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ABSTRACT

Biharmonic problem has been raised in many research
fields, such as elasticity problem in plate geometries or the Stokes
flow problem formulated by using the stream function. The fourth
order partial differential equation can be solved by applying
many techniques. When using finite elements C1 continuity must
be assured. For this purpose Hermite interpolations constitute
an appealing choice, but it imply the consideration of many de-
grees of freedom at each node with the consequent impact on
the resulting discrete linear problem. Spectral approaches al-
low exponential convergence whilst a single degree of freedom
is needed. However, the enforcement of boundary conditions re-
mains a tricky task. In this paper we propose a separated repre-
sentation of the stream function which transform the 2D solution
in a sequence of 1D problems, each one be solved by using a
spectral approximation.

INTRODUCTION
The Biharmonic problem [1] has been raised in many re-

search fields [2], such as in elasticity problem which dealing with
the transverse displacements of elastic plates [3] and in 2D flows
when using the stream function [4].

The Finite Element Method - FEM - [5] and the Boundary
Element Method - BEM - [6] can be used to solve biharmonic
equations. Other methods and variants exist, e.g. [1].

The spectral method has been widely used in the solution of
Partial Differential Equations - PDE -, in particular high order
PDEs, e.g. [7].

The Chebyshev spectral collocation method [8, 9] has been
traditionally used to solved biharmonic problems. Its main ad-
vantage lies in the fact that it only needs a degree of freedom per
node and it exhibits exponential convergence rates.

In this paper spectral collocation schemes are combined with
the PGD technique [10, 11] that allows a separated representa-
tion of the fields involved in the model, and then in our case,
transform the solution of a 2D model into the solution of few 1D
problems.
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THE BIHARMONIC EQUATION
We consider the biharmonic equation:

42u = f in Ωx×Ωy = ]−1,1[× ]−1,1[ (1)

where

42 =
∂ 4

∂x4 +2
∂ 4

∂x2∂y2 +
∂ 4

∂y4 (2)

subjected the following boundary conditions:

u = f1 on Γ (3)

and

∂u
∂n

= f2 on Γ (4)

where u is the solution of the biharmonic equation. In plate the-
ory u represents the transverse displacement and in flow simula-
tions it represents the stream function, from which the velocity
can be calculated from:

{
vx =

∂u
∂y

vy =− ∂u
∂x

(5)

PGD FOR BIHARMONIC EQUATION
In this section we illustrate the biharmonic problem by using

the separated representation within the PGD framework.
The aim of the method is to compute N couples of func-

tions (Xi(x),Yi(y)), i = 1, · · · ,N such that Xi(x), i = 1, · · · ,N and
Y (y), i = 1, · · · ,N are defined in 1D domains. The 2D solution
reads:

u(x,y) =
N

∑
i=1

Xi(x) ·Yi(y) (6)

The weak form of problem (1) writes: Find u(x,y) verifying
the boundary conditions (3) and (4) such that

∫
Ωx

∫
Ωy

u∗(x,y)(42u(x,y)− f (x,y)) dx ·dy = 0 (7)

for all the functions u∗(x,y) in an appropriate functional space.

We now compute the functions involved in the separated
representation. We suppose that the set of functional couples
(Xi(x),Yi(y)), i = 1, · · · ,n with 1 ≤ n < N are already known
(they have been previously computed ) and at the present iter-
ation we search the enrichment couple (R(x),S(y)) by applying
an alternating directions fixed-point algorithm which after con-
vergence will constitute the next functional couple (Xn+1,Yn+1).
Hence at the present iteration, n+ 1, we assume the separated
representation

u(x,y)≈
n

∑
i=1

Xi(x) ·Yi(y)+R(x) ·S(y) (8)

The weighting function u∗(x,y) is then assumed as

u∗(x,y) = R∗(x) ·S(y)+R(x) ·S∗(y) (9)

