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Abstract: A ship design with boundary layer alignment device (BLAD) aiming at improving the
in�ow of a propeller is evaluated using a RANSE computation with adaptive grid re�nement. This
paper is focused on model scale simulation for which experimental results can be used for validation.
Propeller performance is evaluated with a RANSE/BEM coupling procedure. Numerical simulation
reveals that adaptive grid re�nement is an e�cient way to obtain a reliable prediction for such
con�guration. Moreover, grid re�nement criterion is found to be of crucial importance. The newly
proposed smoothed pressure Hessian is capable of evaluating correctly the impact of the BLAD on
the performance of the propeller.
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1 Introduction

Due to greenhouse e�ect, regulation concerning gas emission is becoming more and more restrictive for
ship building industry. There is an increasing interest to improve the propeller-hull interaction e�ciency to
ful�ll the new regulation. In addition to hull form and propeller optimization, propeller in�ow improving
device is another interesting approach. Additional appendages such as vortex generator (VG), boundary
layer alignment device (BLAD), pre-swirl stator (PSS), etc are added. Those installations aim to modify
the in�ow to the propeller such that propeller e�ciency is improved, or to produce thrust on its own. To
be e�cient, devices such as VG and BLAD must be installed at an upstream position relatively far away
from the propeller where boundary layer thickness begins to grow quickly. Although additional resistance
due to such devices can be predicted without too much di�culty, it is a much more challenging task to
capture its in�uence far downstream to the propeller and to simulate correctly the reaction of the propeller
due to those modi�cations. As the length scale of those devices is about one order or more smaller that
the length scale of the ship stern, it is mandatory that numerical approaches employed for such simulation
are capable of capturing �ow structures with di�erent length scales. Before numerical simulation tools can
be used with con�dence in a design procedure for propeller in�ow improving devices, assessment on the
accuracy of numerical prediction for such applications needs to be made. This is one of the objectives of
the European FP7 STREAMLINE project. Several propeller in�ow improving devices including VG, BLAD
and PSS have been designed [1]. The objective of this design is not to improve propeller e�ciency, but to
provide a representative con�guration that can be used for the assessment of numerical simulation tools.
Model scale measurements have been made which can be used for numerical validation [2]. We have been
involved in the evaluation of the BLAD during this project and simulations using adaptive grid re�nement
have been made. It has been found that grid re�nement criterion is of crucial importance. This validation
work will be reported in the present paper.
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2 Flow solver and grid re�nement

Computation in the present study is performed with our in-house �ow solver ISIS-CFD which is the �ow
solver of FINETM/Marine compoutational suite distributed by NUMECA Int. It is based on a �nite-volume
discretisation for the the Unsteady Reynolds-Averaged Navier Stokes (URANS) equations on unstructured
grids. This section describes the governing �ow equations, the discretisation, and the type of meshes used,
concentrating on those aspects that are most important for grid re�nement and the construction of re�nement
criteria. Full details of the discretisation can be found in [3, 4].

2.1 Governing equations

The ISIS-CFD �ow solver which we develop resolves the incompressible URANS equations in a mixture-�uid
formulation to model water�air two-�uid �ow. Here, the entire �uid is modelled as a numerical mixture of
the pure �uids on the two sides of the interface. The system uses the conservation laws for momentum, total
mass, and mass of each �uid. When the densities of the individual �uids are constant, the latter two reduce
to ∇ ·U = 0 and to a volume-of-�uid equation. In integral form, the eqations are written as follows:

∂

∂t

∫
V

ρUidV +
∫

S

ρUiU · ndS =
∫

S

(τijIj − pIi) · ndS +
∫

V

ρgidV, (1)

∫
S

U · ndS = 0, (2)

∂

∂t

∫
V

cidV +
∫

S

ciU · ndS = 0, (3)

where V is a volume, bounded by the closed surface S with a unit normal vector n directed outward. U and
p represent, respectively, the velocity and pressure �elds. τij and gi are the components of the viscous stress
tensor and the gravity vector, whereas Ij is a vector whose components are zero, except for the component
j which is equal to unity. ci is the volume fraction for �uid i and is used to distinguish the presence (ci = 1)
or the absence (ci = 0) of �uid i. In the case of turbulent �ows, additional transport equations for modelled
variables are solved in a form similar to the momentum equations and they are discretized and solved using
the same principles.

