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Combining analog method and ensemble data

assimilation: application to the Lorenz-63

chaotic system

Pierre Tandeo, Pierre Ailliot, Juan Ruiz, Alexis Hannart, Bertrand Chapron, Anne

Cuzol, Valérie Monbet, Robert Easton and Ronan Fablet

Abstract Nowadays, ocean and atmosphere sciences face a deluge of data from

space, in situ monitoring as well as numerical simulations. The availability of these

different data sources offer new opportunities, still largely underexploited, to im-

prove the understanding, modeling and reconstruction of geophysical dynamics. The

classical way to reconstruct the space-time variations of a geophysical system from

observations relies on data assimilation methods using multiple runs of the known

dynamical model. This classical framework may have severe limitations including

its computational cost, the lack of adequacy of the model with observed data, mod-

eling uncertainties. In this paper, we explore an alternative approach and develop a

fully data-driven framework, which combines machine learning and statistical sam-

pling to simulate the dynamics of complex system. As a proof concept, we address
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Université de Bretagne Occidentale, e-mail: pierre.ailliot@univ-brest.fr

Juan Ruiz

National Scientific and Technical Research Council, e-mail: jruiz@cima.fcen.uba.ar

Alexis Hannart

National Scientific and Technical Research Council, e-mail: alexis.hannart@cima.fcen.uba.ar

Bertrand Chapron

Ifremer, e-mail: bertrand.chapron@ifremer.fr

Anne Cuzol
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the assimilation of the chaotic Lorenz-63 model. We demonstrate that a nonpara-

metric sampler from a catalog of historical datasets, namely a nearest neighbor or

analog sampler, combined with a classical stochastic data assimilation scheme, the

ensemble Kalman filter and smoother, reach state-of-the-art performances, without

online evaluations of the physical model.

Key words: Data assimilation, Stochastic filtering, Nonparametric sampling, Ana-

log method, Lorenz-63 model

1 Introduction

Understanding and estimating the space-time evolution of geophysical systems con-

stitute a challenge in geosciences. For an efficient restitution of geophysical fields,

classical approaches typically combine a physical model based on fluid dynamics

equations and remote sensing data or in situ observations. These approaches are

generally referred to as data assimilation methods and stated as inverse problems

for dynamical processes (see e.g., [1] and reference therein). Two main categories

of data assimilation approaches may be distinguished: variational assimilation meth-

ods, which resort to the gradient-based minimization of a variational cost function

and rely on the computation of the adjoint of the dynamical model ([3]), and stochas-

tic data assimilation schemes, which involve Monte Carlo strategies and are particu-

larly appealing for their modeling flexibility ([4]). These stochastic methods iterate

the generation of a representative set of scenarios (hereinafter referred to members),

whose consistency is evaluated with respect to the available observations. To reach

good estimation performance, this number of members must be high enough to ex-

plore the state space of the physical model.

Different limitations can occur in the stochastic data assimilation approaches pre-

sented above. Firstly, it generally involves intensive computations for practical ap-

plications since the physical model needs to be run with different initial conditions

at each time step in order to generate the members. Moreover, intensive modeling

efforts are needed to take into account fine-scale effects. Regional geophysical mod-

els are typical examples ([18]). Secondly, dissimilarities often occur between model

outputs and observations. For instance, it can be the case when combining high

resolution model forecasts with high resolution satellite or radar images. Thirdly,

the dynamical model is not necessarily well known and parameterizations may be

highly uncertain. This is particularly the case in subgrid-scale processes, taking into

account local and highly nonlinear effects ([19]). These different examples tend to

show that multiple evaluations of an explicit physical model is computationally- de-

manding and model uncertainties can produce dissimilarities between forecasts and

observations.

As an alternative, the amount of observation and simulation data has grown very

quickly in the last decades. The availability of such historical datasets strongly ad-

vocate for exploring implicit data-driven schemes to build realistic statistical simu-
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lations of the dynamics for data assimilation issues. Satellite sequence images are

typical examples. When the spatio-temporal sampling and the amount of histori-

cal remote sensing data is sufficient, we may able to learn dynamical operators to

construct relevant statistical forecasts with a good consistency with satellite obser-

vations. Such implicit data-driven schemes may also provide fast implementation

alternatives as well as flexible strategies to deal with the above mentioned model-

ing uncertainties. In this case, historical simulated-data with different parameteriza-

tions, initial conditions and forcing terms may provide various scenarios to explore

larger state spaces.

