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INTRODUCTION

The Biharmonic problem [START_REF] Marin | The method of fundamental solutions for inverse boundary value problems associated with the two-dimensional biharmonic equation[END_REF] has been raised in many research fields [START_REF] Erturk | Numerical solutions of 2-d steady incompressible flow in a driven skewed cavity[END_REF], such as in elasticity problem which dealing with the transverse displacements of elastic plates [START_REF] Li | The trefftz method using fundamental solutions for biharmonic equations[END_REF] and in 2D flows when using the stream function [START_REF] Montlaur | Discontinuous galerkin methods for the stokes equations using divergence-free approximations[END_REF].

The Finite Element Method -FEM - [START_REF] Gudi | Mixed discontinuous galerkin finite element method for the biharmonic equation[END_REF] and the Boundary Element Method -BEM - [START_REF] Mai-Duy | A domain-type boundary-integral-equation method for twodimensional biharmonic dirichlet problem[END_REF] can be used to solve biharmonic equations. Other methods and variants exist, e.g. [START_REF] Marin | The method of fundamental solutions for inverse boundary value problems associated with the two-dimensional biharmonic equation[END_REF].

The spectral method has been widely used in the solution of Partial Differential Equations -PDE -, in particular high order PDEs, e.g. [START_REF] Mai-Duy | A spectral collo-cation method based on integrated chebyshev polynomials for two-dimensional biharmonic boundary-value problems[END_REF].

The Chebyshev spectral collocation method [START_REF] Martinez | A chebyshev collocation spectral method for numerical simulation of incompressible flow problems[END_REF][START_REF] Li | Iterative and direct chebyshev collocation spectral methods for one-dimensional radiative heat transfer[END_REF] has been traditionally used to solved biharmonic problems. Its main advantage lies in the fact that it only needs a degree of freedom per node and it exhibits exponential convergence rates.

In this paper spectral collocation schemes are combined with the PGD technique [START_REF] Chinesta | An overview of the proper generalized decomposition with applications in computational rheology[END_REF][START_REF] Chinesta | Proper generalized decomposition of multiscale models[END_REF] that allows a separated representation of the fields involved in the model, and then in our case, transform the solution of a 2D model into the solution of few 1D problems.

THE BIHARMONIC EQUATION

We consider the biharmonic equation:

2 u = f in Ω x × Ω y = ]-1, 1[ × ]-1, 1[ (1) 
where

2 = ∂ 4 ∂ x 4 + 2 ∂ 4 ∂ x 2 ∂ y 2 + ∂ 4 ∂ y 4 (2)
subjected the following boundary conditions:

u = f 1 on Γ (3) 
and

∂ u ∂ n = f 2 on Γ ( 4 
)
where u is the solution of the biharmonic equation. In plate theory u represents the transverse displacement and in flow simulations it represents the stream function, from which the velocity can be calculated from:

v x = ∂ u ∂ y v y = -∂ u ∂ x (5) 
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In this section we illustrate the biharmonic problem by using the separated representation within the PGD framework.

The aim of the method is to compute N couples of functions

(X i (x),Y i (y)), i = 1, • • • , N such that X i (x), i = 1, • • • , N and Y (y), i = 1, • • • , N are defined in 1D domains. The 2D solution reads: u(x, y) = N ∑ i=1 X i (x) •Y i (y) (6) 
The weak form of problem (1) writes: Find u(x, y) verifying the boundary conditions (3) and (4) such that

Ω x Ω y u * (x, y)( 2 u(x, y) -f (x, y)) dx • dy = 0 (7)
for all the functions u * (x, y) in an appropriate functional space.

We now compute the functions involved in the separated representation. We suppose that the set of functional couples

(X i (x),Y i (y)), i = 1, • • • , n with 1 ≤ n < N
are already known (they have been previously computed ) and at the present iteration we search the enrichment couple (R(x), S(y)) by applying an alternating directions fixed-point algorithm which after convergence will constitute the next functional couple (X n+1 ,Y n+1 ). Hence at the present iteration, n + 1, we assume the separated representation

u(x, y) ≈ n ∑ i=1 X i (x) •Y i (y) + R(x) • S(y) (8) 
The weighting function u * (x, y) is then assumed as

u * (x, y) = R * (x) • S(y) + R(x) • S * (y) (9) 
Introducing the trial and test function into the weak form it results

Ω [R * (x) • S(y) + R(x) • S * (y)] ∂ 4 R(x) ∂ x 4 • S(y) + 2 ∂ 2 R(x) ∂ x 2 • ∂ 2 S(y) ∂ y 2 + R(x) • ∂ 4 S(y) ∂ y 4 dx • dy = Ω [R * (x) • S(y) + R(x) • S * (y)] • [ f (x, y)- ∑ n i=1 ( ∂ 4 X i (x) ∂ x 4 •Y i (y) + 2 ∂ 2 X i (x) ∂ x 2 • ∂ 2 Y i (y) ∂ y 2 + X i (x) ∂ 4 Y i (y) ∂ y 4 ) dx • dy (10) 
First, we suppose that R(x) is known, implying that R * (x) = 0. Thus, equation [START_REF] Chinesta | An overview of the proper generalized decomposition with applications in computational rheology[END_REF] reads

Ω y S * (y)[α Rx S(y) + 2β Rx ∂ 2 S(y) ∂ y 2 + γ Rx ∂ 4 S(y) ∂ y 4 ]dy = Ω y S * (y)[η Rx (y) -∑ n i=1 (α i Rx Y i (y) + 2β i Rx ∂ 2 Y i (y) ∂ y 2 + γ i Rx ∂ 4 Y i (y) ∂ y 4 )]dy (11) 
where