The e�ective �ow physical properties (viscosity µ and density ρ) are obtained from the physical properties
of the constituent �uids (µi and ρi) with the following constitutive relations. The last identity follows from
the de�nition of the volume fraction.

ρ =
∑

i

ciρi, µ =
∑

i

ciµi, 1 =
∑

i

ci. (4)

Thus, for two �uids, equation (3) only has to be solved for �uid 1.
In this framework, free-surface water �ows are modelled by specifying a discontinuous in�ow condition

for ci (ci = 1 below the surface and ci = 0 above it). As equation (3) is a pure convection equation, the
resulting solution for ci is discontinuous in the whole domain. This discontinuity represents the free surface.
Thus, a sharp water surface is obtained without a speci�c model at the surface. This method is robust and
straightforward, which means that it can be used for a wide range of �ows.

2.2 Face-based discretisation

The �ow equations of the previous subsection are discretised in a �nite-volume framework. Pressure-velocity
coupling is obtained through implicit time integration with a Rhie & Chow SIMPLE-type method. Thus,
each time step is solved through a series of nonlinear iterations with segregated updates for the variables: the
velocity updates come from the momentum equations (1) and the pressure is given by the mass conservation
law (2), transformed into a pressure equation. The volume fraction ci for �uid 1 comes from a discretisation
of the linear convection equation (3) which is solved in each nonlinear iteration, decoupled from the pressure
and velocity updates.
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The discretisation is face-based. While all unknown state variables are cell-centered, the systems of
equations used in the implicit time stepping procedure are constructed face by face. Fluxes are computed in
a loop over the faces and the contribution of each face is then added to the two cells next to the face. This
technique poses no speci�c requirements on the topology of the cells. Therefore, the grids can be completely
unstructured, cells with an arbitrary number of arbitrarily-shaped faces are accepted.

2.2.1 Central discretisations

The core of the discretisation are the reconstructions of the state variables and their derivatives from the
cell centres to the faces. For the di�usive �uxes and the pressure equation, these are basically central
approximations of the normal derivatives. In case of misalignment, i.e. when the face normal vector is
not aligned with the line between the neighbouring cell centres, extra correction terms are added using the
cell-centered gradients computed with a Gauss method.

Figure 1: Cell face notations.

As an example, the reconstruction of the pressure and its normal derivative is shown here for the case of
constant density, i.e. below the surface. More details on the reconstruction, including the weighting of the
reconstruction with the density when it is non-constant, are given in [3, 4]. From Taylor series expansion
on both sides of the face, the reconstruction of the pressure on the face is established in the following
compact form involving left and right side cell-centered data only (see �gure 1 for notations). This pressure
reconstruction is used in the momentum equations.

pf =
h+

h
pL +

h−

h
pR +

(
h−E+ − h+E−

h

)
.

(
h+

h

−→
∇pL +

h−

h

−→
∇pR

)
. (5)

The framed term is kept explicit in each solution step, while the non-framed term is implicited in the solver.
Geometrical vectors E± are introduced so that the framed term contribution goes to zero when the grid
becomes orthogonal (Lf .n = fR.n = 0):

E− , (Lf .n) n− Lf ,

E+ , (fR.n) n− fR.
(6)

Distances used are the projected distances to the face h± and the projected distance h between the L and
R cell centers:

h− = Lf .n , h+ = fR.n , h = h− + h+ = LR.n. (7)

The reconstruction of the pressure normal derivative for the pressure equation is obtained with a recon-
struction following the same rules as for the quantity on the face:

(−→
∇p.n

)
f

=
pR − pL

h
+

(−→
∇pL.E− +

−→
∇pR.E+

h

)
. (8)
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Here again, the framed (explicit) term contribution goes to zero when the grid becomes orthogonal. The
non-framed term is the implicit part that goes into the matrix for the pressure equation.

2.2.2 Convective �uxes

The convective �uxes are computed using limited schemes in Leonard's Normalised Variable Diagram (NVD)
[5]. These schemes use interpolation between three points for the reconstruction at a cell face, depending on
the �ow direction, see �gure 2. The points C and D are the cell centres of the two neighbour cells, in the
upwind and downwind direction. The point U , for structured grids, is the cell centre upwind of point C; for
unstructured grids there usually is no suitable cell at this point, so the value in U is extrapolated from C
using the gradient computed in C. Then, a nonlinear reconstruction from these three points is used to �nd
the face value such that the solution remains monotone. Many di�erent schemes exist, the standard scheme
in ISIS-CFD is the AVLSMART scheme [6].