In this paper, we aim at demonstrating a proof-of-concept of such data-driven

strategies to reconstruct complex dynamics from partial noisy observations. The

feasibility of our data assimilation method is illustrated on the classical chaotic

Lorenz-63 model ([6]). The paper is organized as follows. In Section 2, we pro-

pose to use a nonparametric sampler, based on the analog (or nearest neighbors)

method, to generate the forecast members ([5]). Then, we use the ensemble Kalman

recursions to combine these members with the observations ([1]). In Section 3, we

numerically evaluate the methodology on the Lorenz-63 model such as various pre-

vious works (see e.g., [21], [20]). We further discuss and summarize the key results

of our investigations in Section 4.

2 Combining machine learning and stochastic filtering methods

Data assimilation for dynamical systems is generally stated according to the follow-

ing state space model (see e.g. [4]):

dx(t)
dt

= M (x(t),η(t)) (1)

y(t) = H (x(t),ε(t)) . (2)

The dynamical model given in Eq. (1) describes the evolution of the true phys-

ical process x(t). It includes a random perturbation η(t) which accounts for the

various sources of uncertainties (e.g. boundary conditions, forcing terms, physical

parameterization, etc...). As an illustration, M refers in the next Sections to the

Lorenz-63 dynamical model, in which the state of the system x is a 3-dimensional

vector (x,y,z). The observation model given in Eq. (2) links the observation y(t) to

the true state at the same time t. It also includes a random noise ε(t) which models

observation error and uncertainties, change of support (i.e. downscaling/upscaling

effects) and so on.

The key originality of the methodology proposed in this paper consists in using a

nonparametric statistical sampling within a classical ensemble Kalman framework.

As described in Fig. 1 (top), the classical approach exploits an explicit knowledge

of the Pure Dynamical Model (PDM) to propagate the ensemble members from a

given time step to the next one. By contrast, we assume here that a representative

catalog of examples of the time evolution of the state is available. This catalog is
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used to build an Analog Dynamical Model (ADM) to simulate M and the associated

error η given in Eq. (1). We proceed as follows. Let us denote by x(t) the state at

time t. Its analogs or nearest neighbors are the samples in the catalog which are

the closest to x(t). Such nearest neighbor schemes are among the state-of-the-art

machine learning strategies ([2]). In the geoscience literature, we talk about analog

methods (see e.g. [6] or [11]). They were initially devised for weather prediction,

but applications to downscaling issues ([13]) or climate reconstructions ([14], [15])

were also proposed. As described in Fig. 1 (bottom), for each member at a given

time, we use the successors of its analogs to generate possible forecast states at time

t + dt. The variability of the selected successors also provides a characterization of

the forecast error, namely here its covariance. From a methodological point of view,

analog techniques provide nonparametric representations. They are associated with

computationally-efficient implementations and prove highly flexible to account for

nonlinear and chaotic patterns as soon as the catalog of observed situations is rich

enough to describe all possible state dynamics ([12]).

dx(t)
dt

= σ (y(t)− x(t))

dy(t)
dt

= x(t) (ρ− z(t)) − y(t)

dz(t)
dt

= x(t)y(t)− β z(t)

Pure Dynamical ModelPrevious spread Forecast spread

Lorenz-63 equations

y

x x

y

Analog Dynamical Model

Analogs Successors

Previous spread Forecast spread

t t+dt

y

x x

y

Fig. 1 Sketch of the forecast step in stochastic data assimilation schemes using pure (top) and ana-

log (bottom) dynamical models. As an example, we consider the 3-dimensional Lorenz-63 chaotic

model. For visualization convenience, we only represent the xy-plane, centered at the origin. We

track five statistical members with the variability depicted by ellipsoids accounting for the covari-

ance structure.

Then, this nonparametric data-driven sampling of the state dynamics is plugged

into a classical ensemble data assimilation method. It leads to the estimation of

the filtering or smoothing probabilities of the state space model given in Eq. (1-

2). It might be noted that previous works have analyzed the convergence of these

estimated probabilities to the true ones, when the size of the catalog tends to infinity
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[7]. Here, we exploit the low-computational ensemble Kalman recursions (see [1]

for more details) but other stochastic methods could be used such as particle filters.

3 Application to the Lorenz-63 chaotic system

In this section, we perform a simulation study to assess the assimilation perfor-

mance of the proposed method on the classical Lorenz-63 model. This model has

been extensively used in the literature on data assimilation (see e.g., [16], [9] or

[8]). From a methodological point of view, it is particularly interesting due to its

simplicity (in terms of dimensionality and computational cost) and its chaotic be-

havior. We first describe how we generate the catalog (Sect. 3.1) and detail how we

implement the analog dynamical model in a classical stochastic filtering (Sect. 3.2).

