then the remainder can be replaced by O(1).

Proof. Since we are not interested in exponentially small terms, it suffices by standard
arguments to reduce the analysis to a neighborhood of the minimizer in Γ, denoted by
Γ0, with Dirichlet boundary conditions at the ends, see [19]. Let γ : R/|Γ0|Z → Γ0

be an arc-length parametrization of Γ0. Since the parametrization is normalized and
the metrics in local coordinates is g = ‖γ′‖, we only have to consider −∆ − αK on
the interval (s0 − η, s0 + η), with η > 0 fixed, and Dirichlet boundary condition. The
following asymptotics is then a simple consequence of [29, Theorem 2.1] applied with the

semi-classical parameter h = α−1/2:

Ej(−∆S − αK) = α
1

p+1


ej +

∑

k≥1

βj,kα
− k

2(p+1)


 , βj,k ∈ R.
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If ∂Ω is C2p+4, then the curvature is C2p+2, and we have the Taylor expansion

K(s) = K(s0)− Cp(s− s0)
2p + C ′

p(s− s0)
2p+1 +O

(
(s− s0

)2p+2
), C ′

p ∈ R.

Then, by combining the simplicity of the eigenvalues (ej)j≥1, the parity of the eigenvectors
of −∂2s +Cps

2p, and the oddness of the remainder C ′
p(s−s0)

2p+1 in the asymptotic expan-
sion of K, it is standard to show that βj,2 = 0 for all j ≥ 1, see for example [7, Theorem
4.23] for the case p = 1. �

The combination of Proposition 8.3 with Theorem 1.2 gives Corollary 1.8.

Remark 8.4. The above statements can be adapted easily to the case whereK has several
maxima by using the principle that “each well creates its own series of eigenvalues”.

Corollary 8.5. Let j ∈ N, and assume one of the two following:

• The hypotheses of Proposition 8.2 hold, and ej is of multiplicity 1 in the set E.
• The hypotheses of Proposition 8.3 hold.

Then, for α large enough, Ej(Q
Ω
α) is a simple eigenvalue.

When we are not in the hypotheses of Remark 8.1, few results exist on the asymptotics
of the first eigenvalues. For example, we can show

Proposition 8.6. Assume that the interior of K−1({Kmax}) is not empty. Then, for any

fixed j ∈ N,

Ej(−∆S − αK) = −αKmax +O(1) as α→ +∞.

Proof. Denote by ω ⊂ ∂Ω an open subset of the interior of K−1{Kmax} with a smooth
boundary. Introduce −∆D

ω , the Laplace-Beltrami operator in ω with the Dirichlet bound-
ary condition. This operator has compact resolvent and we denote by Ej(−∆D

ω ), j ∈ N, its
eigenvalues, and by uj associated normalized eigenfunctions. Denote by Uj the extensions
of uj to ∂Ω by zero, then

∫

S
gρµ∂ρUj∂µUjdS − α

∫

S
KU2

j dS = −αKmax + Ej(−∆D
ω ).

As Uj are mutually orthogonal in L2(S,dS), we deduce from the min-max principle that

Ej(−∆S − αK) ≤ −αKmax + Ej(−∆D
ω ), and the sought estimate follows. �

In particular, in the situation of Proposition 8.6 Theorems 1.2 and (1.3) does not provide
the gap between the eigenvalues of QΩ

α as α→ +∞.
We remark that a particular case of a piecewise constant curvature was recently studied

in [32], and the eigenvalue gaps appear to have finite limits.

9. Periodic case

The preceding analysis can also be applied to periodic problems. Namely, assume
that there exist linearly independent vectors a1, . . . , am, m ≤ ν, such that Ω is invariant
under the shifts x 7→ x + aj, j ∈ {1, . . . ,m}, and that the quotient (elementary cell)
ω := Ω/(Za1+· · ·+Zam) is compact, and then the quotient surface σ := S/(Za1+· · ·+Zam)
is also compact. Such a situation is covered by the Floquet theory [23]. Namely, for
θ = (θ1, . . . , θm) ∈ T

m, T := R/2πZ denote by QΩ
α(θ) the self-adjoint operator generated

by the quadratic form

qΩ,θ
α (u, u) :=

∫

ω
|∇u|2dx− α

∫

σ
u2dS,

D(qΩ,θ
α ) = H1

θ (ω) :=
{
u ∈ H1

loc(Ω) : u(·+ aj) = eiθju(·), j = 1, . . . ,m
}
.
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It can be easily checked that the operators QΩ(θ) are with compact resolvents, and it is a
standard fact of the Floquet theory that for each fixed j ∈ N the so-called band function

T
m ∋ θ 7→ Ej(θ, α) := Ej

(
QΩ

α(θ)
)

is continuous, and that

specQΩ
α :=

⋃

j∈N

Bj(α), Bj(α) :=
{
Ej(θ, α) : θ ∈ T

m
}
.

The segment Bj(α) is usually called the jth spectral band of QΩ
α .

An analogous representation of the spectrum holds for the reduced operator −∆S−αK.
Namely, denote by Tα(θ) the self-adjoint operator acting in L2(σ) associated with the
quadratic form

tθα(v, v) :=

∫

σ
gρµ∂ρv∂µv dS − α

∫

σ
Kv2dS,

D(tθα) = H1
θ (σ) :=

{
u ∈ H1

loc(S) : u(·+ aj) = eiθju(·), j = 1, . . . ,m
}
.