Figure 2: Points for NVD face reconstruction. The points C and D are the neighbouring cells of the face f ,
the point U is the mirror image of D w.r.t. C.

For the volume fraction equation, the solutions are known a-priori to be numerical approximations to
a discontinuity at the water surface, with constant values elsewhere. For these special solutions, normal
accuracy considerations do not hold. Therefore, downwind-biased NVD schemes are used which add arti�cial
antidi�usion (negative di�usion) to the equation while preserving stability, see for example [7]. Antidi�usion
continuously compresses the interface in ci so it remains as sharp as possible. As the discontinuous ci does
not have a well-de�ned gradient, the state U in our BRICS scheme [4] is not extrapolated from C but
interpolated from the cell centre nearest to the point U and its neighbours.

Misalignment corrections, for the case where the face centre does not lie on the midpoint of the line CD
(the point of interpolation) are not used. For the volume fraction equation, these cannot even be envisaged
because no useful gradient information exists. However, misalignments have a strong e�ect on the accuracy
of the solution for ci, so if possible the mesh should be made such that they are prevented as much as possible
near the free surface.

2.3 Meshes

For this study, as usual for ISIS-CFD, unstructured hexahedral meshes generated with the HEXPRESSTM

grid generator from NUMECA Int. are used (see �gure 3 for an example). In these meshes, variations in cell
size are handled by having small cells laying next to larger cells. This situation is called `hanging nodes' in
the literature and solvers often needs speci�c discretisations to handle these topologies. In ISIS-CFD, due
to the face-based algorithm, these cells are treated in exactly the same way as all the others: the larger cells
are simply seen as cells with more than 6 faces. Thus, no speci�c hanging-node treatment is included.

Unstructured hexahedral grids are ideal for automatic grid re�nement. Isotropic or anisotropic grid
re�nement can be applied to any of the hexahedral cells, the result will still be an unstructured hexahedral
mesh. Therefore, locally re�ned meshes can be used directly in a �ow solver that supports unstructured
hexahedral meshes, without requiring changes to the �ow solver.

Due to the small cell � large cell transitions, strong cell misalignments exist in parts of the grid. When
the grid is re�ned, these situations persist: no matter the size of the grid, there will always be cells that
have neighbours twice smaller than themselves. Thus, misalignment problems may limit the accuracy of
the solutions. However, when the grids become �ner, the structured zones between the cell size transitions
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Figure 3: Cut through an unstructured hexahedral mesh.

should become larger and larger. Thus, the percentage of cells that have misalignments is reduced, which
increases the overall accuracy. For automatic mesh re�nement, it is therefore essential to ensure grids with
smoothly varying cell sizes in order to limit the number of cells that have misalignments.

3 Grid re�nement procedure

The grid re�nement procedure developed for ISIS-CFD [8, 9] is integrated completely in the �ow solver. The
method is entirely parallelised, including automatic redistribution of the grid over the processors. During a
�ow computation, the re�nement procedure is called repeatedly. In such a call, �rst a re�nement criterion is
calculated, which is a real �eld variable based on the �ow �eld that indicates where cells should be re�ned.
Then, in a separate step of the procedure the grid is re�ned based on this criterion. These steps are kept
separated so the criterion can be changed easily without modifying the rest of the re�nement method. For
steady �ow, the re�nement procedure eventually converges: once the grid is correctly re�ned according to
the criterion, further calls to the procedure no longer cause any changes.

3.1 Anisotropic re�nement

Grid re�nement for hexahedral cells can be either isotropic, where a cell is always re�ned in all its directions at
once, or anisotropic where division in only one or two directions is possible as well. For realistic applications,
anisotropic re�nement is essential. Isotropic grid re�nement is very costly in three dimensions, since every
re�nement of a cell means a division in eight. Thus, creating very �ne cells to accurately resolve a local �ow
phenomenon becomes almost impossible. However, by applying anisotropic re�nement for �ow features that
require a �ne grid in only one direction (notably, the water surface), the total number of cells required can
be greatly reduced, or much �ner �ow details can be resolved.