We then evaluate assimilation performance with respect to classical state-of-the-art

data assimilation techniques (Sect. 3.3).

3.1 Synthetic Data

We generate three different datasets (true state, noisy observations and catalog) us-

ing the exact Lorenz-63 differential equations given in Fig. 1 (top) with the classical

parameters ρ = 28, σ = 10, β = 8/3 and the time step dt = 0.01. From a random

initial condition and after 500 time steps, the trajectory converges to the attractor

and we append the associated data to our datasets as follows. At each time t, the

corresponding Lorenz trajectory is given by the variables x, y and z. We store the

three variables in the true state vector x(t). Then, we randomly generate the ob-

servations y(t) as the sum of the state vector and of independent Gaussian white

noises with variance 2. To generate the catalog, we use another random initial con-

dition and after 500 time steps, we start to append the consecutive states vectors z(t)
(the analogs) and z(t + dt) (the successors) in the catalog. Examples of the samples

stored in this catalog are given in Table 1.

Table 1 Samples of the catalog used in the ADM presented in Fig. 1 (bottom) to simulate realistic

Lorenz-63 trajectories with a time step dt = 0.01.

z(t)→ Analogs z(t +dt)→ Successors

(−0.3268,+3.2644,+25.5134) (+0.0131,+3.2278,+24.8371)
(+0.0131,+3.2278,+24.8371) (+0.3177,+3.2017,+24.1889)

.

.

.
.
.
.

(−2.7587,−4.5007,+19.1790) (−2.9344,−4.7112,+18.8037)
(−2.9344,−4.7112,+18.8037) (−3.1147,−4.9464,+18.4530)
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3.2 The Analog Ensemble Kalman Filter and Smoother

As stressed in Sect. 2, the key feature of the proposed approach is to build a nonpara-

metric sampler of the dynamics (ADM). For the considered application to Lorenz-63

dynamics, we resort to a first-order autoregressive process between z(t) and z(t+dt)
with dt = 0.01 (see [17], chapter 10, for similar applications in other chaotic mod-

els). We consider the first 10 analogs (or the first 10-nearest neighbors) of a given

state within the built catalog of simulated Lorenz-63 trajectories presented in Ta-

ble 1. Note that we here consider an exhaustive search within the entire catalog.

This ADM is plugged into classical ensemble Kalman recursions. We implement

both the Ensemble Kalman Filter (EnKF) and Smoother (EnKS). Whereas EnKF

only exploit the available observation up to the current state (i.e., past and current

observations), EnKS exploits the entire observation series (i.e., both past, present

and future observations with respect to the current state). We implement the EnKF

and EnKS with 100 members, value sufficiently important to correctly estimate the

covariances. In the next results, we perform numerical experiments to assess the per-

formance of the proposed approach. We vary both the time steps of the observations

and the size of the catalog and analyze the impact on assimilation performance. We

carry out a comparative evaluation with respect to reference assimilation models

using a parametric autoregressive process and the pure dynamical Lorenz-63 equa-

tions (PDM). For each experiment, we display the ensemble mean and the 95%

confidence interval (transparent error area) of the assimilated states issued from the

Gaussian smoothing probabilities estimated by the EnKS.

3.3 Evaluation of assimilation performance

We first analyze assimilation performance for noisy observations sampled at differ-

ent time rates (noted as dtobs), from 0.01 to 0.40. Considering the analogy between

the Lorenz-63 and atmospheric time scales, note that dtobs = 0.08 is equivalent to a

6 hours variability in the atmosphere. As an illustration of the complexity of Lorenz-

63 dynamics, we report in Fig. 2 (left column) the scatter cloud of two consecutive

values of the second Lorenz-63 variable y in the catalog. Whereas we observe a

linear-like pattern for the fine sampling rate of 0.01 (first row), all other sampling

rates clearly exhibit nonlinear patterns, which can hardly be captured by a linear

dynamical model. For each time step setting, we also compare in Fig. 2 (right col-

umn), the observations (black dots), the true state (black curves) and the assimilation

results using different dynamical models. Two results are reported: the nonparamet-

ric ADM presented in Sect. 3.2 (blue curves) and the parametric first-order linear

autoregressive AR(1) model (red curves). For very small sampling rates between

consecutive observations, a simple linear AR(1) dynamical model proves sufficient

to assimilate the state of the system. But, as soon as the sampling rate becomes

greater (from 0.08), such an AR(1) model can no longer drive the assimilation to

relevant states. By contrast, the proposed ADM does not suffer from these limita-
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tions and show weak effects of the sampling rates on the quality of the assimilated

states.
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Fig. 2 The left column displays the scatters plot between two consecutive values of the Lorenz-63

second variable y. In the right column, the noisy observations and true states of the Lorenz-63 are

respectively represented with black dots and black curves. We also display the smoothed mean

estimate and the 95% confidence interval of the assimilation of the noisy observations using a

simple linear and parametric AR(1) model (red) and the proposed nonparametric ADM (blue).