Again, one checks that Tα(θ) have compact resolvents and the band functions

T
m ∋ θ 7→ εj(θ, α) := Ej

(
Tα(θ)

)

are continuous and

spec(−∆S − αK) :=
⋃

j∈N

βj(α), βj(α) :=
{
εj(θ, α) : θ ∈ T

m
}
,

and the segment βj(α) will be called the jth spectral band of −∆S − αK.
One can easily see that the proofs of Theorems 1.2 and 1.3 also work for the operators

QΩ
α(θ), which gives the following results:

Theorem 9.1. For any fixed j ∈ N there holds, as α→ +∞,

Ej(θ, α) = −α2 + εj(θ, α) +Rj(θ, α), θ ∈ T,

where Rj(θ, α) = O(logα) if Ω is C2 and Rj(θ, α) = O(1) if Ω is C3, and the remainder

estimate is uniform in θ ∈ T.

Corollary 9.2. If j ∈ N is fixed and α→ +∞, then the jth spectral band of QΩ
α +α2 and

the jth spectral band of −∆S − αK are located in a O
(
R(α)

)
-neighborhood of each other,

where R(α) = logα for the C2-admissible case and R(α) = 1 for the C3-admissible one.

The result of Theorem 9.1 can be used to study some spectral properties specific for
periodic operators. Recall that a non-empty interval (a, b) ⊂ R is called a (spectral) gap
of a self-adjoint operator A if (a, b) ∩ specA = ∅ but a, b ∈ specA. The existence of
spectral gaps is one of the principal questions in the spectral theory of periodic operators,
cf. [2, 4, 20, 24]. In view of Theorem 9.1, the existence of sufficiently large gaps for the
reduced operator −∆− αK (i.e. having the length of order ακ with some κ > 0) implies
the existence of gaps for the Robin Laplacian QΩ

α , and the reduced operator was studied in
numerous preceding works, cf. [30,35]. For, example the semiclassical analysis of periodic
operators of the form −h∆S + V/h carried out in [35, Theorem 1.1] gives the following
result:

Corollary 9.3. Assume that Ω is C∞ and periodic as described above. Furthermore,

assume that the function σ ∋ s 7→ K(s) admits a unique maximum at s0, and that the

Hessian of (−K) at s0 is positive-definite. Let µj be the eigenvalues of the Hessian and

the numbers ej be defined as in Proposition 8.2, then
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(1) for each j ∈ N there exists C > 0 such that

spec(QΩ
α + α2 +Kmaxα) ∩

[
ejα

1/2 − Cα2/5, ejα
1/2 + Cα2/5

]
6= ∅

for large α, and
(2) for each C1 > 0 there exist C2, C3 > 0 such that

spec(QΩ
α + α2 +Kmaxα) ∩

[
− C1α

1/2, C1α
1/2
]

⊂
⋃

ej≤C3

[
ejα

1/2 − C2α
2/5, ejα

1/2 + C2α
2/5
]

as α→ +∞.

In particular, for any N ∈ N there exists αN > 0 such that the operator QΩ
α has at least

N gaps for α > αN .

The localization of the spectrum given in the preceding corollary is not expected to be
optimal for periodic domains. Furthermore, it would be interesting to understand some
questions related to the location of the extrema of the band functions, cf. [2]. We hope to
analyze the periodic case in greater detail in subsequent works.
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[7] M. Dimassi, J. Sjöstrand: Spectral asymptotics in the semi-classical limit, Cambridge University

Press, 1999.
[8] P. Exner, A. Minakov: Curvature-induced bound states in Robin waveguides and their asymptot-

ical properties. J. Math. Phys. 55 (2014) 122101.
[9] P. Exner, A. Minakov, L. Parnovski: Asymptotic eigenvalue estimates for a Robin problem with

a large parameter. Portugal. Math. 71:2 (2014) 141–156.
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[11] P. Freitas, D. Krejčǐŕık: The first Robin eigenvalue with negative boundary parameter. Adv.

Math. (to appear), preprint arXiv:1403.6666 (2014)
[12] L. Friedlander, M. Solomyak: On the spectrum of the Dirichlet Laplacian in a narrow infinite

strip. in T. Suslina, D. Yafaev (Eds.): Spectral theory of differential operators: M. Sh. Birman

80th anniversary collection. (Amer. Math. Soc. Transl. Ser. 2, Vol. 225 of Advances in the
Mathematical Sciences, Amer. Math. Soc., 2008) 103–116.

[13] L. Friedlander, M. Solomyak: On the spectrum of the Dirichlet Laplacian in a narrow strip.

Israel J. Math. 170 (2009) 337–354.
[14] T. Giorgi, R. Smits: Eigenvalue estimates and critical temperature in zero fields for enhanced

surface superconductivity. Z. Angew. Math. Phys. 58:2 (2007) 224–245.
[15] B. Helffer: Eigenvalues for the Robin Laplacian in domains with variable curvature: a semi-

classical apporach. Extended abstracts of the mini-workshop “Eigenvalue problems in surface
superconductivity”, Oberwolfach Reports 11:4 (2014), to appear.

[16] B. Helffer, A. Kachmar: Eigenvalues for the Robin Laplacian in domains with variable curvature.

Arch. Rat. Mech. Anal. (to appear), preprint arXiv:1411.2700 (2014).
[17] B. Helffer, A. Morame: Magnetic bottles in connection with superconductivity. J. Funct. Anal.

185:2 (2001) 604–680.



29

[18] B. Helffer, K. Pankrashkin: Tunneling between corners for Robin Laplacians. J. London Math.
Soc. 91 (2015) 225–248.
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