α Rx = Ω x R(x) ∂ R 4 (x) ∂ x 4 dx β Rx = Ω x R(x) ∂ R 2 (x) ∂ x 2 dx γ Rx = Ω x R(x) R(x)dx α i Rx = Ω x R(x) ∂ X 4 i (x) ∂ x 4 dx β i Rx = Ω x R(x) ∂ X 2 i (x) ∂ x 2 dx γ i Rx = Ω x R(x) X i (x)dx η Rx (y) = Ω x R(x) f (x, y)dx (12)
As the weak formulation is satisfied for all S * (y), we can come back to its associated strong form:

α Rx S(y) + 2β Rx ∂ 2 S(y) ∂ y 2 + γ Rx ∂ 4 S(y) ∂ y 4 = η Rx (y) -∑ n i=1 (α i Rx Y i (y) + 2β i Rx ∂ 2 Y i (y) ∂ y 2 + γ i Rx ∂ 4 Y i (y) ∂ y 4 ) (13) 
This fourth order equation will be solved by using a pseudospectral Chebyshev method. Now, from the function S(y) just computed, we search R(x). in this case, S(y) being known, S * (y) vanishes and Eq. ( 10) reads:

Ω x R * (x)[α Sy ∂ 4 R(x) ∂ x 4 + 2β Sy ∂ 2 R(x) ∂ x 2 + γ Sy R(x)]dx = Ω x R * (x)η Sy (x)dx- Ω x R * (x)[∑ n i=1 (α i Sy ∂ 4 X i (x) ∂ x 4 + 2β i Sy ∂ 2 X i (x) ∂ x 2 + γ i Sy X i (x))]dx (14) 
where α Sy = Ω y S(y)S(y)dy 

β Sy = Ω y S(y) ∂ S 2 (
α Sy ∂ 4 R(x) ∂ x 4 + 2β Sy ∂ 2 R(x) ∂ x 2 + γ Sy R(x) = η Sy (x) -∑ n i=1 (α i Sy ∂ 4 X i (x) ∂ x 4 + 2β i Sy ∂ 2 X i (x) ∂ x 2 + γ i Sy X i (x)) (16) 
that will be solved again by using a pseudo-spectral Chebyshev method. These two steps continue repeat until reaching the fixed point. If we denote the functions R(x) at the present and previous iteration as R p (x) and R p-1 (x), respectively, and the same for the function S(y), S p (y) and S p-1 (y), the error at present iteration can be defined from:

e = Ω x ×Ω y (R p (x) • S p (y) -R p-1 (x) • S p-1 (y)) 2 dx • dy ≤ ε (17)
where ε is a small enough parameter.

After the convergence we can define the next functional couple:

X n+1 = R and Y n+1 = S.
The enrichment procedure must continue until reaching the convergence, that can be evaluated from the error E:

E = ∆ 2 u -f (x, y) f (x, y) ≤ ε (18) 
with ε another small enough parameter.

PSEUDO-SPECTRAL COLLOCATION DISCRETIZA-TION

We assume the general form of a 1D fourth order differential equation:

a d 4 u dx 4 + b d 2 u dx 2 + cu = g(x) (19) 
The unknown function u(x) is approximated in

Ω x =] -1, 1[ from: u(x) = i=M ∑ i=1 α i • T i (x) (20) 
where M denotes the number of nodes considered on Ω x , whose coordinates are given by

x i = cos (i -1) • π M -1 , i = 1, • • • , M (21) 
The interpolants T i (x) verify the Kroenecker delta property, i.e. T i (x k ) = δ ik .

At each node k, 3 ≤ k ≤ M -2 (the remaining 4 nodes will be used for enforcing the boundary consitions) the discrete equations writes:

a • i=M ∑ i=1 α i • dT 4 i dx 4 | x k + b • i=M ∑ i=1 α i • dT 2 i dx 2 | x k + c • α k = f (x k ) (22)
When we assume that the first modes of the separated representation verified the boundary conditions (3) and (4), functions R(x) and S(y) are subjected to homogeneous Dirichlet and Neumann conditions. Thus, we should enforce u(x 1 ) = u(x M ) = 0 and du dx | x 1 = du dx | x M = 0. This conditions results in:

       α 1 = 0 ∑ i=M i=1 α i • dT i (x) dx | x 1 = 0 α M = 0 ∑ i=M i=1 α i • dT i (x) dx | x M = 0 (23)

NUMERICAL EXAMPLE

Let us consider the plate problem 

The boundary conditions write

u = 0 on Γ (26) 
and

∂ u ∂ n = 0 on Γ (27)
The exact solution is given by

u = 1 π 4 (1 + cos(πx))(1 + cos(πy)) (28) 
which is shown in Figure 1 and that serves as reference.

The solution computed by using the separated representation within the PGD framework with M = 100 nodes in each direction is shown in Fig. 2. Figure 3 depicts the main modes involved in the separated representation. The error with respect to the reference solution (exact solution) is depicted in Fig. 4, where the error was computed at each node. As the exact solution can be expressed from 3 functional couples, the error when considering more modes is in the order of 10 -12 as noticed in Figure 5.

CONCLUSION

In this work we analyzed the possibility of using separated representations for solving high order partial differential equa- 
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 45 FIGURE 4. ERROR OF THE PGD SOLUTION

u(x, y) = f (x, y) in Ω x × Ω y = ]-1, 1[ × ]-1, 1[ (24)