Introducing the trial and test function into the weak form it
results

∫
Ω
[R∗(x) ·S(y)+R(x) ·S∗(y)][

∂ 4R(x)
∂x4 ·S(y)+2 ∂ 2R(x)

∂x2 ·
∂ 2S(y)

∂y2 +R(x) · ∂ 4S(y)
∂y4

]
dx ·dy

=
∫

Ω
[R∗(x) ·S(y)+R(x) ·S∗(y)] · [ f (x,y)−

∑
n
i=1(

∂ 4Xi(x)
∂x4 ·Yi(y)+2 ∂ 2Xi(x)

∂x2 ·
∂ 2Yi(y)

∂y2 +Xi(x)
∂ 4Yi(y)

∂y4 )
]

dx ·dy
(10)

First, we suppose that R(x) is known, implying that R∗(x) =
0. Thus, equation (10) reads

∫
Ωy

S∗(y)[αRxS(y)+2βRx
∂ 2S(y)

∂y2 + γRx
∂ 4S(y)

∂y4 ]dy =∫
Ωy

S∗(y)[ηRx(y)−∑
n
i=1(α

i
RxYi(y)+2β i

Rx
∂ 2Yi(y)

∂y2 + γ i
Rx

∂ 4Yi(y)
∂y4 )]dy

(11)
where

αRx =
∫

Ωx
R(x) ∂R4(x)

∂x4 dx

βRx =
∫

Ωx
R(x) ∂R2(x)

∂x2 dx
γRx =

∫
Ωx

R(x) R(x)dx

α i
Rx =

∫
Ωx

R(x) ∂X4
i (x)

∂x4 dx

β i
Rx =

∫
Ωx

R(x) ∂X2
i (x)

∂x2 dx
γ i

Rx =
∫

Ωx
R(x) Xi(x)dx

ηRx(y) =
∫

Ωx
R(x) f (x,y)dx

(12)

As the weak formulation is satisfied for all S∗(y), we can
come back to its associated strong form:

αRxS(y)+2βRx
∂ 2S(y)

∂y2 + γRx
∂ 4S(y)

∂y4 =

ηRx(y)−∑
n
i=1(α

i
RxYi(y)+2β i

Rx
∂ 2Yi(y)

∂y2 + γ i
Rx

∂ 4Yi(y)
∂y4 )

(13)
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This fourth order equation will be solved by using a pseudo-
spectral Chebyshev method.

Now, from the function S(y) just computed, we search R(x).
in this case, S(y) being known, S∗(y) vanishes and Eq. (10) reads:

∫
Ωx

R∗(x)[αSy
∂ 4R(x)

∂x4 +2βSy
∂ 2R(x)

∂x2 + γSyR(x)]dx =∫
Ωx

R∗(x)ηSy(x)dx−∫
Ωx

R∗(x)[∑n
i=1(α

i
Sy

∂ 4Xi(x)
∂x4 +2β i

Sy
∂ 2Xi(x)

∂x2 + γ i
SyXi(x))]dx

(14)

where

αSy =
∫

Ωy
S(y)S(y)dy

βSy =
∫

Ωy
S(y) ∂S2(y)

∂y2 dy

γSy =
∫

Ωy
S(y) ∂S4(y)

∂y4 dy
α i

Sy =
∫

Ωy
S(y)Yi(y)dy

β i
Sy =

∫
Ωy

S(y) ∂Y 2
i (y)

∂y2 dy

γ i
Sy =

∫
Ωy

S(y) ∂Y 4
i (y)

∂y4 dy
ηSy(x) =

∫
Ωy

S(y) f (x,y)dy

(15)

whose strong form reads

αSy
∂ 4R(x)

∂x4 +2βSy
∂ 2R(x)

∂x2 + γSyR(x) =

ηSy(x)−∑
n
i=1(α

i
Sy

∂ 4Xi(x)
∂x4 +2β i

Sy
∂ 2Xi(x)

∂x2 + γ i
SyXi(x))

(16)

that will be solved again by using a pseudo-spectral Chebyshev
method.