A second reason for directional re�nement is, that our re�nement is based on unstructured hexahedral
original grids as shown in �gure 3. In these grids, cells of completely di�erent aspect ratios lie side by side.
Therefore, when re�ning, we need to control the size of the �ne cells in all their directions independently,
otherwise re�ned grids may have smoothly varying sizes in one direction, but repeated changes from �ne
to coarse and back to �ne in another [9]. Isotropic re�nement is not enough to prevent this, so directional
re�nement is the mandatory choice.

5



3.2 Tensor re�nement criteria

For directional re�nement, a way is needed to specify di�erent cell sizes in di�erent directions. The use of
metric tensors as re�nement criteria is such a way. This technique was �rst developed for the generation
and re�nement of unstructured tetrahedral meshes [10, 11, 12]. It is also an extremely useful and �exible
framework for the re�nement of unstructured hexahedral meshes.

In the metric context, the re�nement criterion is a smoothly varying tensor �eld whose values at every
point in the �ow domain indicate what the ideal size for a cell in that position would be. As such, it can be
thought of as the continuous equivalent of a mesh [10]. This ideal mesh depends on the �ow �eld. There exists
an `exact' criterion which is computed from the exact solution; as the grid is re�ned the actual computed
criterion converges to this exact criterion (this is di�erent from the classical error indicating criteria where
the criterion is halved when a cell is re�ned.) Adaptive grid re�nement is performed to get the actual cell
sizes in the re�ned grid as close to these ideal sizes as possible, so the re�ned mesh can be considered as a
`discretisation' of the criterion.

Figure 4: Tensor re�nement criterion. Cell Ωi and unit circle (reference) in the physical space (a), deformed
cell Ω̃i and deformed circle after application of the transformation Ci (b), and re�nement to create a uniform
grid in the deformed space (c).

The re�nement criterion in each cell is a 3× 3 symmetric positive de�nite matrix Ci, which is interpreted
as a geometric transformation of the cell in the physical space to a deformed space (�gure 4). The re�nement
of the cells is decided as follows. Let the criterion tensors Ci in each cell be known (their computation from
the �ow solution is described in section 3.3). In each hexahedral cell, the cell size vectors dj,i (j = 1, . . . , 3),
which are the vectors between the opposing face centres in the three cell directions, are determined. Next,
the modi�ed sizes are computed as:

d̃j,i = Cidj,i. (9)

Finally, a cell is re�ned in the direction j when the modi�ed size exceeds a given, constant threshold value
Tr:

‖d̃j,i‖ ≥ Tr. (10)

The tensors Ci are direct speci�cations of the desired cell sizes: in a converged re�ned grid, the cell sizes are
inversely proportional to the magnitude of the Ci.

3.3 Pressure Hessian criterion

One of the most suitable criterions to capture vortical structure existing in a wake of a body is the criterion
based on the Hessian matrix of second derivatives of the pressure. This section describes how to compute
those second derivatives in a �nite-volume code.

3.3.1 De�nition of the Hessian criterion

The pressure Hessian matrix is:

H(p) =

(p)xx (p)xy (p)xz

(p)xy (p)yy (p)yz

(p)xz (p)yz (p)zz

 . (11)
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To compute the re�nement criterion, the Hessian matrix is modi�ed with a power law. Thus, the criterion
in cell i is:

CH,i = (H(p)a)i, (12)

where Ha has the same eigenvectors as H and eigenvalues that are those of H (in absolute value) to the
power a. In general, we use a = 1

2 .

3.3.2 Computing the pressure Hessian

Hessian-based criteria are often used to control anisotropic grid re�nement [10, 12, 13]. Here this criterion
is based on the pressure, because of our re�nement strategy in boundary layers [9]. We consider that the
number of layers in the boundary layer grid should be the same everywhere, to ensure the best grid quality.
And since the approximate thickness of the boundary layer is known, these grid layers can be inserted on the
original grid. Therefore, it is unnecessary to employ a criterion which has very high values in the boundary
layer region. The pressure varies little over the thickness of a boundary layer, so its second derivatives there
are limited.

To compute the Hessian matrix of a numerical solution, second-derivative operators must be discretised.
A particular complication for this discretisation is that our meshes always contain places where the grid size
changes abruptly, as small cells lie next to twice larger cells (see section 2.3). These places do not disappear
when the mesh is re�ned, on the contrary their number increases signi�cantly when automatic re�nement
is used. However, many discretisations of the second spatial derivatives depend on the mesh becoming
smoother and smoother as it is re�ned, in order to obtain second-order accuracy. In particular, the well-
known computation of the Hessian by using the Gauss theorem for �nding the gradients of the quantity,
then applying the Gauss theorem again to the gradients in order to compute the second derivatives, has an
accuracy of order zero in places where the grid size changes abruptly. A suitable technique for computing
the Hessian, on the other hand, must be insensitive to these cell size changes. This section describes two
possible ways of computing the Hessian matrix.

