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1 Introduction

Numerical simulations of multifluid flows using interface capturing schemes are highly constrained by the Courant-
Friedrichs-Lewy (CFL) condition. Even with implicit codes, the Courant number Co is limited to values lower than
unity in order to benefit from compressive properties of the schemes and to restrict the diffusion of the interface
[6, 9]. Therefore the usable time steps become rapidly redhibitory since they are linked to the grid by the definition
of Co and since, if the grid is refined, the time step must be reduced accordingly. This is particularly true when the
free surface undergoes large and violent deformations, as in the case of a rowing stroke in water [3, 8] or a prism
impacting a free surface [2, 10]. The equation subject to this condition is the convection equation of the volume
fraction of water c.

The goal of this work is to elaborate a strategy to accelerate numerical simulations of unsteady multifluid flows
while formally respecting the CFL condition. The procedure presented here is an extension of the one developed for
flows reaching a steady state [4]. Manzke et al. have likewise worked on this topic [5] but only a few details were
given for the treatment of unsteady computations. In short our method allows the use of a larger global time step
for each temporal iteration and the resolution of the convection equation for c is carried out in several successive
steps in which the associated time step is smaller. This compromise enables to diminish the total computation
time, a priori without loss of accuracy. This approach should be even more efficient for parallel computations and
especially for the fine meshes using adaptive grid refinement (AGR) [10]. In the AGR procedure, a number of layers
of refined cells around the free surface, or buffer layers, can be set. This is done to ensure that the free surface stays
in the refined grid area, until the next step of grid refinement. Indeed each refinement causes an extra cost in CPU
time, that is why it is not performed at each temporal iteration. The combination of the AGR with the time-splitting
procedure enables to carry out an indirect form of parallelisation of the temporal resolution: the use of a larger time
step leads to increase the number of buffer layers, and thus the number of cells, which forces to employ more cores.
Parallel computations have a problem of scaling efficiency, as there is an issue of communication between cores,
in other words a maximum number of cells per core. So the use of the time-splitting procedure with a reasonable
number of extra cores, keeping the same ratio of cells per core as for a regular computation, should make the
number of temporal iterations decrease and will therefore reduce the total CPU time.

In the article, some explanations of the method will be given in section 2 and first results showing benefits will
be exposed in section 3. Finally, section 4 will draw some conclusions and perspectives. In the remainder of the
document, the term time-splitting procedure will be employed to indicate the described method.

2 The time-splitting procedure

2.1 Principle

The time-splitting procedure consists of cutting each original time step into N successive intervals (see figure 1),
also called temporal splits or subcycles, and solving c on each of them. Hence a fraction of the original time step
is associated with each temporal split and adjusted to have a Courant number satisfying the CFL condition. In this
way, the global time step can be increased and the total CPU time will therefore be reduced. The global time step
can in principle be set to a critical value, representing the limit not to cross in order to capture the physics with a
second-order time discretisation scheme, regardless of the grid fineness. The cost of the extra resolutions for the
volume fraction remains quite low because this resolution is not the most time-consuming part in RANS codes.

t

∆t(tc)

∆ti = ∆t
N

| | | | | | | | | | |

t0 = tp ti−1 ti ti+1 tN = tc

F−→
U

(tp) F−→
U

(ti) F−→
U

(tc)
Figure 1: Temporal splitting for the equation (2).
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2.2 Time-integration method

The equation to solve for the interface-capturing methods using an ALE approach is the convection equation for
the volume fraction c:

δ

δt

∫
V

c dV +

∮
S

c
(
−→
U −
−→
Ud

)
·
−→n dS = 0 , (1)

where V is the control volume limited by a closed surface S of normal vector −→n outwardly directed and moving
at a velocity

−→
Ud. The time derivative following the moving grid is written δ

δt .
The finite volume discretisation with the first-order backward differentiation formula leads to the following

discretised equation:

c(tc) V(tc) − c(tp) V(tp)
∆t

+
∑

faces S f

c f (tc)
(
F−→

U
(tc) − F−→

Ud
(tc)

)
= 0 , (2)

where tp and tc indicate respectively the previous and current instants, ∆t = tc − tp the current global time step
and V the volume of the cells. The reconstruction of the volume fraction at the face centre is noted c f . The vectors
F−→