Experiments are carried out for different sampling rates between consecutive observations, from

0.01 to 0.40 (top to bottom).
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We also compare the performance of the proposed nonparametric ADM to the

classical EnKS assimilation using the PDM, i.e. allowing online evaluations of the

Lorenz-63 equations. We perform different simulations varying the time sampling

rate between two consecutive observations dtobs = {0.01,0.08,0.24,0.40} and the

size of the catalog n = {103,104,105,106}. For each experiment, we compute the

Root Mean Square Error (RMSE) between the true and estimated smoothed states of

the Lorenz-63 trajectories. These RMSE are computed over 105 time steps. To solve

the differential equations of the Lorenz-63 model in the PDM, we use the explicit

(4,5) Runge-Kutta integrating method (cf. [10]). Fig. 3 summarizes the results. As

benchmark curves, in dashed lines, we plot the results of the classical EnKS using

the PDM. In solid lines, we report the results of the proposed EnKS using ADM.

We observe a decrease of the error when the size n of the catalog increases (x-axis

in log scale). It also shows that the difference in RMSE between the two kinds

of reanalysis (with and without an explicit knowledge of the Lorenz-63 equations)

decreases when the time sampling rate (and thus the forecast error) between two

consecutive observations dtobs increases (colors in legend). Overall, for a catalog of

106 samples, we report RMSE difference below 0.05 for sampling rates equal or

greater than 0.08.
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dtobs = 0.01
dtobs = 0.08
dtobs = 0.24
dtobs = 0.40

Fig. 3 Root Mean Square Error (RMSE) for the three variables of the Lorenz-63 model as a func-

tion of the size of the catalog (n) and the time sampling rate between consecutive observations

(dtobs). Dashed and solid lines refer respectively to the reanalysis (smoothed estimates) for the

classical EnKS using PDM and the proposed EnKS using ADM (see Fig. 1 for the difference

between the two approaches).
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4 Conclusion and perspectives

In this paper, we show that the statistical combination of Monte Carlo filters and ana-

log procedures is able to retrieve the chaotic behavior of the Lorenz-63 model when

the size of the catalog is sufficiently important. The proposed methodology may be

a relevant alternative to the classical data assimilation schemes when (i) large obser-

vational or model-simulated databases of the process are available and (ii) physical

models are computationally-demanding and/or modeling uncertainties are impor-

tant. The data-driven methodology proposed in this paper is a relatively low-cost

procedure, which directly samples new ensembles from previously observed or sim-

ulated data, and potentially allows for an exploration of more scenarios.

Our future work will particularly investigate the application of the proposed

methodology to archives of in situ measurements, remote sensing observations and

model-simulated data for the multi-source reconstruction of geophysical parameters

at the surface of the ocean. The methodology seems particularly appealing for such

surface oceanographic studies for three reasons: (i) the low dimensionality of the

state in comparison with atmosphere and a 3D spatial grid, (ii) the less chaotic be-

havior of the dynamics due to the water viscosity and (iii) the amount oceanographic

data at the surface of the ocean. Indeed, in the last two decades, satellite and in situ

measurements have provided a wealth of information with high spatial and temporal

resolutions.

Future work will also address methodological aspects, especially regarding the

search procedures for the analogs and the construction of the catalog. In this Lorenz-

63 example, a small part of the trajectory is really chaotic (zone close to the origin,

between the 2 attractors) and most of the time a simple autoregressive process is able

to produce relevant forecasts in non chaotic regions. An effort is therefore needed to

evaluate the complexity of the trajectory, what may for instance rely on Lyapunov

exponent (see [17], chapter 10), and carefully select the samples indexed in the cat-

alog upon their representativeness of the underlying chaotic dynamics. Another im-

portant aspect is the size of the sampled trajectories between analogs and successors

in the catalog. In this paper, we use a very small time lag (dt = 0.01) but other strate-

gies can be used, e.g. sampling successors with the same time lag than consecutive

observations (dtobs). A last methodological aspect concerns the filtering methods. In

such low-cost emulation of the dynamical model, particle filters and smoothers may

allow more flexibility to take into account non-Gaussian assumptions.
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