3.3.3 Third-order least-squares approximation

A �rst solution for the computation of the Hessian is to use a least-squares approximation [9]. In each cell,
we construct a least-squares �t of a third-order polynomial to the solution in the cell, its neighbour cells and
its neighbours' neighbours. The approximated Hessian is then computed from the second derivatives of this
polynomial. Let Pj(x), j = 1 · · · 20 be the set of basic three-dimensional polynomial functions in x of up to
third order (i.e. P1(x) = 1, P2(x) = x, P3(x) = y, · · · , P5(x) = x2, · · · , P11(x) = x3, · · · ,P20(x) = xyz).
Furthermore, I is the vector of cell indices of a cell i, its neighbours and its neighbours' neighbours. Then
we shall search coe�cients β such that the polynomial:

φi(x) =
20∑

j=1

βjPj(x− xi), (13)

is the closest �t to the values of p in the cell centres of I, within the space de�ned by the set Pj(x − xi).
De�ning the matrix A and vector b as:

Ajk = Pj(xIk
− xi), bk = pIk

, j = 1 · · · 20, k = 1 · · · size(I), (14)

the coe�cients β are found as:
β = (ATA)−1AT b. (15)

According to the de�nition of the least-squares procedure, there is no better third-order polynomial �t to
the points I, so the error in the �t is at least fourth-order. Therefore, if p is a su�ciently smooth function,
the approximated Hessian HLS3(p) is a second-order accurate approximation to H(p) (two orders are lost
by the double di�erentiation). Tests with manufactured solutions in [9] con�rm this on our re�ned grids.
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3.3.4 Smoothed Gauss method

Unfortunately, the numerically evaluated pressure ph is not a smooth function. Our SIMPLE-based pressure
equation contains a Laplace-type operator in �nite-volume form, for which the �uxes over the faces are
based on the normal derivatives of the pressure computed with equation (8). On arbitrary meshes, these are
�rst-order accurate. Therefore, the truncation error of the Laplace equation which contains the derivatives
of the �uxes is formally of order zero. These local truncation errors cancel globally, because they depend on
the relative sizes of a cell and its neighbours so they have opposite signs in small and large cells lying next
to each other. Therefore the solution itself for the pressure is at least �rst-order accurate (ph = p + O(h)
where h is a measure of the grid size). However, the second derivatives of the pressure appear directly in the
pressure equation so they have the same order of accuracy as the truncation error, i.e. H(ph) = H(p)+O(1).
It has been numerically con�rmed for an 1D case that the LS3 Hessian gives errors of order zero where small
cells lie next to larger cells.

The consequence for grid re�nement is, that re�ning cells creates large errors in the Hessian on the
boundaries between �ner and coarser cells. Thus, the grid is not only re�ned where the solution dictates it,
but also in places where it has already been re�ned. This spurious re�nement leads to irregular meshes.

As the error in the Hessian is related to small-scale irregularities in the pressure �eld, it can be reduced
by smoothing. Therefore, we de�ne a smoothed Gauss (SG) Hessian. Let the Gauss approximation to the
gradient of a �eld q be given as:

−→
∇G(qi) =

1
Vi

∑
f

qfSfnf , (16)

where the face values qf are computed with the expression (5) and Vi is the volume of the cell, Sf are the
areas of the faces. Also, de�ne a Laplacian smoothing L as:

L(qi) =

∑
f qfSf∑

f Sf
. (17)

Then the SG Hessian is computed as follows:

1. Compute the gradient of p using
−→
∇G,

2. Smooth each component of the gradient by applyingN times the smoothing L, whereN = 4 is su�cient
in most cases,

3. Compute the gradients of the smoothed gradient components using
−→
∇G,

4. Symmetrize the resulting Hessian matrix by setting (p)jk = 1
2 ((p)jk + (p)kj),

5. Smooth the Hessian by applying N times L to each component.

Since the error in the pressure ph has an oscillatory component of O(h2), di�erenciating this solution creates
an oscillatory error of O(h) in the �rst and O(1) in the second derivatives. The smoother L uses the same
type of interpolation to the faces as the Laplace operator in the pressure equation, so it produces O(h2)
oscillations itself. Therefore, L cannot increase the smoothness of ph, which is the reason why the pressure is

not smoothed. On the other hand, the smoothing of the gradients (2) is essential. The O(h) wiggles in
−→
∇ph

are small compared to the gradient of p so smoothing is very e�ective for removing these wiggles. The new
O(h2) oscillations introduced by L are ino�ensive since the gradients are only di�erenciated once more. In
the Hessian, the remaining oscillations of the original solution are of the same order as the solution itself so
smoothing cannot improve the accuracy. The step (5) is only applied to create better mesh quality through
a smoother criterion.

The resulting Hessian is not second-order accurate but its smoothness makes it interesting as a re�nement
criterion, since smooth criteria provide good mesh quality. However, smoothing decreases the spurious
oscillations in the re�nement criterion but also reduces the intensity of physical small-scale features. This
limitation of the criterion is the reason that all smoothing should be kept to a minimum.
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4 Applications

The grid re�nement procedure described above is applied to a propeller-hull interaction con�guration. The
test case chosen is the STREAMLINE tanker investigated during the European FP7 STREAMLINE project.
Model tests have been conducted both with and without the BLAD for ship resistance and self-propulsion
for di�erent advancing speeds. Computation will be performed for design speed V=1.773m/s only. As
our main interest is propeller performance prediction, a double model computation is performed without
taking into account the e�ect of free-surface. Propeller-hull interaction is simulated with a RANSE/BEM
coupling procedure developed in a joint research work between ECN/CNRS and CNR-INSEAN during the
STREAMLINE project. The RANSE/BEM coupling approach has been validated in [14] with several test
cases. It can provide accurate prediction for propeller-hull interaction problem with much lower cost than a
simulation with full RANSE approach where the propeller is also simulated with RANSE solver. The BEM
code PRO-INS developed by INSEAN is based on a boundary integral formulation for marine propellers in
arbitrary onset non-cavitating and cavitating �ow conditions. The RANSE code provides the velocity �eld
in front of the propeller to the BEM code as in�ow condition. Propeller loading by BEM is recast as volume
force distribution at the propeller plane. This body force representing the propeller action is added as source
term in the momentum equations of RANSE simulation.

4.1 Summary of model test results

The BLAD is designed by HSVA [1]. Model test measurements are conducted by CTO [2]. Table 1 sum-
marizes model test results. Rt is the hull resistance measured without the propeller. Other quantities
are measured during self-propulsion test. n is the propeller revolution rate at the self propulsion point, T
propeller thrust, Q propeller torque, and Fd friction correction force applied to the hull. There are two
measurements performed without the BLAD. The �rst one shown in the second line was performed within
the same period as the one including the BLAD, while the second one shown in the third line was conducted
at the beginning of the STREAMLINE project. As the experimental condition at di�erent periods might be
di�erent, we focus on the comparison of the two measurements performed during the same period shown in
the �rst and the second lines only. Based on those two measurement results, we can see that when the BLAD
is added, hull resistance increases by about 0.50N, while under self-propulsion condition, propeller thrust
increases by about 1.41N. As those quantities are very small compared with hull resistance (only about 0.8%
and 2.3% respectively), it is a very challenging task in a numerical simulation to predict the e�ect of the
BLAD on hull resistance and propeller propulsion with accuracy.

Table 1: Model test results

BLAD Rt(N) n(rps) T(N) Q(Nm) Fd(N)
Yes 61.47 9.02 60.63 2.310 13.57
No 60.97 8.98 59.22 2.276 13.63

No(*) 61.10 8.92 58.68 2.253 13.86

(*) Repeated test conducted in di�erent period

4.2 Double model computation with grid re�nement

As in the measurement, numerical simulations have been performed for both con�gurations for resistance and
propulsion results. With RANSE-BEM coupling approach, both computations are performed with exactly
the same mesh. As free-surface e�ect is not taken into account in the computation, hull resistance can not be
compared with measurement result. However, hull resistance di�erence between both con�gurations should
be almost the same as in measurement. It is also impossible to perform a self-propulsion computation by
adjusting propeller revolution rate. Instead, propeller revolution rate measured in model test is imposed in
the computation. Unlike the resistance, propeller thrust and torque obtained in this way by the computation
can be compared directly to the measurement result, since the e�ect of free-surface to propeller propulsion is
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Figure 5: Predicted wall limiting streamlines with and without the BLAD