U
and F−→

Ud
are respectively the flux of velocity and the flux of displacement velocity of the grid through the

face S f . These three quantities are expressed at the current instant tc. To shorten thereafter the equations, the
variable F ′ is introduced to gather both fluxes and is defined by F ′ = F−→

U
−F−→

Ud
. The first-order time discretisation

scheme described here is not able to accurately capture unsteady phenomena for reasonable time steps because it
is too diffusive. However, for computations reaching a steady state, an accurate temporal resolution is not sought,
which means that this scheme can be used. On the other hand, the temporal accuracy is essential for unsteady
computations. At the end of the time step, the second-order backward differentiation formula (BDF2) has to be
verified:

ec c(tc) V(tc) + ep c(tp) V(tp) + eq c(tq) V(tq) +
∑

faces S f

c f (tc)F ′(tc) = 0 , (3)

where ec, ep and eq are the coefficients of the aforementioned scheme for the time derivative and tq is the instant
preceding tp. This causes new difficulties compared to the steady case explained in [4], especially to reconstruct c f

on the global time step (detailled in section 2.2.2).

2.2.1 Resolution of the cell-centered volume fraction on a subcycle

As previously mentioned, the resolution of (1) is carried out by a succession of temporal splits on intervals ∆ti = ∆t
N

(see figure 1). The fluxes F−→
U

and F−→
Ud

, as well as the volumes, are interpolated between their values at the instants
tp and tc, knowing that quantities at tc are updated at each non linear iteration within the convergence loop. By
linear combination, F ′ is calculated in the same way:

F ′(ti) = (1 − αi) F ′(tp) + αi F
′(tc) with 0 < i ≤ N , αi =

i
N

and ti = tp + αi ∆t(tc) . (4)

The Crank-Nicolson scheme (5) has been chosen to maintain a second-order accuracy with a compact two-
point stencil for the time discretisation on each subcycle. The discretised equation of convection for the volume
fraction within each temporal split is then written:

c(ti) V(ti) − c(ti−1) V(ti−1)
∆t(ti)

+
1
2

∑
faces S f

c f (ti)F ′(ti) = −
1
2

∑
faces S f

c f (ti−1)F ′(ti−1) , (5)

where the right-hand side is the source term.
The value of c at tc is directly equal to its value at the last subcycle.

2.2.2 Reconstruction of the interfacial volume fraction at the global level

The interfacial volume fraction c f , expressed at the time tc, is required to compute the term ρF ′ of the momentum
equation. It has to be reconstructed while verifying the second-order time discretisation of (3). To do so, it is
mandatory to take into account the evolution of the cell-centered value of c during the subcycles.

The sum of the N equations (5) between tp and tc leads to:
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c(tc) V(tc) − c(tp) V(tp)
∆t(tc)

+
∑

faces S f

1
2 N(tc)

N(tc)∑
i=1

c f (ti)F ′(ti) +

N(tc)∑
i=1

c f (ti−1)F ′(ti−1)

︸                                                          ︷︷                                                          ︸
= Btp→tc

= 0 . (6)

This first step enables to have an equation where the time-derivative part is identical to (2), hence only a first
order. The term Btp→tc can be seen as an interfacial quantity equal to the average of c f F

′ over all the temporal
splits between tp and tq. The same sum between tq and tp gives:

c(tp) V(tp) − c(tq) V(tq)
∆t(tp)

+
∑

faces S f

1
2 N(tp)

N(tp)∑
i=1

c f (ti)F ′(ti) +

N(tp)∑
i=1

c f (ti−1)F ′(ti−1)

︸                                                          ︷︷                                                          ︸
= Btq→tp

= 0 . (7)

From the equations (6) and (7), it is possible to retrieve a BDF2 for (1). The second-order time discretisation
of the derivative of a quantity φ at the time tc, in function of tc, tp and tq is:(

δφ

δt

)
t=tc

= ec φc + ep φp + eq φq , (8)

with

ec =
2 ∆t(tc) + ∆t(tp)

∆t(tc)
[
∆t(tc) + ∆t(tp)

] , ep = −
∆t(tc) + ∆t(tp)
∆t(tc) ∆t(tp)

and eq =
∆t(tc)