These two steps continue repeat until reaching the fixed
point. If we denote the functions R(x) at the present and pre-
vious iteration as Rp(x) and Rp−1(x), respectively, and the same
for the function S(y), Sp(y) and Sp−1(y), the error at present iter-
ation can be defined from:

e =
∫

Ωx×Ωy

(Rp(x) ·Sp(y)−Rp−1(x) ·Sp−1(y))2dx ·dy≤ ε (17)

where ε is a small enough parameter.
After the convergence we can define the next functional cou-

ple: Xn+1 = R and Yn+1 = S.
The enrichment procedure must continue until reaching the

convergence, that can be evaluated from the error E:

E =
‖∆2u− f (x,y)‖
‖ f (x,y)‖

≤ ε̃ (18)

with ε̃ another small enough parameter.

PSEUDO-SPECTRAL COLLOCATION DISCRETIZA-
TION

We assume the general form of a 1D fourth order differential
equation:

a
d4u
dx4 +b

d2u
dx2 + cu = g(x) (19)

The unknown function u(x) is approximated in Ωx =]−1,1[
from:

u(x) =
i=M

∑
i=1

αi ·Ti(x) (20)

where M denotes the number of nodes considered on Ωx, whose
coordinates are given by

xi = cos
(
(i−1) ·π

M−1

)
, i = 1, · · · ,M (21)

The interpolants Ti(x) verify the Kroenecker delta property,
i.e. Ti(xk) = δik.

At each node k, 3 ≤ k ≤M−2 (the remaining 4 nodes will
be used for enforcing the boundary consitions) the discrete equa-
tions writes:

a ·
i=M

∑
i=1

αi ·
dT 4

i
dx4 |xk +b ·

i=M

∑
i=1

αi ·
dT 2

i
dx2 |xk + c ·αk = f (xk) (22)

When we assume that the first modes of the separated repre-
sentation verified the boundary conditions (3) and (4), functions
R(x) and S(y) are subjected to homogeneous Dirichlet and Neu-
mann conditions. Thus, we should enforce u(x1) = u(xM) = 0
and du

dx |x1 =
du
dx |xM = 0. This conditions results in:


α1 = 0
∑

i=M
i=1 αi · dTi(x)

dx |x1 = 0
αM = 0
∑

i=M
i=1 αi · dTi(x)

dx |xM = 0

(23)

NUMERICAL EXAMPLE
Let us consider the plate problem

42u(x,y) = f (x,y) in Ωx×Ωy = ]−1,1[× ]−1,1[ (24)
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FIGURE 1. EXACT SOLUTION

with

f (x,y) = 4cos(πx)cos(πy)+ cos(πx)+ cos(πy) (25)

The boundary conditions write

u = 0 on Γ (26)

and

∂u
∂n

= 0 on Γ (27)

The exact solution is given by

u =
1

π4 (1+ cos(πx))(1+ cos(πy)) (28)

which is shown in Figure 1 and that serves as reference.
The solution computed by using the separated representation

within the PGD framework with M = 100 nodes in each direction
is shown in Fig. 2. Figure 3 depicts the main modes involved in
the separated representation. The error with respect to the ref-
erence solution (exact solution) is depicted in Fig. 4, where the
error was computed at each node. As the exact solution can be
expressed from 3 functional couples, the error when considering
more modes is in the order of 10−12 as noticed in Figure 5.

CONCLUSION
In this work we analyzed the possibility of using separated

representations for solving high order partial differential equa-

FIGURE 2. PGD BASED SPECTRAL SOLUTION

FIGURE 3. PGD MODES

tions, as is the case of the biharmonic equation. The first re-
sults seem indicate that PGD and spectral techniques can be ef-
ficiently combined. The tricky point concerns the enforcement
of the boundary conditions, that is, how to cote the first modes
of the separated representation in order to account for the two
boundary conditions known in the whole domain boundary.
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