Figure 6: Predicted Nominal wake. Left: e�ect of the BLAD; Right: e�ect of grid re�nement

expected to be small. Computations were performed with half domain without taking into account propeller
tangential force. The initial mesh contains 700K cells and 576K cells respectively for the cases with and
without the BLAD. To assess the e�ect of grid re�nement, for each case, we perform grid adaptation for
the resistance computation by restricting the re�nement in a region between the BLAD and the propeller.
The threshold of grid re�nement criterion is adjusted such that the re�ned grid contains 1M, 2M, 3M and
4M cells respectively. Such re�ned grid is kept unchanged for the computation with RANSE/BEM coupling
approach to evaluate the propeller performance. The two di�erent pressure Hessian evaluation methods
presented in sub section 3.3 have been tested. The Smoothed Gauss method gives better prediction than
the third-order least-squares approach. In this paper, only the results obtained with the Smoothed Gauss
method is presented.

The predicted wall limiting streamlines for the case with and without the BLAD are shown in Figure
5. Results are slightly di�erent near the stern. Figure 6 compares the nominal wake at the propeller plane.
Picture on the left side compares the case with and without the BLAD, while that on the right side compares
the prediction for the case with the BLAD with and without adaptive grid re�nement. It can be seen that the
predicted nominal wake for the case with the BLAD without using adaptive grid re�nement is very similar
to the case without the BLAD, which indicates that the e�ect of the BLAD can not be captured correctly
without using adaptive grid re�nement.

Predicted hull resistance as well as propulsion results for the case without the BLAD are given in table
2. The e�ect of grid re�nement is mainly observed on propeller thrust. It can be considered that converged
solution is obtained with a re�ned grid containing 2M cells. Compared with model test result, propeller
thrust di�ers by less than 2% for all grids, which can be considered as good prediction for engineering
application. Error observed in propeller torque is about the same. Similar results for the case with the
BLAD is given in table 3. Again, a very good prediction is obtained on propeller thrust with an error less
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Table 2: Predicted results without the BLAD

N cells Rt(N) Rsp(N) T(N) Q(Nm)
576K 46.01 53.69 60.00 2.322
1M 46.06 53.68 60.19 2.324
2M 46.05 53.66 60.27 2.325
3M 46.04 53.65 60.27 2.325
4M 46.04 53.64 60.22 2.325

Table 3: Predicted results with the BLAD

N cells Rt(N) Rsp(N) T(N) Q(Nm)
700K 46.47 54.11 60.74 2.348
1M 46.57 54.15 60.86 2.349
2M 46.59 54.11 60.83 2.348
3M 46.58 54.11 60.83 2.348
4M 46.61 54.10 60.81 2.347

than 0.33%. E�ect of grid re�nement can be observed both on the hull resistance and on the propeller thrust.
Like in the previous case, converged solution can be obtained with a re�ned grid containing 2M cells.

The di�erence between the two cases on di�erent quantities are presented in table 4. In numerical
simulation, the di�erence is evaluated with the result obtained with similar grid density. We believe that
this is a more reliable evaluation, since numerical error might cancel together with such evaluation. For all
quantities, converged solution is obtained starting from 2M cells. It is expected that the di�erence in ship
resistance dRt, self-propulsion resistance dRsp, and propeller thrust dT should be almost the same. It is
the case for numerical prediction. They di�er only by about 0.15% (based on hull resistance value). The
di�erence can be attributed to numerical uncertainty. Concerning measurement data, they di�er by about
1.5%. We believe that this gives an indication of measurement uncertainty.

Numerical prediction indicates that hull resistance is increased by 0.54N when the BLAD is added.
Compared with the measurement value 0.50N, it di�ers only by 0.066% based on hull resistance (about
61N). Hence, it is a very good prediction. Self-propulsion resistance Rsp is a direct numerical result in
a RANSE/BEM coupling computation for self-propulsion. This quantity can not be measured directly in
the experiments. In table 4, we consider the sum of propeller thrust T and friction correction force Fd
as self-propulsion resistance for measurement data. The di�erence in self-propulsion resistance should be
about same as the di�erence in hull resistance. It is really the case in numerical simulation result. But for
measurement data, it is more than two times higher. More interesting result is observed on propeller thrust.
It is also expected that the di�erence in propeller thrust under self-propulsion condition should be about the
same as the di�erence in hull resistance. With the initial mesh, the di�erence in propeller thrust 0.74N is