∆t(tp)
[
∆t(tc) + ∆t(tp)

] . (9)

Applying the linear combination

(11)← (6) · ec · ∆t(tc) − (7) · eq · ∆t(tp) , (10)

leads to, after simplifications, an equation with a second-order time derivative:

ec c(tc) V(tc) + ep c(tp) V(tp) + eq c(tq) V(tq) +
∑

faces S f

[
ec ∆t(tc) Btp→tc − eq ∆t(tp) Btq→tp

]
︸                                               ︷︷                                               ︸

F

= 0 . (11)

The term F contains Btq→tp and Btp→tc , respectively computed in the subcycles of the intervals [tq, tp] and [tp, tc].
To fulfill (3), F has to be written under the form (12) where c̃ f stands for the reconstructed value of c f .

F =
∑

faces S f

c̃ f F
′(tc) . (12)

This gives the following arbitrary expression for c̃ f :

c̃ f =
1

F ′(tc)

[
∆t(tc) ec Btp→tc − ∆t(tp) eq Btq→tp

]
(13)

where an obvious problem arises in the case F ′=0. Until now, the division by F ′ + ε (with ε equal to 10 times the
machine precision), proved to be a functional workaround.

3 Results for the dam break with obstacle

The time-splitting procedure has been implemented in the ISIS-CFD code [7], developed by the DSPM (Dynamics
of Marine Propulsion Systems) team of the LHEEA Lab. and available as part of the FINE

TM
/Marine computing

suite. Then it has been validated on several bidimensional test cases, for flows reaching a steady state and purely
unsteady flows: simple advection of a square, submerged foil (as described in [1, 4]), dam break with an obstacle
or propagation of waves. Solutions are very close (or even identical) to the ones obtained without the time-splitting
procedure. In these first computations, the expected reduction of the total CPU time is confirmed: a reduction factor
up to 4 has been reached. In this article, the results related to the dam break with obstacle are presented.

3.1 Test case description

One of the most interesting examples used for the validation of the simulation of free surface flows is the dam
break with obstacle [9]. In the initial state (see figure 2), a rectangular water column (146 cm wide, 292 cm high)
is located in the lower left corner of a square domain (side of 584 cm) whose edges are solid walls except for the
top one which is in open air. The gravity makes the water column fall, the latter hits a rectangular obstacle (24 cm
wide, 48 cm high).
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3.2 Numerical procedure

For these simulations, a slip condition is applied to all solid walls. Since the case is two-dimensional, a mirror
condition is used for the front and back faces. A Dirichlet condition is applied to the upper face: the hydrostatic
pressure is imposed.

The mesh generation is performed with HEXPRESS
TM

. Two kinds of grid have been used. In the first configu-
ration, the grid is fixed and quite fine. In the lower half of the domain, there are 192 cells in the horizontal direction
and 96 in the vertical direction. The grid becomes coarser in the upper part. The dimensions of the cells gradually
get larger as the vertical coordinate increases and reach values they would have if the domain would be entirely
discretised in 24 per 24 cells. In the second configuration, the AGR is used. The initial mesh is quite coarse since
the domain contains only 58 cells in each direction, except in a more refined area around the obstacle. The cells
around the free surface are refined during the computation every three time steps, with a target size of 1,25 mm
(normal distance to the free surface) and with a given number of buffer layers of cells Nl.

The computations have been done on the same computer and with only one core. Cases with or without time-
splitting procedure have been launched and different numbers N of temporal splits (as defined in section 2) have
been tested. If N = 1, it means that the time-splitting procedure has not been used. Increasing N should make the
CPU time tCPU decrease although it has to be verified that the results do not degrade. For instance, the maximum
value of the horizontal component of the force on the obstacle Fxmax is examined. Since any experimental value are
available, the value of the case 4 (see table 1) is arbitrarily taken as reference. When the time-splitting procedure
is used, it is necessary to increase Nl to have a sufficient safety margin. Thus the mean number of cells Nc, mean is
higher.

The global time step is adapted at each temporal iteration in order to have a global Courant number Co lower
than a limit value. For the computations not using the time-splitting procedure, this limit is equal to 0.3 and this
value is multiplied by N in the other cases.