Table 4: E�ect of the BLAD on di�erent quantities

N cells dRt(N) dRsp(N) dT(N) dQ(Nm)
Initial 0.46 0.51 0.74 0.026
1M 0.50 0.47 0.66 0.025
2M 0.54 0.46 0.56 0.023
3M 0.54 0.45 0.56 0.023
4M 0.57 0.46 0.54 0.023
Exp 0.50 1.35 1.41 0.034
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much higher than the di�erence in hull resistance 0.46N. When the mesh is re�ned to 2M cells, the di�erence
in propeller thrust changes to 0.56N and the di�erence in hull resistance changes to 0.54N. It must be noticed
that those two quantities are obtained with two di�erent codes, one with the RANSE code, and the other by
the BEM code. The fact that they converge to almost the same value as the mesh is re�ned demonstrates
the good convergence behavior of numerical simulation. They become almost the same as expected. The
di�erence in propeller thrust is due to the di�erence in propeller revolution rate and the di�erence in the
wake with and without the BLAD. It is possible in a numerical simulation to evaluate those e�ects separately.
By applying propeller revolution rate n=9.02rps for the case without the BLAD, propeller thrust increases
by 0.84N. Hence, the wake with the BLAD decreases the propeller thrust by 0.84-0.56=0.28N at n=9.02rps.
Measurement results indicate that propeller thrust increases by 1.41N when the BLAD is added. This value
is almost 3 times the di�erence observed in hull resistance. We believe that this might be a consequence of
measurement uncertainty. We can use propeller open water performance result to make an estimation. Under
open water condition, if the propeller advancing speed is chosen (V=1.3209m/s) such that propeller thrust
T=59.22N at n=8.98rps (the measurement self-propulsion point without the BLAD), then, at n=9.02rps,
propeller thrust increases by 0.78N. In the wake with the BLAD, propeller thrust should decrease by 0.28N
according to numerical simulation. Hence, in the case with the BLAD, propeller thrust should increase
by 0.78-0.28=0.50N, which is exactly the same as the di�erence observed in hull resistance. Based on this
estimation, we believe that the numerical prediction with 0.54N increase in propeller thrust for the case
with the BLAD is a very good prediction. And the expected true value should be 0.50N rather than 1.41N
as obtained in the measurement. Similar estimation can be applied to propeller torque to demonstrate
that di�erence observed in model test for propeller torque is likely over-estimated. Based on propeller open
water measurement result, propeller torque in open water condition increases by 0.0267Nm when propeller
revolution rate changes from 8.98rps to 9.02rps. CFD prediction indicates that propeller torque decreases
by 0.004Nm in the wake with the BLAD at n=9.02rps. Hence, the estimated di�erence in propeller torque is
0.0267-0.004=0.0263Nm. This value is much more closer than the CFD prediction 0.023Nm compared with
the measurement result 0.034Nm. Finally, we can notice that the convergence behavior observed with the
�nest re�ned grid containing 4M cells is not always very good. This can be explained by the fact that in our
grid re�nement exercise, a constraint on minimum cell size is applied. With this constraint, 3M cells may be
su�cient to re�ne the mesh in the region where it is really needed. When grid cells increase from 3M to 4M,
the additional 1M cells may be added in the region where numerical error is no longer large. This explain
why the convergence behavior is not always very good when the grid is re�ned.

5 Conclusions

The e�ect of a propeller in�ow improving device is evaluated with a RANSE-BEM coupling approach. It has
been found that adaptive grid re�nement plays an important role in obtaining a reliable numerical prediction,
especially for propeller performance, even for the case without such device. While experimental data can
provide accurate enough data for hull resistance in a resistance test and propeller revolution rate in a self-
propulsion test, other quantities such as propeller thrust and torque measured with an uncertainty of about
1.5% are not accurate enough to assess correctly the e�ect of such device. On the other hand, with grid
re�nement using pressure Hessian evaluated by a smooth Gauss method as re�nement criterion, numerical
prediction with RANSE-BEM coupling approach can provide much more reliable prediction. The present
study has been conducted with double model computation using the propeller revolution rate obtained by
measurement. It will be interesting in a future study to take into account the e�ect of free-surface and
perform a self-propulsion computation to see if the same result can be obtained.
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