3.3 Results

The results of six different cases are summed up in the table 1, all reaching a physical time of simulation of 0.2 s.
The evolution of the simulated flow, together with the grid, between the initial instant and t=0.6 s is represented in
figure 3. The images come from the case 5, somewhat modified to avoid at best undesirable effects relative to the
AGR, i.e. unnecessary and costly generations of cells after t=0.2 s (images 3c to 3f) and to prevent the water from
hitting the top boundary. So the action of the AGR is limited to a acceptable vertical coordinate and the domain is
enlarged in the vertical direction. The evolution of the solution as described in [9] is reproduced. A fine layer is
coming from the water column and impacts the obstacle. A tongue of water is created at the top of the obstacle,
then it is directed to the right and hits the opposite wall of the domain, trapping air below itself. A secondary tongue
is then created at the top right of the obstacle, imprisoning in its turn an area of air.

3.3.1 Computations with fixed grids

The first three cases use the fixed-grid configuration. As seen in figure 4, the contour lines of c at t =0.2 s, with or
without using the time-splitting procedure, are very similar. The main difference is that a bigger drop is breaking
away from the tongue of water in the case 3. The use of the time-splitting procedure enables to decrease tCPU: a
factor up to 3 has been reached in the case where N =10. The cost Ctot of each computation can also be observed.
It shows the mean total CPU time per cell. Since the number of cells does not vary for this grid, Ctot has the same
ratio than tCPU. However, Fxmax is slightly reduced. The global time step may have been chosen too large relatively
to the physics of the flow. The use of time steps too large also has the tendency to trap air at the impact on the
obstacle, which consequently reduces the force.

a

2a

a
d

2d

4a

4a

air
water

a = 146 cm
d = 24 cm

Figure 2: Initial configuration of the dam break with obstacle test case.
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Case N AGR Nl tCPU (s) ratio tCPU Nc, mean ratio Nc, mean Ctot(ms/pt) ratio Ctot Fxmax (N) Error Fxmax (%)

1 1 × × 1905 - 20210 - 94.3 - 183 0.5

2 5 × × 824 2.31 20210 1 40.8 2.31 179 2.7

3 10 × × 646 2.95 20210 1 32.0 2.95 175 4.9

4 1 X 1 3514 - 5774 - 540.9 - 184 -

5 10 X 5 2545 1.38 8039 1.39 280.1 1.93 178 3.3

6 10 X 10 3285 1.07 10590 1.83 263.9 2.05 179 2.7

Table 1: Summary of the results obtained for a physical time of simulation of 0.2 s.

(a) t = 0.1s (b) t = 0.2s (c) t = 0.3s

(d) t = 0.4s (e) t = 0.5s (f) t = 0.6s

Figure 3: Evolution of the simulated flow for the case 5. Contours of the volume fraction on the refined grid.

(a) N = 1, case 1 (b) N = 10, case 3

Figure 4: Contour lines of the volume fraction at t=0.2 s with or without the time-splitting procedure.
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3.3.2 Computations with adaptive grid refinement

For cases with AGR, the gains in CPU time are much weaker. This is explained by a higher Nc, mean (up to 1.8 times
higher for the case 6). However, for the same case, Ctot is 2 times smaller than the case 4, which does not use the
time-splitting procedure. Given the target size specified for the AGR, which is half the size of the cells in the fixed
mesh, the accuracy of Fxmax is increased. Even with Nc, mean lower than with fixed grids, the CPU times are higher.
This lack of gain is explained by the small target cell size and the law for the adaptation of the global time step to a
target Courant number. The combination of these two choices causes the limitation of the usable time step to small
values.

4 Conclusion and perspectives

The first results are encouraging and confirm the expectations of the time-splitting procedure. On fixed grids, the
CPU time for the simulation of the dam break with obstacle test case has been reduced with a factor 3. In the case
of computations using a single core and the adaptive grid refinement, the gain in CPU time is not very large. This
is explained by the need to keep large safety margin of layers of cells around the free surface. However, the cost
of a computation, while looking at the mean total time per cell, is halved. Thus it appears that the time-splitting
procedure should be very efficient on parallel computations, even if it remains to be proved.
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